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Abstract

Rivaroxaban (RVX) was suggested to possess anti-inflammatory and vascular tone modula-

tory effects. The goal of this study was to investigate whether RVX impacts lipopolysaccha-

ride (LPS)-induced acute vascular inflammatory response. Male rats were treated with 5

mg/kg RVX (oral gavage) followed by 10 mg/kg LPS i.p injection. Circulating levels of IL-6,

MCP-1, VCAM-1, and ICAM-1 were measured in plasma 6 and 24 hours after LPS injection,

while isolated aorta was used for gene expression analysis, immunohistochemistry, and

vascular tone evaluation. RVX pre-treatment significantly reduced LPS mediated increase

after 6h and 24h for IL-6 (4.4±2.2 and 2.8±1.7 fold), MCP-1 (1.4±1.5 and 1.3±1.4 fold)

VCAM-1 (1.8±2.0 and 1.7±2.1 fold). A similar trend was observed in the aorta for iNOS (5.5

±3.3 and 3.3±1.9 folds reduction, P<0.01 and P<0.001, respectively), VCAM-1 (1.3±1.2 and

1.4±1.3 fold reduction, P<0.05), and MCP-1 (3.9±2.2 and 1.9±1.6 fold reduction, P<0.01).

Moreover, RVX pre-treatment, improved LPS-induced PE contractile dysfunction in aortic

rings (Control vs LPS, Emax reduction = 35.4 and 31.19%, P<0.001; Control vs LPS+RVX,

Emax reduction = 10.83 and 11.48%, P>0.05, respectively), resulting in 24.5% and 19.7%

change in maximal constriction in LPS and LPS+RVX respectively. These data indicate that

RVX pre-treatment attenuates LPS-induced acute vascular inflammation and contractile

dysfunction.

Introduction

Coagulation plays a key role in cardiovascular disorders [1] and interfering with coagulation

factors represents one of the main pharmacological approaches in CVD [2]. Coagulation fac-

tors, not only participate to the activation of the coagulation cascade but also impact vascular

function; this is the case for factor X (FXa), one of the main components in the coagulation
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process [3], which, through the activation of protease-activated receptors (PAR) [4], affects,

vasomotor responses, inflammation, endothelial function, vascular proliferation, cellular

hypertrophy, atherosclerosis, and thrombosis [5,6].

As hemostatic and inflammatory pathways are highly interconnected [7,8], the approval of

novel oral anticoagulants (NOAC), affecting FXa activity and prothrombin complexes (rivar-

oxaban, apixaban, betrixaban, and edoxaban) [9], have raised interest in the interplay between

haemostasis and inflammation linking FXa blockade to PAR inhibition [10,11], and potentially

to improved vascular function.

Clinical studies with NOACS have shown that these drugs reduce the incidence of cardio-

vascular events including coronary and peripheral artery disease, cerebral ischemia, thrombo-

sis, thromboembolic events, and atherosclerosis [12,13]. In addition to this, experimental

studies proposed a series of vascular protective properties of NOAC via inhibition of FXa [14–

26]. These include potential anti-inflammatory effects [15,19–21,23,24,27], that might perhaps

impact vascular function and pathology [14,25]. Indeed inflammation is one of the main con-

tributing factors in coronary artery disease leading to the development of atherosclerosis [28].

Moreover, acute exposure to lipopolysaccharide endotoxin (LPS) has been shown to induce an

inflammatory response that in turn supports vascular injury and dysfunction [29,30].

This raises the intriguing possibility that the impact on NOACS on vasomotor function

[17,31] might depend also on the ability to control vascular function under acute inflammatory

conditions.

To this aim, we used isolated rat aorta, to test the hypothesis that pre-treatment with Rivar-

oxaban (RVX) might mitigate LPS-induced acute vascular inflammation with a focus on pro-

inflammatory, pro-adhesive, and contractile responses under LPS-induced vascular inflamma-

tory conditions.

