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Abstract

The personal genomics era has attracted a large amount of attention for anti-cancer therapy by patient-specific analysis.
Patient-specific analysis enables discovery of individual genomic characteristics for each patient, and thus we can effectively
predict individual genetic risk of disease and perform personalized anti-cancer therapy. Although the existing methods for
patient-specific analysis have successfully uncovered crucial biomarkers, their performance takes a sudden turn for the
worst in the presence of outliers, since the methods are based on non-robust manners. In practice, clinical and genomic
alterations datasets usually contain outliers from various sources (e.g., experiment error, coding error, etc.) and the outliers
may significantly affect the result of patient-specific analysis. We propose a robust methodology for patient-specific analysis
in line with the NetwrokProfiler. In the proposed method, outliers in high dimensional gene expression levels and drug
response datasets are simultaneously controlled by robust Mahalanobis distance in robust principal component space.
Thus, we can effectively perform for predicting anti-cancer drug sensitivity and identifying sensitivity-specific biomarkers for
individual patients. We observe through Monte Carlo simulations that the proposed robust method produces outstanding
performances for predicting response variable in the presence of outliers. We also apply the proposed methodology to the
Sanger dataset in order to uncover cancer biomarkers and predict anti-cancer drug sensitivity, and show the effectiveness of
our method.
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Introduction

Recently, numerous studies have attempted to personalized

therapy and medicine based on advanced biomedical technologies

[2,9]. A crucial issue for personal genome research is to reveal the

genomic features of an individual patient that are relevant for

treatment. The elastic net-type regularized regression (e.g., ridge

[11], lasso [29], elastic net [34], etc.) has been widely used to

uncover biomarkers, and successfully performed for identifying

genomic features and predicting response variable based on high-

dimensional gene expression dataset. The methods, however, can

only provide results based on the average genomic features of all

patients. In essence, it is not yet possible to use these methods to

identify genomic features for an individual patient, thus it is hard

to effective personalized treatment and medicine.

Wang et al. [30] considered the patient-specific pathway

activities based on a mixed model, where the fixed effects modeled

the mean pathway of gene expressions profiles for patient groups

and random effects described patient variations from the group

mean. Shimamura et al. [28] proposed a method, called a

NetworkProfiler, for identifying patient-specific gene regulatory

networks based on a varying coefficient model and kernel-based

elastic net-type regularized regression. By using a Gaussian kernel

function, the NetworkProfiler can effectively perform patient-

specific analysis based on neighborhood samples around a patient.

Although the existing elastic net-type regularization methods

perform effectively for patient specific analysis, their performances

take a sudden turn for the worst in the presence of outliers,

because the methods are constructed by non-robust manners (e.g.,

least square loss function). In practice, the clinical and genomic

alterations datasets usually contain outliers from various sources

(e.g., experiment error, coding error, etc.), and thus the existing

methods cannot effectively uncover patient-specific biomarkers

and predict anti-cancer drug sensitivity.

Although the issue is critically important, relatively little

attention has been paid to the robustness of patient-specific

analysis. We consider a robust method to uncover patient-specific

genomic features and predict anti-cancer drug response in line

with the NetworkProfiler. The genomic alterations dataset is

usually constructed with a large number of features for a small

number of samples (i.e., high dimensional dataset), and detecting

and controlling outliers in a high dimensional dataset are difficult

tasks. We refer to the method for controlling outliers by using the

robust Mahalanobis distance based on principal component

analysis (PCA) [25]. By using the principal components, we can

detect outliers in a high dimensional genomic alteration dataset

based on robust Mahalanobis distance by overcoming calculation

of inverse covariance matrix. Furthermore, because the principal
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component space is defined by maximize the variance along each

component, and outliers increase the variance of the data, we can

effectively perform outlier detection [5,25].

We propose a robust modeling strategy for patient-specific

analysis, which infers patient-specific biomarkers associated with

anti-cancer drug response. The proposed strategy is based on

kernel-based elastic net-type regularization, and thus can perform

patient-specific analysis through neighborhood samples around a

target patient. Furthermore, our method can perform effectively

for predicting anti-cancer drug sensitivity and identifying drug

response-specific biomarkers for each patient even in the presence

of outliers, since the method is based on a robust regularized

regression by using a weight through the Mahalanobis distance in

principal component space [25].

