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1  | INTRODUC TION

Glioblastoma (GBM) is a malignant intracranial tumour with the 
largest per cent of occurrence and the highest lethality; in addi-
tion, complete neurosurgical resection is not possible because of 

diffuse infiltration of the adjacent brain parenchyma.1 The stan-
dard care of GBM includes neurosurgical resection, radiotherapy 
and chemotherapy. Despite these additional interventions, the 
average median survival time is only approximately 15 months, 
whereas the two- and five-year survival rates are approximately 
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Abstract
Glioblastoma (GBM) is a malignant intracranial tumour with the highest proportion 
and lethality. It is characterized by invasiveness and heterogeneity. However, the cur-
rently available therapies are not curative. As an essential environmental cue that 
maintains glioma stem cells, hypoxia is considered the cause of tumour resistance to 
chemotherapy and radiation. Growing evidence shows that immunotherapy focusing 
on the tumour microenvironment is an effective treatment for GBM; however, the 
current clinicopathological features cannot predict the response to immunotherapy 
and provide accurate guidance for immunotherapy. Based on the ESTIMATE algo-
rithm, GBM cases of The Cancer Genome Atlas (TCGA) data set were classified into 
high- and low-immune/stromal score groups, and a four-gene tumour environment-
related model was constructed. This model exhibited good efficiency at forecast-
ing short- and long-term prognosis and could also act as an independent prognostic 
biomarker. Additionally, this model and four of its genes (CLECL5A, SERPING1, CHI3L1 
and C1R) were found to be associated with immune cell infiltration, and further study 
demonstrated that these four genes might drive the hypoxic phenotype of perine-
crotic GBM, which affects hypoxia-induced glioma stemness. Therefore, these might 
be important candidates for immunotherapy of GBM and deserve further exploration.
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26.5% and 9.7%, respectively.2 Immunotherapeutic strategies 
investigated by different approaches have shown promising re-
sults.3 For these therapies, it is necessary to explore the molecular 
signatures and candidate targets in GBM patients that affect the 
prognosis and immune response. The tumour microenvironment 
(TME), where tumour cells grow and develop, includes a series 
of non-neoplastic cells and molecules, containing infiltrating and 
resident immune cells, vascular cells and other glial cells, with nu-
merous cytokines and chemokines.1,4 The dynamic changes in the 
TME reflect the evolutionary nature of the tumour, which involves 
the tumour immune escape, tumour growth and metastasis. For 
example, additional gene mutations induced by the low expression 
of DNA mismatch repair genes in a low oxygen environment could 
promote a more aggressive tumour phenotype.5 Tumour progres-
sion and therapeutic responses are significantly correlated with 
TME heterogeneity, thereby dictating the success of immunother-
apeutic programmes.6 Thus, a deeper understanding of the TME 
and the mechanisms involved is crucial.

Innovative computational methods and genomics have given us 
a preliminary understanding of TME. For example, CIBERSORTx, 
Tumor IMmune Estimation Resource (TIMER) and Estimation 
of STromal and Immune cells in MAlignant Tumor tissues using 
Expression data (ESTIMATE) are innovative algorithms used to 
calculate the infiltration of tumour-related normal cells in tumour 
tissues according to genomics.7-9 Depending on specific molecular 
biomarkers expressed in immune and stromal cells, the ESTIMATE 
algorithm computes the immune/stromal/ESTIMATE scores to 
reflect the TME. Researchers have successfully applied this algo-
rithm to explore the TME of various cancers, including clear cell 
renal cell carcinoma, non–small cell lung cancer, acute myeloid leu-
kaemia and colon cancer.10-13 However, this algorithm is still not 
extensively applied to explore the GBM microenvironment in the 
literature.

In this study, we analysed the potential TME-related prognos-
tic signature for GBM patients by integrating of TCGA data and 
ESTIMATE algorithm, identifying differentially expressed genes 
based on their immune and stromal scores. The common genes were 
screened out and followed with a robust likelihood-based survival 
model to identify prognostic genes associated with the GBM TME. 
Furthermore, using the LASSO method, we constructed an indepen-
dent prognostic model containing four genes aberrantly expressed 
in GBM; these genes and the model were significantly associated 
with the immune infiltration levels and the hypoxic phenotype in 
GBM patients. The findings of this study will help elucidate the TME 
effect on GBM and provide alternative targets for immunotherapy.