Material and methods

Animals and treatment

Wistar rats between 10–12 weeks of age (220–260 g) were used in our study. All rats were fed

with a normal chow diet during the period of our study. Animals were accommodated in nor-

mal rat cages with automatically controlled 12-hours light/12-hour dark cycle and the standard

temperature-humidity environment with ad libitum water and food intake. Acute inflamma-

tion was induced by a single intraperitoneal (i.p) injection of LPS (10 mg/kg body weight)

[32]. RVX (5 mg/kg body weight; supplied by Bayer Pharma AG) was administered via oral

gavage 2 hours before LPS injection, the non-RVX groups (control and LPS only) received

oral gavage of RVX vehicle (Carboxymethylcellulose Sodium 0.5%). RVX dose and interval

used in our study was previously shown to inhibit the in vivo Factor Xa in rat arteriovenous

shunt model [33] or thrombus formation [34] and was chosen based on previous in-vivo

related mice and rat animal studies [14,17,35,36], which are specific in the previously reported

single p.o administration of the RVX pharmacokinetic profile as well [37,38]. Our study proto-

col has been approved by the Ethical Committee of Medical Faculty–University of Prishtina

(Nr. 4962), and all procedures for animal experiments were performed in compliance with

guidelines for care and use of animals during whole experimentation procedures.

ELISA

Rats were sacrificed with an i.p overdose of sodium thiopental injection (50 mg/kg body

weight) at 6 hours and 24 hours after LPS injection. Blood was collected from the left ventricle

(EDTA containing tubes) and plasma isolated following centrifugation (4000 rpm for 10 min-

utes) and stored at -80˚C. IL-6, MCP-1, VCAM-1, and ICAM-1 plasma levels were measured
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by enzyme-linked immunoassay kit (Abcam, Cambridge, MA) according to manufacturer’s

protocol instructions.

Aorta preparation

After blood collection, the whole rat aorta was isolated and cleaned immediately from adher-

ing perivascular adipose and connective tissues. Aortic rings of 4–6 mm were cut from the

ascending aorta and fixed in 10% neutral buffered formalin for further immunohistochemical

analysis. Subsequently, aortic rings of 5–7 mm were cut from the remaining part of the ascend-

ing aorta and descending aorta and snap-frozen in liquid nitrogen for gene expression analysis.

Finally, aortic rings of 3–5 mm were cut from the remaining part of the thoracic aorta and

used for testing vascular reactivity in the tissue organ bath.

Immunohistochemistry

Formalin-fixed aortic rings were embedded in paraffin and sectioned in 2.5 μm sections. Tis-

sue sections were deparaffinized as described [39], rehydrated and the heat mediated antigens

retrieval was performed by placing the slides in 10 mM sodium citrate buffer (pH 6.0) for 45

minutes at 95–98˚C. Blocking of endogenous peroxidase activity and non-specific staining was

done with hydrogen peroxide and protein block. Subsequently, sections were incubated for 30

minutes with primary antibodies at the following dilution: 1:200 for anti-VCAM-1, 1:200 for

anti-MCP-1, or 1:100 for Anti-iNOS. After washing steps, sections were incubated with a bioti-

nylated secondary antibody (goat anti-polyvalent, Mouse, and Rabbit Specific HRP/DAB

(ABC) Detection IHC kit, Abcam, Cambridge MA) for additional 15 minutes followed with

streptavidin peroxidase 10’ incubation. Peroxidase activity was detected in fixed tissues with

DAB substrate chromogen for detection of HRP-conjugated antibody and followed under a

microscope to determine staining development. Finally, after the tipping DAB and rinsing in

water, the slides were counterstained with hematoxylin histological staining reagent as

described [40]. Images were acquired with Olympus CX41 microscope (Olympus America)

with Olympus SC100 Digital camera and cell Sens Imaging Software. Relative quantification of

IHC staining has been done with Image J (NIH, https://imagej.nih.gov/ij/).