We conduct Monte Carlo simulations to examine the effective-

ness of the proposed method, and show the outstanding

performance of our method in the view point of prediction

accuracy. We also apply the proposed modeling strategy to the

publicly available Sanger Genomic of Drug Sensitivity in Cancer

dataset from the Cancer Genome Project (http://www.

cancerrxgene.org/). Our methodology uncovers biomarkers for

individual patients and predicts anti-cancer drug response given as

IC50 values based on gene expression levels. Though Monte Carlo

simulations and application to the Sanger dataset, we can see that

our method performs effectively for patient-specific feature

selection and prediction of interesting response variable, even in

the presence of outliers.

Methods

Suppose we have n independent observations f(yi,xi); i~
1,:::,ng, where yi are random response variables (e.g., anti-cancer

drug response) and xi are p-dimensional vectors of the predictor

variables (e.g., genomic alterations). Consider the linear regression

model,

yi~b0zxT
i bzei, i~1,:::, n, ð1Þ

where b0 is an intercept, b is an unknown p-dimensional vector of

regression coefficients and ei are the random errors that are

assumed to be independently and identically distributed with mean

0 and variance s2.

To uncover a biomarker, the elastic net-type regularization

methods (e.g., ridge, lasso, elastic net, etc.) have been widely

applied, and used successfully to identify crucial genes based on

the following optimization problem,

L(b)~ arg min
b

f1
2

Xn

i~1

(yi{b0{
Xp

j~1

xijbj)
2zPdl(b)g, ð2Þ

where

Pdl(b) ~l
Xp

j~1

½1
2

(1{d)b2
j zdDbj D�, ð3Þ

and where lw0 is a regularization parameter controlling model

complexity. The penalty term of the elastic net is a convex

combination of the ridge and lasso penalties. When d~0, the

elastic net becomes the ridge regression with a L2 penalty, whereas

when d~1, it becomes the lasso with a L1 penalty. The elastic net

performs variable selection and estimation along with the

properties of both lasso and ridge regression for 0vdv1.

The elastic net-type penalties enable us to simultaneously

identify crucial biomarkers and predict drug response. Further-

more, we can effectively perform regression modeling in the high

dimensional genomic alterations dataset and in the presence of

multicollinearity by imposing the penalty on the least squares loss

function. Although the existing methodologies successfully identify

crucial biomarkers and show remarkable performance for

predicting drug response, they have been used to identify averaged

biomarkers for all patients. In other words, the existing method

cannot identify patient-specific characteristics in a disease.

NetworkProfiler
Shimamura et al. [28] proposed a novel statistical method for

inferring patient-specific gene regulatory networks based on a

varying-coefficient structural equation model. Let R1,:::,Rq be q

possible regulators, and Tk be the kth target gene controlled by the

q regulators at M~ma [28]. The varying coefficient structural

equation model for Tk is given as

Tk~
Xq

j~0

bjk(ma):Rjzek, a~1,:::, n, ð4Þ

where bjk(ma) is a regression coefficient of Rj on Tk for the

modulator M~ma. The patient-specific regression coefficients

bjk(ma) are estimated via the kernel-based regularization method

by minimizing,

L(bkaDhk)~
1

2

Xn

i~1

(tik{b0ka{
Xq

j~1

bjkarij)
2K(mi{maDhk)

zPdkalka
(bka),

ð5Þ

where bjka~bjk(ma), and

Pdkalka
(bka)~lka

Xq

j~1

½1
2

(1{dka)b2
jkazdkawjkaDbjkaD�, ð6Þ

where wjka~1=(D~bbjkaDzj) is a weight for a recursive elastic net

penalty for effective feature selection [28], and K(mi{maDhk) is a

Gaussian kernel function with bandwidth hk,

K(mi{maDhk)~expf{(mi{ma)2

hk

g: ð7Þ

The Gaussian kernel function K(mi{maDhk) is used to fit the

model at M~ma based on samples in the neighborhood around

the ath patient. By using the Gaussian kernel function in

regularized regression, the NetworkProfiler performs effectively

to infer patient-specific gene regulatory networks, and the results

enable us to effective personalized anti-cancer therapy.

It is, however, well known that the genomic alterations datasets

usually contain outliers from various sources (e.g., experiment

error, coding error, etc.). It implies that the existing method would

not perform well for uncovering biomarkers and predicting anti-

cancer drug response, because the existing method in (5) is based

on a penalized least squares loss function. It was previously shown

that the elastic net-type regularization methods that are based on

least square loss function perform poorly in the presence of

outliers, and several robust methodologies have been proposed to
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overcome the drawbacks of a least square loss function in

regularized regression modeling [1,14,25].