2  | MATERIAL S AND METHODS

2.1 | Database

The genomic expression and clinical data of GBM patients in TCGA 
and Gravendeel databases were retrieved from GlioVis (http://gliov 

is.bioin fo.cnio.es/), which is a user-friendly website for data visuali-
zation and analysis of glioma data sets. The CGGA RNA sequencing 
data were downloaded from CGGA data portal (http://www.cgga.
org.cn/). The stromal and immune scores of TCGA GBM data set 
originated from the ESTIMATE algorithm, which was downloaded 
from the ESTIMATE website (https://bioin forma tics.mdand erson.
org/estim ate/), which provides information regarding tumour sam-
ples based on expression data, such as scores of tumour purity, the 
level of stromal cells present and the infiltration level of immune 
cells in tumour tissues. The file reflecting the estimation of immune 
cells of the TCGA GBM data set was obtained from TIMER (https://
cistr ome.shiny apps.io/timer/), a website offering an in-depth analy-
sis of infiltration of immune cells in tumours. The microarray data 
of 416 GBM patients with clinicopathological characteristics, stro-
mal/immune scores and estimation of immune cells from the TCGA, 
normalized by the ‘affy’ package, were chosen as the training set to 
construct the prognostic model. The validation set included data of 
159 GBM cases downloaded from Gravendeel. The clinical infor-
mation for the training and validation sets is shown in Table 1. A 
single-cell RNA-seq data set comprising 3,589 cells collected from 
both the tumour core and the peritumoral brain was obtained from 
a user-friendly website (http://www.gbmseq.org/).14 The single-cell 
RNA-seq data set was used to explore the expression of identified 
genes within the model in different cell clusters. Our workflow for 
this study is shown in Figure S1.

2.2 | Estimating infiltration of 22 types of 
immune cells

CIBERSORTx is an online analytical tool based on gene expres-
sion profiles and signature matrix files that allow us to determine 
cell type abundance and expression from bulk tissue.15 The TCGA 
expression profile was uploaded to the online tool, and a reference 
LM22 signature matrix with 100 permutations was used for the tool.

2.3 | Distinguishing and elucidating differentially 
expressed TME-related genes

The median values of immune and stromal scores were selected as 
the cut-off to divide the high- and low-score groups. Differentially 
expressed genes were screened out between the high- and low-
score groups using the limma package.16 The absolute value of 
logFC > 1 and adjusted P-value < 0.05 were fixed as the thresholds 
to identify differentially expressed TME-related genes.

Functional enrichment analysis, including biological processes 
(BP), molecular functions (MF) and cellular components (CC), and the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analy-
sis were conducted via the clusterProfiler package in R language for 
differentially expressed TME-related genes.17 Benjamini-Hochberg 
(BH)–adjusted P-values < 0.05 were considered statistically 
significant.

http://gliovis.bioinfo.cnio.es/
http://gliovis.bioinfo.cnio.es/
http://www.cgga.org.cn/
http://www.cgga.org.cn/
https://bioinformatics.mdanderson.org/estimate/
https://bioinformatics.mdanderson.org/estimate/
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
http://www.gbmseq.org/
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2.4 | Establishing and confirming the 
prognostic model and building the co-expression 
network of the model

Using the rbsurv, glmnet and survival packages, the robust likelihood-
based survival model and the least absolute shrinkage and selection 
operator regression (LASSO) analyses were conducted in the TCGA 
training set to construct the TME-related model. Consequently, 
four prognostic TME-related genes and their regression coefficients 
were obtained. Univariate and multivariate Cox hazard regression 
analysis showed that this gene signature model was an independent 
prognostic biomarker, verified using the Gravendeel validation set.