Reverse transcription-quantitative real-time PCR (RT-qPCR) analysis

Total RNA was isolated from aortae by using RNeasy Fibrous Tissue Mini Kit (Qiagen, Hilden,

Germany) following the standard protocol. RNA assessed for quality and quantity using

absorption measurements (NanoDrop™ 1000 Spectrophotometer, Thermo Fisher Scientific)

and retro-transcribed in cDNA with iScriptTM cDNA synthesis kit (BioRad) as described

[41]. Gene expression analysis was performed using SYBR Green Supermix (Thermo Fisher

Scientific) in CFX connect light cycler (BioRad, Cat#1708841) [42]. Expression was calculated

using the ΔΔCt method (Livak and Schmittgen, 2001) and normalized to a housekeeping gene

(GAPDH). The sequences are presented in S1 Table and expression levels were expressed with

the fold change.

Vascular tone

Aortic ring fragments were mounted in the Tissue Organ Baths (750TOBS, DMT-USA, Ann

Arbor, MI, USA) containing 10 mL of Krebs-Henseleit buffer (118.4 mM NaCl, 4.7 mM KCl,

2.5 mM CaCl2, 1.2 mM KH2PO4, 1.2 mM MgSO4, 25 mM NaHCO3, 11.1 mM glucose; pH

7.4). The temperature was adjusted at 37˚C and the buffer solution was bubble gassed with 5%

CO2 and 95% O2 during the whole experiment. Changes in force tension were recorded by
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isometric force-displacement transducers and continuous mode on a multichannel recorder

polygraph model attached with software LabChart7 connected to power lab 4/35 data acquisi-

tion system (PowerLab 4/35, ADInstruments Pty Ltd., NSW, Australia).

Each ring was initially stretched to an optimal load (*2 g). Subsequently, preparations

were equilibrated for 60 minutes with changes of fluid every 15 minutes. After the equilibra-

tion period, vessel specimen viability was tested with KCl (40 mM) induced contraction, and

aortic segment preparations were washed until returning the basal tone. Thereafter, the vascu-

lar tone was determined with cumulative concentration-response curves with phenylephrine

(10−8 to 10−5 M).

Statistical analysis

All data are presented and calculated with mean ± SEM. The number of rats used in our study

was expressed with “n”. A comparison of parameters obtained within the analysis between two

groups was performed with unpaired Student’s t-test. Vasoreactivity of the PE contractions

was calculated as a percentage of the KCl (40 mM) maximal initial contraction value. The con-

centration-response curve values were analyzed with two-way ANOVA followed by Tukey’s

post hoc test for comparison between groups. P-value< 0.05 was considered to represent a sta-

tistically significant group difference. All analyses and graphs were performed using GraphPad

PRISM version (6.0).

Results

3.1 Effects of RVX pre-treatment on the acute LPS-induced increase in IL-

6, MCP-1, VCAM-1 and ICAM-1 levels

In order to investigate the impact of RVX pre-treatment on LPS-induced pro-inflammatory

and proadhesive mediators expression, IL-6, MCP-1, VCAM-1, and ICAM-1 levels were mea-

sured in plasma 6 hours and 24 hours post LPS injection. As expected, LPS injection increased

plasma levels IL-6, MCP-1, VCAM-1, and ICAM-1(P<0.001) (Fig 1A–1D); an effect which

was significantly blunted with RVX pre-treatment (5 mg/kg) for IL-6 (P<0.01), MCP-1

(P<0.05) and VCAM-1 (P<0.05) both after 6 and 24 hours of treatment. These results suggest

that RVX pretreatment limits LPS induced inflammatory response (Fig 1A–1C).

3.2 Effects of RVX pre-treatment on IL-6, MCP-1, VCAM-1 and ICAM-1

gene expression the aorta

Next, we tested whether RVX treatment could improve pro-inflammatory gene expression in

the aorta and liver. RVX pre-treatment (5 mg/kg) attenuated IL-6 and MCP-1 mRNA expres-

sion in the arterial wall (Fig 2A and 2B), while non-significant changes were observed for

VCAM-1 and ICAM-1 expression at this site. Most importantly RVX pre-treatment did not

affect LPS induced liver expression of IL-6, MCP-1, VCAM-1, and ICAM-1, by confirming

also the liver as a key target of LPS induced acute inflammation (S1 Fig).

3.3 Effects of RVX pre-treatment on LPS-induced iNOS, MCP-1, and

VCAM-1 wall expression in the vascular wall

Increased iNOS, MCP-1, and VCAM-1 immunoreactivity were observed in the aortic vascular

tissues of LPS treated rats mainly in vascular endothelium, and the subendothelial layer was

characterized by smooth muscle cells and perivascular adipose tissues compared to controls

(P<0.001) (Fig 3A–3C). RVX pre-treatment (5 mg/kg) reduced LPS-induced iNOS, MCP-1,

and VCAM-1 expression both at 6 h and 24 h following LPS injection (Fig 3A–3C).
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3.4 Effects of RVX pre-treatment on the acute LPS-induced PE contractile

dysfunction in aortic rings

Next, we addressed whether improved anti-inflammatory effects of RVX pre-treatment (5 mg/

kg) translate into the amelioration of LPS-induced contractile dysfunction to PE. LPS injection

deteriorated PE-induced vasoconstriction when compared with the control group [Emax,

62.33±3.8% for LPS (6 h) compared to controls 97.70.±2.30%, P<0.001; and Emax, 71.91

±4.81% for LPS (24 h) compared to controls: Emax, 103.1.±3.61%, P<0.01] (Control vs LPS,

Emax reduction = 35.4 and 31.19%, P<0.001) (Fig 4A and 4B) (Table 1).

RVX pre-treatment (5 mg/kg) partially reverted LPS-induced PE contractile dysfunction at

both 6 h and 24 h following LPS injection (Emax, 86.87±2.72%, and 91.62±5.83%, for LPS

+RVX treatment; vs Emax, 62.33±3.8 and 71.91±4.81 for LPS alone, P<0.01), maximal con-

striction with RVX+LPS was 24.5 and 19.7% higher compared to LPS alone 6 h and 24 h

respectively (Fig 4A and 4B) (Table 1). These results suggest that RVX attenuates contractile

dysfunction to PE during acute LPS inflammation.

Fig 1. Role of RVX pre-treatment on LPS-induced proinflammatory and proadhesive mediator release in rat

plasma. IL-6 (A), MCP-1 (1B), VCAM-1 (C) and ICAM-1 (D) plasma levels (pg/mL) from LPS treated rats in the

presence or absence of RVX for 6 hours and 24 hours compared to controls. ##P<0.01 and ###P<0.001 (Student’s t-

test) vs. control conditions. �P<0.05, �� P<0.01 and ���P<0.001 (Student’s t-test) vs LPS. Values are expressed as the

mean±SEM (n = 6).

https://doi.org/10.1371/journal.pone.0240669.g001

Fig 2. Role of RVX pre-treatment on LPS induced proinflammatory and proadhesive mediator’s gene expression in rat

aorta. Comparisons of relative IL-6, MCP-1, VCAM-1 and ICAM-1 gene expression levels normalized to GAPDH in the rat

aorta obtained from RVX- or non-treated LPS rats and non-treated control rats 6 hours (A) and 24 hours (B) post LPS

exposure. �P<0.05, �� P<0.01 and ���P<0.001 indicates values significantly different (Student’s t-test) vs LPS. Values are

expressed as the mean±SEM (n = 6).

https://doi.org/10.1371/journal.pone.0240669.g002

PLOS ONE Effects of rivaroxaban on LPS induced vascular inflammation

PLOS ONE | https://doi.org/10.1371/journal.pone.0240669 December 10, 2020 5 / 16

https://doi.org/10.1371/journal.pone.0240669.g001
https://doi.org/10.1371/journal.pone.0240669.g002
https://doi.org/10.1371/journal.pone.0240669


Discussion

In this study, we demonstrated that a specific inhibitor of FXa, namely rivaroxaban, improves

acute inflammation and vascular dysfunction following LPS-induced endotoxin shock.

Besides the role of factor Xa in the coagulation process, this factor contributes also to the

pathogenesis of cardiovascular inflammatory disease through PARs and non-PAR receptors

signaling mediated response in the vasculature [43,44]. Moreover, previous studies have

shown that LPS affects the coagulation cascade by targeting FXa and its intracellular signaling

which contributed to the increased inflammatory response and vascular modulation mainly

through PAR activated receptors signaling [6,45,46]. For instance, the PAR-2 signaling activa-

tion contributes to the activation of macrophages and also to vascular inflammation [47].