Weighted gene correlation network analysis (WGCNA), an in-
novative method used to describe the correlation patterns among 
genes across microarray samples, was conducted for the train-
ing set to build the co-expression network of the gene signature 
model.18 The variance of each gene was calculated and sorted by 

number. The top 50% genes ranked based on variance were cho-
sen for WGCNA. It means that 416 samples and 6,350 genes were 
included in the WGCNA. First, outliers were screened out, and a 
co-expression similarity matrix was established according to the 
absolute value of the correlation between the expression levels 
of transcriptome data. Second, an adjacency matrix converted 
from the abovementioned matrix by choosing 5 as a soft thresh-
old, applying the topological overlap measure, allowed co-expres-
sion gene modules to be classified. Gene significance (GS) used to 
distinguish the importance of each module was computed to as-
sess the relationship between genes and immune/stromal scores. 
Defined as the mean of GS within modules, module significance 
(MS) was estimated to measure the relationship between mod-
ules and the immune/stromal scores. Lastly, the immune/stro-
mal score-related gene modules containing the four genes were 
screened out. After filtering the genes that interplayed with the 
four genes, the co-expression network of this signature was built 
using Cytoscape.19

Variables
Training set 
(n = 416)

Validation set 
(n = 159) P-value

Age (years)

Mean ± SD 58.1 ± 14.3 54.1 ± 14.0 0.998

Median 59.4 55.4

Age group (median)

Younger 206 79 1

Old 205 80

NA (not available) 5 /

Gender

Female 164 51 0.09

Male 245 108

NA 7 /

Vital status

Alive 60 11 0.019

Dead 353 148

NA 3 /

CIMP status

G-CIMP 33 23 0.027

Non–G-CIMP 383 136

MGMT status

Methylated 134 /

Unmethylated 143 /

NA 139 /

Subtype

Classical + Mesenchymal 249 102 0.39

Neural + pro-neural 167 57

Classical 128 72

Mesenchymal 121 30

Neural 65 19

Pro-neural 102 38

TA B L E  1   Clinical parameters of 
patients in the training set and validation 
set
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2.5 | Immunohistochemistry

These experiments were approved by the Human Ethics Committee 
of Xiangya Hospital, and informed consent was obtained from all 
patients. Based on polyformalin-fixed and paraffin-embedded tis-
sues obtained from GBM patients, immunohistochemistry analysis 
was conducted as previously described.20 Tissue sections were in-
cubated with indicated primary antibodies against C1R(17346-1-AP) 
and CHI3L1(12036-1-AP).

2.6 | Statistical analysis

Statistical analyses were performed with R software. Using the log-
rank test, the relationship between the critical factors (gene expres-
sion level and immune/stromal scores) and patients’ overall survival 

was analysed based on the survival and survminer R package, with 
P < .05 regarded as statistically significant. To assess the predictive 
efficiency of the signature, the time-dependent receiver operating 
characteristic curves were depicted.

2.7 | Clustering single cells and identifying the 
role of the signature in cell clusters

Dimensionality reduction and cell clustering for the single-cell RNA-
seq data were performed based on ‘tsne’ package in R. As described 
by a previous study,14 the cell-to-cell distance matrix of all cells was 
established based on the top 500 over-dispersed genes. The matrix 
was reduced to two dimensions with tSNE. Singe cells were coloured 
on a dimensional reduction plot according to the genes within the 
model.

F I G U R E  1   Immune score and stromal score are associated with GBM subtypes and the overall survival. (A) Distribution of immune/
stromal score of TCGA GBM transcriptome subtypes. The violin plot shows that both immune score and stromal score are significantly 
correlated with transcriptome subtypes of GBM (n = 416, *: P < .05, **: P < .01, ***: P < .001). (B) Distribution of immune/stromal score of 
TCGA GBM non–G-CIMP subtype and G-CIMP subtype. The violin plot shows that both immune score and stromal score are significantly 
correlated with CIMP subtypes of GBM. (C) TCGA GBM cases were divided into two groups based on their immune score; median overall 
survival of cases with the elevated immune score is shorter than that of cases with the lower immune scores, although it was not statistically 
significant (P = .082). (D) Similarly, TCGA GBM cases were divided into two groups based on their stromal score; the median overall survival 
of cases with the elevated stromal score is shorter than that of the cases with the lower stromal scores, although it was not statistically 
significant (P = .062)
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3  | RESULTS

3.1 | Immune/stromal scores remarkably correlated 
with molecular subtypes and prognosis of GBM

Of the 416 GBM cases retrieved from GlioVis transcriptome, 
subtyping identified 128 classical, 121 mesenchymal, 65 neu-
ral and 102 pro-neural subtype cases. Regarding the status of 
CIMP, 33 patients were G-CIMP and 383 were non–G-CIMP. The 
ESTIMATE algorithm revealed the immune (−1448 to 3210.47) 
and stromal scores (−3055.72 to 2016.62) of the 416 GBM pa-
tients. To elucidate the relationship between the molecular ex-
pression patterns and immune/stromal scores, both scores of the 
four transcriptome subtypes (mesenchymal, classical, neural and 
preneural) and CIMP status (G-CIMP and non–G-CIMP) of GBMs 
were compared. There was a remarkable association between 

the immune/stromal scores and the four transcriptome subtypes. 
The immune/stromal scores of the mesenchymal subtype were 
the highest, whereas the scores of pro-neural subtype were the 
lowest (Figure 1A). Immune/stromal scores in the non–G-CIMP 
cluster were remarkably higher than those in the G-CIMP cluster 
(Figure 1B). To study the potential relationship between immune/
stromal scores and survival time of GBM patients, the median 
of immune and stromal scores was set as the cut-off, and we di-
chotomized 416 GBM patients into low- and high-score groups. 
The survival rate between the two clusters was compared by 
the Kaplan-Meier survival analysis, separately. The outcome of 
survival analysis indicated that the median overall survival of 
cases with elevated immune/stromal scores exhibited unsatis-
factory results than the cases with low-immune/stromal scores, 
although the result was not remarkable (Figure 1C, P= .082; 
Figure 1D, P = .062). This verified that immune/stromal scores 

F I G U R E  2   Heat map of differentially expressed genes in the high- and low-immune/stromal score groups and the most significantly 
enriched GO annotations and KEGG pathways. The length of the bars and the size of the dots represent the numbers of genes, and the 
colour of the bars/dots corresponds to the p-value according to legend. (A) Immune score (high score, right; low score, left; |log FC|> 1, 
P < .05). (B) Stromal scores (high score, right; low score, left; |log FC|> 1, P < .05). (C) Common differentially expressed genes detected 
for immune and stromal score. (D) Top 10 significantly enriched cellular components. (E) Top 10 significantly enriched biological process. 
(F) Top 10 significantly enriched molecular functions. (G) Top 10 significantly enriched KEGG pathways
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were significantly associated with the GBM subtypes and higher 
scores were related to shorter survival times in GBM patients. 
In accordance with the results from a previous study,21 we also 
found that transcriptional subtypes of IDH wild-type tumours, 
except the neural subtype which was identified as a sampling 
artefact, differentially activated the immune microenvironment. 
Mesenchymal GBM exhibits a higher fraction of M2 macrophages 
and neutrophils and lower proportion of activated nature killer 
cell compared with classical and pro-neural GBM. Meanwhile, the 
fraction of the resting memory CD4+ T cell was reduced in the 
pro-neural GBM (Figure S2A).

3.2 | Differentially expressed genes related to the 
GBM TME and their functional annotation

Comparing the transcriptome data from 416 GBM patients after their 
separation into high- and low-score groups, we attempted to uncover 
the correlation of gene expression profiles with immune and stromal 
scores. The differential gene expression profiles of patients with high-
immune/stromal scores and those with low-immune/stromal scores 
can be observed in the generated heat maps (Figure 2A,B). For com-
parison of immune and stromal score groups, the gene expression 
profile showed that 228 and 180 differentially expressed genes were 