Interestingly the time-dependent activation of PAR-2 receptors in the vascular and respiratory

Fig 3. Role of RVX pre-treatment on LPS induced proinflammatory and proadhesive mediator’s protein

expression in rat aorta. Representative immunohistochemical results for aortic iNOS (A), MCP-1 (B) and VCAM-1

(C) expressions from RVX- or non-treated LPS rats and non-treated control rats as described in the legend. % of IHC

positive areas are represented as graphs. ### indicates values significantly different (Student’s t-test) vs. control

conditions. �P<0.05, �� P<0.01 and ���P<0.001 indicates values significantly different (Student’s t-test) vs LPS. Values

are expressed as the mean±SEM (n = 6).

https://doi.org/10.1371/journal.pone.0240669.g003

Fig 4. Role of RVX on the vasoreactivity of aortic rings obtained from A) rats sacrificed 6 hours post LPS and B) rats

sacrificed 24 hours post LPS to PE-induced contractions. Comparisons of vascular reactivity to PE in aortic rings from

RVX- or non-treated LPS rats and non-treated control rats. �P<0.05, �� P<0.01 and ���P<0.001 indicates statistical

significance (Two-Way ANOVA followed Bonferroni correction) vs. control; #P<0.05 and ##P<0.01 indicates values

significantly different (Two-Way ANOVA followed Bonferroni correction) vs. LPS. Values are expressed as the ± SEM

(n = 6).

https://doi.org/10.1371/journal.pone.0240669.g004
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tissues obtained from rats is induced from LPS itself [48,49]. Also, in other studies, these

response was followed by the activation of the inflammatory pathway, via TL-4/NF-κB signal-

ing [50,51]. Most of these responses were shown to be with RVX (Table 2). Of note LPS causes

an inflammatory state characterized by increased proinflammatory and pro adhesive responses

[52,53], and this could propagate in septic shock and related major complications such as

organ failures e.g. respiratory, heart or kidney failures, or abnormal blood clotting (DIC) [54].

Nowadays, there are different experimental and clinical therapeutic interventions in sepsis

[55–57], and targeting the cross-talk between inflammation and coagulation represents an

emerging approach for targeting acute conditions as well as improving long term vascular out-

comes in inflamed conditions [8,58,59].

Most clinical studies demonstrated that targeting Factor Xa inhibition with NOAC includ-

ing rivaroxaban prevented systemic thromboembolic disease, reduced cardiovascular events,

and death [60]. Moreover, NOAC non-hemostatic cellular effects suggest a potential benefit in

inflammation, arterial stiffness, neointima formation, atherosclerosis, and fibrosis [5,61].

Although some anti-inflammatory effects, improvement of hypercoagulable actions such as

disseminated intravascular coagulation (DIC), additional acute lung injury from endotoxemia

[19,36,50], and additional vasculoprotective properties of RVX have been proposed in different

in vitro and tissue models [14,15,20,21,23–25] (see Table 2), a beneficial effect on LPS induced

acute vascular inflammatory response in vivo was not investigated yet. In murine macrophages

and human tubular cells stimulated with FXa, RVX treatment was shown to reduce the expres-

sion of TNF-α, IL-1β, and MCP-1 [14,62]. Similarly, RVX dampened the expression of

VCAM-1, ICAM-1, MCP-1, IL-8, CXCL1, CXCL2, TF in thrombin stimulated human endo-

thelial cells [19], as well as IL-6, IL-1β, TNF-α, MMP9, and COL-1 expression in hypoxic car-

diac myocytes and fibroblasts [23]. Similarly, also TNF-α, MCP-1, IL-6 expression in

angiotensin II-induced inflammatory response in human podocytes was modulated by RVX

[24].

Herein, our results extend these findings by demonstrating in vivo that RVX pre-treatment

decreased the expression of pro-inflammatory mediators and adhesion molecules namely IL-6,

MCP-1, and VCAM-1 induced by LPS in the aorta.