F I G U R E  3   Construction and validation 
of four-gene TME-related prognostic 
model. (A) The four-gene signature risk 
score distribution in the TCGA GBM data 
set. (B) Scatter plot of patient survival 
status ordered by risk score in the TCGA 
GBM data set. (C) The heat map of the 
four-gene expression profiles in the TCGA 
GBM data set after standardization and 
centralization. (D) Kaplan-Meier curve 
for the overall survival in the TCGA GBM 
cohort stratified by the four-gene model 
into the high- and low-risk group based on 
the optimal cut-off point of the risk score. 
(E) Time-dependent ROC curves indicated 
good performance of our prognostic 
model in the TCGA GBM cohort. (F-J) The 
above-mentioned results can be noted in 
the Gravendeel validation data set
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filtered out with the threshold adjusted P-value < 0.05 and |log fold 
change|＞1. Moreover, Venn diagrams show 152 genes, differentially 
expressed both in the stromal and immune score groups (Figure 2C). 
Thus, we focused on these 152 genes, named differentially expressed 
genes related to tumour environment (DEGRTME), for the subsequent 
analysis. Functional enrichment analysis was conducted to clarify the 
mechanism underlying the functions of these 152 genes. The top 10 
functional annotations of Gene Ontology (GO) terms and the KEGG 
terms are listed in Figure 2D-G. The results revealed that DEGRTME 
were strongly associated with immune-related terms/pathways, such 
as extracellular matrix, neutrophil-mediated immunity, humoural im-
mune response, regulation of inflammatory response, acute inflam-
matory response, IgG binding, signalling pattern recognition receptor 
activity, and complement and coagulation cascades.

3.3 | Establishing and confirming the TME-
related model for GBMs and building the co-
expression network

Through the robust likelihood-based survival model and the LASSO 
method, four genes (CLEC5A, SERPING1, CHI3L1 and C1R) were screened 
out to construct the TME-related model. These four genes were also 
validated to be differentially expressed genes in the Gravendeel data 
set and another independent data set in the Chinese Glioma Genome 
Atlas (Table S1 and Figure S2B,C). A prognostic risk score for each pa-
tient was obtained by the regression coefficients and the transcrip-
tome data of the genes. After calculating the risk scores, the TCGA 
GBM patients were separated into high- and low-risk clusters accord-
ing to the optimal cut-off point of the risk scores. Figure 3A shows the 
distribution of the four-gene signature risk scores. The survival status 
and survival time of the GBMs between the two risk groups are listed 
in Figure 3B. Notably, the expression of the four genes was remarkably 
higher in the high-risk group than that in the low-risk group (Figure 3C). 
Moreover, compared with the low-risk group, the overall survival time 
of the high-risk group was worse (P < 0.0001) (Figure 3D). The area 
under a time-dependent ROC curve (AUC) revealed that the 1-, 3- and 
5-year overall survival of this model was 0.63, 0.70 and 0.71, respec-
tively, in the training set (Figure 3E). The performance of this model in 
the Gravendeel validation data set was identical to that in the training 
set (Figure 3F-I). The AUC of the signature for 1-, 3- and 5-year over-
all survival was 0.649, 0.840 and 0.821, respectively, in the validation 
set (Figure 3J). The co-expression network was constructed after per-
forming WGCNA of the training set using the R package of WGCNA, 
which elucidates the mechanism underlying these four genes.18 The 
correlations between gene modules and immune/stromal scores were 
measured by module eigengene (ME), which represents the expression 
level of the whole genes in corresponding modules. Twenty-one gene 
modules were generated containing genes varying from 50 to 1085. 
Each module was tagged with a random colour for reference: black, 
blue, brown, cyan, dark red, green, green yellow, grey60, light cyan, 
light green, light yellow, magenta, midnight blue, pink, purple, red, royal 
blue, salmon, tan, turquoise and yellow. These modules contained 356, 

691, 648, 82, 41, 474, 95, 68, 68, 63, 50, 187, 79, 208, 147, 380, 48, 83, 
95, 1,085 and 535 genes, respectively. The ‘grey’ module was defined 
as a non–co-expressed group according to the WGCNA developer's 
rationale (Figure S3A-D). The results indicated that the yellow and 
brown modules contain the four genes, and genes belonging to these 
two modules were screened out. Based on genes contained in these 
two modules, the co-expression network of the TME-related model 
was built (Figure 4A). The number of genes co-expressed with C1R, 
SERPING1, CLEC5A and CHI3L1 was 124, 48, 199 and 2, respectively. 
Containing 209 nodes, the co-expression network of this model was 
highly connected by 373 edges (Figure 4A). GEPIA (http://gepia.cance 
r-pku.cn/), a web server for analysing the RNA sequencing expression 
data of tumour and normal samples, revealed that the expression of 
these filtered four genes was expressed at a higher level in GBM than 
in non–GBM tissues (Figure 4B-E).

3.4 | Independent prognostic factor and hierarchic 
marker of TME-related signatures

To identify whether the TME-related signature is an independent pre-
dictive factor for GBM patients, the probable predictors, age group 
(young vs. old), CIMP status (non–G-CIMP vs. G-CIMP), MGMT status 
(unmethylated vs. methylated), subtype (neural + preneural vs. mesen-
chymal + classical) and risk level (low vs. high) were analysed by uni-
variate and multivariate Cox proportional hazard regression. MGMT 
status (HR = 1.39, P = .017), CIMP status (HR = 3.04, P = .003), age 
group (HR = 0.63, P = .001) and risk level (HR = 0.53, P = .004) were 
found to be independent predictors in the TCGA GBM data set. CIMP 
status (HR = 2.09, P = .01), age group (HR = 0.46, P = 5.16 × 10−05) 
and risk level (HR = 0.64, P = .05) were independent predictors in the 
Gravendeel data set (Table 2). Our signature remained a remarkable 
prognostic biomarker after being adjusted by other predictive factors. 
When considering the combined effects of risk level and other clin-
icopathological factors (age, CIMP status, MGMT status), the younger 
patients in the low-risk group exhibited the longest median survival, 
whereas the older patients in the high-risk group showed the short-
est median survival time (Figure 4F). Likewise, the high-risk group pa-
tients harbouring non–G-CIMP had the shortest median survival. In 
contrast, the G-CIMP patients belonging to the low-risk group showed 
the longest median survival time (Figure 4G). This outcome was veri-
fied in the validation data set (Figure S3E,F). Our model also stratified 
both MGMT-methylated and MGMT-unmethylated patients’ median 
survival remarkably well (Figure 4H). Therefore, these results suggest 
that the TME-related prognostic model constructed is an independent 
prognostic biomarker and valuable marker for stratification in GBM.

3.5 | The TME-related prognostic model correlates 
with immune cell infiltration in GBM

After constructing the TME-related prognostic model using the 
training set and verifying its efficiency using the validation set, 

http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
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the correlation between this model and the infiltration of immune 
cells for GBM was calculated (Figure 5 and Figure S4). Scatter plots 
were generated using Pearson's correlation analysis, and statistical 
significance was determined. The risk score and the four identified 

genes in the model exhibited moderate correlation with the infiltra-
tion of dendritic cells (DCs) (r > 0.35, P < 3.4 × 10−14) (Figure 5A-E). 
CLEC5A presented a weak correlation with the infiltration of neu-
trophils (r = 0.19, P = 9.3 × 10−05), macrophages (r = 0.13, P = .0086) 
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and CD4 + T cells (r = 0.15, P = .0019) (Figure S4A). SERPING1 ex-
hibited a weak relationship with the infiltration of B cells (r = 0.14, 
P = .0047), CD4 + T cells (r = 0.14, P = .0034), CD8 + T cells (r = 0.14, 
P = .0039), neutrophils (r = 0.16, P = .0013) and macrophages 
(r = 0.16, P = .00074) (Figure S4B). CHI3L1 showed a weak corre-
lation with the infiltration of CD4 + T cells (r = 0.16, P = .00099), 
neutrophils (r = 0.14, P = .0055) and macrophages (r = 0.13, P = .007) 
(Figure S4C). C1R displayed a weak correlation with the infiltration 
of B cells (r = 0.12, P = .013), CD4 + T cells (r = 0.18, P = .00033), 
CD8 + T cells (r = 0.17, P = 6 × 10−04), neutrophils (r = 0.17, 
P = .00059) and macrophages (r = 0.17, P = .00049) (Figure S4D). 
Risk scores presented a significant correlation with the infiltration 
of CD4 + T cells (r = 0.17, P = 5 × 10−04), CD8 + T cells (r = 0.097, 
P = .049), neutrophils (r = 0.2, P = 3.4 × 10−05) and macrophages 
(r = 0.15, P = .0016) (Figure S4E). This outcome reveals that our 
model system accounts for the immune cell infiltration in the GBM 
TME, especially the DCs.