Table 1. Role of RVX on the vasoreactivity of aortic rings obstained from rats sacrificed 6 h and 24 h post LPS to PE-induced dose dependent contractions.

Contractile Agent Pretreatment pEC50 Emax N

Control 6 h 7.06±0.06 97.70±2.30 6

PE LPS 6 h 5.92±0.11+++ 62.33±3.80��� 6

LPS+RVX 6 h 6.68±0.06$ $ 86.87±2.72## 6

Control 24 h 6.96±0.06 103.1±3.61 6

LPS 24 h 6.28±0.12++ 71.91±4.8�� 6

LPS+RVX 24 h 6.74±0.08$ 91.62±5.8# 6

PE: Phenylephrine. Values are mean ± SEM from (n) different patients. pEC50 and Emax (maximal contraction, % KCl 40 mM) are derived from concentration-

response curves presented in Fig 4A and 4B. These values are significantly different:

�� P<0.01

��� P<0.001 vs corresponding controls (Control)

# p<0.05

## p<0.01 vs corresponding controls (LPS 6 h)

+++ p<0.001

++ p<0.01

$ $ p<0.01

$ p<0.05, when compared to pEC50 values derived from corresponding controls vasoconstriction.

https://doi.org/10.1371/journal.pone.0240669.t001
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Table 2. Basic experimental studies that investigate the anti-inflammatory properties of pre-treatment and post-treatment with RVX.

Species Tissue/Model Pre-

Treatment (1)

Post-Treatment

(2)

Response 1 Response 2 References

Rat Lung/LPS RVX - TNF-α, MCP-1, IL-1β, PAR-

2, NF-κB #

- [50]

0.2 or 0.4 mg/

g,

10 days

Rat Femoral Artery/Atherosclerosis

Obliterans

- RVX - IL-1, MCP-1, TNF- α, NF-κB,TLR4 # [51]

10 mg/kg/day

4 weeks

Rat Middle Cerebral Artery/

Temporary focal cerebral

ischaemia

RVX RVX IL-1β, IFN-γ, TNF- α, ICAM-1, CD68 # [26]

3 mg/kg/8

hours

12 mg/kg/ 8 h

and 16 h

Mice Aorta/ApoE -/- - RVX - TNF- α, IL-6, MCP-1, Egr-1, IFN-γ # [35]

1 or 5 mg/kg/

day

26 weeks

Mice Aorta/ApoE -/- - RVX - TNF- α, COX-2, iNOS, MMP-9, MMP-

1 #

[14]

5 mg/kg/day

20 weeks

Mice Aorta/ApoE -/- - RVX - PAR-1,PAR-2, Mac-2, MMP-9 # [63]

1.2 mg/kg/day

14 weeks

Mice EJV/Catheter RVX - MCP-1, MMP-9 # [15]

Thrombosis 5 mg/kg/day

21 days

Mice Atrial/TAC - RVX - TNF-α, MCP-1, IL-1β, IL-6, PAR-2 # [21]

30 μg/g/day

2 weeks

Mice Left Ventricle/TAC RVX IL-1β, IL-6, IFN-γ, NF-κB, TGF-β, CD-

45 #

[77]

1 or 10 mg/kg/

day

3 weeks

Mice Left Ventricular/Myocardial

Ischaemia-RI and TF

RVX IL-6, PAR-2, collagen [16]

0.6 or 1.2 g/kg

feed/day

1α2 and 3α1 #

14 days

Mice Heart/Myocardial Infarction - 138.5mg/kg/day

chow

TNF-α, PPAR-1, PAR-2, TGF-β, # [78]

7 days

Mice Aortic root, Coronary Arteries/

ICM

- RVX - IL-1β, IL-6, NF-κB [23]

10 mg/kg/day TNF-α, MMP9, MMP12, TIMP1, TGF-

β, PAR-1, PAR-2 #2 weeks

Mice Kidney/Ren-TG Hypertensive - RVX - TNF-α, MCP-1, Pal-1, PAR-2 # [24]

6 or 12 mg/kg

1 or 4 months

Mice Lung/BERKss, vascular

Inflammation

- RVX - IL-6, MPO,TAT # [64]

0.4 mg/g chow

10 days

(Continued)
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Earlier studies in ApoE-deficient mice showed that chronic administration of RVX reduced

gene and protein expression for IL-6, TNF-α, MCP-1, i-NOS, COX-2, MMP9 in thoracic and

abdominal aortas, attenuated macrophage activation, necrotic core formation, collagen loss,

and promoted the stabilization of the atherosclerotic plaque [14,35,63].