3.6 | The TME-related genes might contribute to the 
hypoxic phenotype of perinecrotic GBM

To study the expression of the TME-related genes in the GBM tis-
sue, we explored the RNA-seq data set of the Ivy Glioblastoma Atlas 
Project (http://gliob lasto ma.allen insti tute.org/stati c/home). This 
web server collected GBM samples laser-dissected from various 
sites including cellular tumour, perinecrotic zone, pseudopalisading 
cells around necrosis, hyperplastic blood vessels in cellular tumours 
and proliferating microvasculature samples.22 Results showed that 
the GBM perinecrotic zone highly expressed TME-related genes 
(Figure 5F). To further confirm this, we investigated the correlation 
between the model and perinecrosis-related genes, such as CD44, 
which are activated under hypoxia and interact with HIF-2α to modu-
late the hypoxic phenotype of perinecrotic and perivascular glioma 
cells.23 Scatter plots show that the expression of the four genes be-
longing to the TME-related model exhibited a strong correlation with 
CD44 and HIF-2α (known as EPAS1) (Figure 5G-H). Additionally, the 
outcome of single-cell clustering showed that these four genes were 
highly expressed either in three of the largest immune cell clusters 
defined by the pan-immune marker PTPCR (CD45) or neoplastic cells 
that were collected from the tumour core, which is the location at 
which necrosis occurred (Figure S5A-C). Immunohistochemistry re-
sults showed that C1R and CHI3L1 were highly expressed in the GBM 

perinecrotic zone compared with the non-necrotic zone and peritu-
mour tissue (Figure S6A,B). These indicate that the TME-related genes 
might contribute to the hypoxic phenotype of perinecrotic GBM.

4  | DISCUSSION

GBM occurs in the central nervous system, and the current treat-
ment is ineffective. The TME plays a significant role in tumour 
malignancy and dictates therapeutic responses, including immu-
notherapy. Thus, a deeper knowledge of the TME in GBM can 
contribute to uncovering novel prognostic markers to administer 
precision immunotherapy. Current studies have been unable to 
successfully classify and analyse the components of tumour cells 
and the TME.24-28 Thus, we explored the TME components of 
GBM by comparing the gene expression data of 416 GBM patients 
with high and low stromal/immune scores and screening out 152 
DEGRTME. Functional enrichment analyses were performed on 
the 152 genes; subsequently, a four-gene TME-related predictive 
model was constructed using the robust likelihood-based survival 
model and the LASSO method. This model was verified to be an 
independent predictive biomarker after adjustment by important 
clinicopathological factors. Our study stands out from the previous 
ones, which filtered out hundreds of TME-related genes, in that 
it provides a more precise targeted (C1R, CLEC5A, SERPING1 and 
CHI3L1) immunotherapy. In fact, some of them have been demon-
strated to be oncogenes, and their increased expression has been 
found to be associated with poor survival in glioma patients. For ex-
ample, CLEC5A is a member of the C-type lectin/C-type lectin-like 
domain (CTL/CTLD) superfamily and is reported to be an M2 bio-
marker, associated with immunosuppression. CLEC5A overexpres-
sion decreases survival time in glioma patients.29 CHI3L1 encodes 
a glycoprotein member of the glycosyl hydrolase 18 family that is 
an immunomodulatory molecule, which may inhibit the PI3K/AKT 
pathway in GBM. High serum levels of CHI3L1 (also known as YKL-
40) are related to worse outcome.30 Our findings can provide novel 
molecular insights into the TME of GBM with these predictive 
genes acting as markers and/or therapeutic targets for the diagno-
sis and prediction of treatment outcome of GBM.

Recently, several genetic biomarkers, such as O(6)-
methylguanine-DNA methyltransferase (MGMT) methylation, 
epidermal growth factor receptor variant III (EGFRvIII), vascular en-
dothelial growth factor (VEGF) and isocitrate dehydrogenase (IDH), 

F I G U R E  4   Co-expression network of the TME-related model and four-gene model performance in different age groups: CIMP status and 
MGMT status in the TCGA cohorts. (A) The co-expression network of the four-gene model (C1R, CHI3L1, CLEC5A and SERPING1) is shown. 
Yellow, blue, green and light purple nodes represent the co-expression genes related to C1R, CHI3L1, CLEC5A and SERPING1, respectively. 
Red nodes indicate the co-expression genes, which interact at least two genes belonging to this model. (B-E) Comparisons of the expression 
level of the selected four genes between GBM and non–GBM tissues in TCGA and GTEx based on GEPIA. The y-axis represents the log2 
(TPM + 1) for gene expression. The grey bar indicates the non–GBM tissues, and the red bar shows the GBM tissues. These figures were 
derived from GEPIA.TPM: transcripts per kilobase million. ∗P < .05. (F) Kaplan-Meier survival curves for overall survival between younger 
group and old group in the TCGA cohort. (G) Kaplan-Meier survival curves for overall survival between G-CIMP group and non–G-CIMP 
group in the TCGA cohort. (H) Kaplan-Meier survival curves for the overall survival between MGMT-methylated group and MGMT-
unmethylated group in the TCGA cohort
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have been well-established in GBM.31 However, these molecular 
markers still cannot completely explain the prognosis and treat-
ment response (including immunotherapy) of GBM. Ho-Keung Ng 
found that not all IDH-mutant GBM subtypes have good progno-
sis, and it is a heterogeneous group that should be further strati-
fied.32 It has been revealed that IDH-mutant gliomas manifest the 
cytosine-phosphate-guanine (CpG) island methylator phenotype 
(G-CIMP); therefore, we explored the classification efficiency of our 
model in G-CIMP subsets of glioblastoma. The results showed that 
this risk model could efficiently stratify the G-CIMP glioblastoma 
patients, and this stratification might have vital implications for bed-
side management.

An increasing number of investigations have suggested that the 
therapeutic effect of immunotherapies is correlated with immuno-
genic TME; DCs, which function as potential antigen-presenting cells, 
have a central role in regulating immunity.33 In this study, a risk model 
was constructed based on differentially expressed genes related 
to TME. Moreover, the model itself and the genes belonging to the 
model exhibit moderate correlation with the infiltration of DCs, indi-
cating that these genes could act as potential therapeutic candidates 
targeting DCs for immunotherapy of GBM and deserve to be studied 
further. The novelty of our study lies in using innovative methods to 
show that these genes might play a crucial role in the hypoxic pheno-
type of perinecrotic GBM. Perinecrosis refers to the hyperprolifera-
tive areas of GBM and comprises GBM stem cells (GSCs)/progenitors; 
it is also called as the perinecrotic niches. Studies have unearthed 
that GSCs can be induced by hypoxia and hypoxia-inducible factor 
2 (HIF-2).34 CD44, activated under hypoxia, interacts with HIF-2α 
to regulate the hypoxic phenotype of perinecrotic and perivascular 
glioma cells. Using the online tool, our study revealed that the four 
genes within the risk model were highly expressed in the perinecrotic 
zone of GBM. Furthermore, bioinformatic analysis indicated that the 
four genes presented strong and moderate correlation with the ex-
pression of CD44 and HIF-2A, respectively. The findings of our study 
provide a solid foundation for subsequent in-depth research in the 
development of prognostic biomarkers in GBM.

5  | CONCLUSION

In conclusion, we constructed a four-gene TME-related predictive 
signature as an independent prognostic biomarker and compared 
it with other probable clinical features. The risk model showed 
good efficiency for GBM prognosis, verified by time-dependent 
ROC curve analysis and survival analysis, and it was also a use-
ful hierarchical marker for the G-CIMP subtype of GBM. The four 
genes in our model might be important for the hypoxic phenotype 
of perinecrotic GBM and are remarkably correlated with infiltra-
tion of immune cells in the TME of GBM, indicating their potential 
as candidate targets for immunotherapy. However, the detailed 
molecular mechanisms underlying the functions of the four genes, 
which significantly influence the survival of GBM patients, have to 
be studied further.TA
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