Interestingly, a recent study has shown a cardioprotective effect of RVX pre-treatment in

ischaemic cardiomyopathy in mice model with diet-induced myocardial infarction [23]. This

study has shown that attenuation of cardiac remodeling, fibrosis, alleviation of the aortic root

and coronary arteries atherosclerosis is dependent on the reduction of IL-1β, TNF-α, IL-6 car-

diac mRNA expression, and nuclear factor kappa B (NF-κB) activation pathway in RVX pre-

treated group. Also in the myocardial reperfusion injury mice model, RVX improved survival

rates, cardiac function, and reduced IL-6, collagen 1α2, and 3α1 cardiac mRNA expression

[16]. RVX protective effects were shown also in a rat model of brain ischemia/reperfusion

injury where it reduced VCAM-1 protein expression, macrophage activation, and thrombin

Table 2. (Continued)

Species Tissue/Model Pre-

Treatment (1)

Post-Treatment

(2)

Response 1 Response 2 References

Mice Hind Limb/STZ Diabetes,

Ischaemia

RVX RVX - Neovascularisation, CD-31, VEGF " [17]

1 or 3 mg/kg/

day

1 or 3 mg/kg/

day

2 weeks 3 weeks

Mice Femoral Arteries/Wire-Mediated

Vascular Injury

RVX RVX - TNF-α, MCP-1, IL-1β, (TGF)-β1, SDF-

1, GM-CSF #

[25]

5 mg/kg/day 5 mg/kg/day

1 week 1 week

Human HUVEC/Thrombin RVX - ICAM-1, ELAM-1, IL-8,

MCP-1, CXCL1, CXCL2, TF

#

- [19]

0.3–3000 nM

30 min

Human HUVEC/Inflammation RVX - TNF-α, IL-6, IL-1β, NF-κB # - [79]

1000 nM

24 hours

Human HUVEC/FXa Inflammation - RVX - CCL-2,CCL-5, EDN2, ITGA5, SELE,

VCAM-1, TNSF10, MMP-2 #

[80]

50 nM

12 h

Human Abdominal Aorta/Aneurysm - RVX - IL-6, NOS-2, MMP-9 # [20]

50 nM

Human Podocytes/Ang-II-induced

Inflammation

RVX - - TNF-α, MCP-1, IL-6, PAR-2, NF-κB # [24]

500 μg/L

1 hour

Human Kidney Tubular Cells/AGEs - RVX - MCP-1, # [62]

300 nM

4 hours

Abbreviations: RVX, Rivaroxaban; LPS, Lipopolysaccharide; AGEs, Advanced glycation end products; RI, Reperfusion Injury; Ang-II, Angiotensin II: STZ,

Streptozocin; BERKss, Berkeley Sicle Cell Mice; Ren-TG, Transgenic Ren-2 Mice;TAC, Transverse Aortic Constriction; ICM,Ischaemic Cardiomyopathy; HUVEC,

Human Umbilical Vein Endothelial Cells;TNF-α,Tumour Necrosis Factor Alpha;MCP-1, Monocyte Chemottractant Protein;IL-1β,Interleukin-1 Beta;PAR-2, Protease-

Activated Receptor 2;NF-κB, Nuclear Factor Kappa Betta;MMP, Matrix metallopeptidase;GM-CSF,Granulocyte-Macrophage Colony-stimulating Factor; SDF-1,Stromal

Cell-Derived Factor 1;VEGF,Vascular Endothelial Growth Factor;NOS-2,Nitric Oxide Synthase-2; Egr-1,Early Growth Response Protein 1;IFN-γ,Interferon Gamma;

TF,Thrombin Factor; CCL, C–C Motif Chemokine Ligand, EDN2, Endothelin-2, ITGA5, Integrin Alpha-5/Beta-1; SELE, E-Selectin;TNSF10, Tumor Necrosis Factor

(Ligand) Superfamily, Member 10; TLR4, Toll Like Receptor 4.

https://doi.org/10.1371/journal.pone.0240669.t002
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mediated thrombus formation [26], and also in pressure overload-induced atrial remodeling

with transverse aortic constriction mice model where a reduced macrophage infiltration asso-

ciated to a decreased expression of MCP-1, IL-6, IL-1β, TNF-α was observed [21].

Moreover, additional studies showed that RVX pre-treatment prevented the development

of mechanical femoral vascular injury-induced neointima hyperplasia in mice, again by affect-

ing IL-1β and TNF-α gene expression [25]. Similarly, RVX treatment decreased MCP-1

plasma levels and MMP-9 protein levels in the external jugular vein of mice following catheter

thrombosis [15], as well as IL-6 plasma level and neutrophil levels in a mouse model of sickle

cell disease [64]. Incubation, ex-vivo, of human abdominal aortic aneurysmal tissues, resulted

in the reduction of IL-6 release and NOS-2, MMP9 protein expression [20].

Also, hypertensive renal damage resulted to be ameliorated by RVX chronic pre-treatment

of renin overexpressing mice via specifically targeting of TNF-α, MCP-1, and IL-6 [24]. Thus

paving the way also to the other newer FXa inhibitor, which recently demonstrated to affect

VCAM-1 and ICAM-1 in uremia induced vascular dysfunction [65].

In addition to vascular inflammation, the acute inflammatory response from LPS induces

vascular hyporeactivity and hypotension which were shown to be also time-dependent [66,67],

thus displaying the highest level of vascular hyperresponsiveness and iNOS expression 6 hours

post-exposure to LPS injection [32,68], as observed in our study experimental model. More-

over, FXa has been found to induce hypotension and inflammation response in vascular endo-

thelial cells [43,44], whereas endotoxin activation of FXa and its intracellular signaling have

been shown to trigger vascular tone reduction and hypotension [49,69–71]. This effect was

shown to depend on factor Xa induced dilation of the rat aorta through the PAR-2 signaling

pathway, a contribute pathway which was implicated also in severe hypotension following sep-

tic shock [72].

In this study, we demonstrate that RVX pre-treatment improves aortic hyporesponsiveness

to PE under inflammatory conditions (Fig 5).

Fig 5. Schematic diagram for the protection of RVX against acute inflammation and vascular dysfunction

following LPS-induced endotoxin shock. RVX pretreatment decreased the expression of pro-inflammatory mediators

and adhesion molecules and improved aortic hypo responsiveness to PE induced by LPS in the aorta. The figure was

prepared with BioRender (biorender.com).

https://doi.org/10.1371/journal.pone.0240669.g005
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Previous studies tested in vitro the protective role of FXa inhibitors on the vascular tone of

control rat aorta [73,74], mesenteric and basilar arteries [31], and streptozotocin-induced dia-

betic mice [17,75]. We now translate these findings in vivo by showing an improvement of vas-

cular tone in endotoxin-induced hypotension and proinflammatory response following RVX

pre-treatment. The effect could rely on the control of FXa-PAR-2 [47–49,69,76] and TL-4

/NF-κB signaling [24,50,51,77].

Although future additional studies are needed to better delineate the mechanisms beyond

these effects, the currently available findings set the stage for investigating the additional

molecular effects and also clinical benefit of RVX treatment in inflammation and hypotension

associated with endotoxin shock.
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S1 Fig. Role of RVX pre-treatment on LPS induced proinflammatory and proadhesive

mediator’s gene expression in rat liver. Comparisons of relative IL-6, MCP-1, VCAM-1 and

ICAM-1 gene expression levels normalized to GAPDH in the rat liver samples obtained from

RVX- or non-treated LPS rats and non-treated control rats. �P<0.05, �� P<0.01 and
���P<0.001 indicates values significantly different (Student’s t-test) vs LPS. Values are

expressed as the mean±SEM (n = 6).
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