We propose a robust method for patient-specific analysis in line

with the NetworkProfiler.

Robust regularization for outlier-resistant patient-specific
analysis

We first show how outliers could affect the estimation process

when using the penalized least squares methodology. Figure 1

shows the iteration for coefficients during optimization of the

regularized regression modeling with a lasso penalty [25] under

the original and contaminated diabetes datasets [3] in (A) and (B),

respectively. The contaminated dataset contains 10% outliers for

N(5,32) in X1 and X9 among the 10 predictor variables. The

coefficients converged after 26 iterations in the original dataset, as

shown in Figure 1 (A). In the presence of outliers, however, the

optimization procedure with the lasso estimator is disturbed and

the iteration number required for convergence is significantly

increased as shown in Figure 1 (B). This implies that outliers

significantly disturb the regularized regression modeling, and thus

may lead to poor results in uncovering biomarkers and predicting

drug response where patient-specific analysis.

We propose a robust method to effectively uncover patient-

specific cancer biomarkers and predict anti-cancer drug sensitivity

in line with the NetworkProfiler. The genomic features dataset is

constructed with a large number of features and a relatively small

number of samples (i.e., high dimensional dataset), and detecting

and controlling outliers in a high dimensional dataset are generally

difficult tasks. To resolve the issue, we consider the weight for

controlling outliers based on robust Mahalanobis distance

calculated in robust principal component space, as previously

demonstrated by Park and Konishi [25],

R
p�
i ~

min(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=R:MD

r:pc
i

p
,1)Pn

i~1 min(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=R:MD

r:pc
i

p
,1)

, ð8Þ

where k~x2(df~p�) is the 95% quantile of the x2(df~p�)
distribution [14], and R:MD

r:pc
i is a robust Mahalanobis distance

based on the robustly estimated mean Tr:pc and covariance matrix

Cr:pc by Minimum Volume Ellipsoid (MVE) calculated in the

robust principal components ZR space as follows,

R:MD
r:pc
i ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(zR

i {Tr:pc)T (Cr:pc){1(zR
i {Tr:pc)

q
, ð9Þ

where ZR~(zR
1 ,:::,zR

n )T is a p�-dimensional matrix of robust

principal components based on robust loadings by using the

projection-pursuit technique [12]. By using the robust principal

component space, we can effectively detect outliers based on the

robust Mahalanobis distance, thereby overcoming the calculation

of the inverse covariance matrix in a high dimensional dataset.

Furthermore, the principal components space is defined by

maximizing the variance along each component, and since outliers

increase the variance of dataset, we are able to more faithfully

detect outliers [5]. It implies that the weight R
p�
i based on the

robust Mahalanobis distance calculated in robust principal

component space is a useful tool for controlling outliers in high

dimensional genomic data.

We refer to the weight in (8) for outlier-resistant patient-specific

analysis, and propose a robust method for uncovering biomarkers

and predicting drug sensitivity for an individual patient as follows,

L(baDp
�,h)~

1

2

Xn

i~1

R
p�
i (yi{b0a{

Xp

j~1

bjaxij)
2K(mi{maDh)

zPdl(ba),

ð10Þ

Pdl(ba) ~l
Xp

j~1

½1
2

(1{d)b2
jazdwjaDbjaD�, ð11Þ

where wja~1=(D~bbjaDzj) is a weight of the adaptive elastic net

penalty [35].

The proposed modeling strategy is effectively conducted by

using the coordinate descent algorithm based on the weighted

update [6]. Our method can efficiently perform patient-specific

analysis based on the Gaussian kernel function, and its effective

performance can be consistently provided even in the presence of

outliers by controlling outliers through the weight.

Results

We examine the effectiveness of the proposed modeling strategy

as a robust method for patient-specific analysis through Monte

Carlo simulations and application to cancer genomics data. To

evaluate the proposed method, we compare the prediction

accuracy and variable selection results of our method, the

NetworkProfiler and elastic net. In our study, the NetworkProfiler

is used to uncover individual biomarkers instead of gene networks.

For the numerical studies, we use the adaptive elastic net penalty

Pdl(ba) ~l
Pp

j~1½12 (1{d)b2
jazdwjaDbjaD� [35] in the proposed

method, NetworkProfiler and elastic net. We choose the tuning

parameters d,l and bandwidth h in Gaussian kernel function

based on k-fold cross validation [18],

CV (h)~
1

k

Xk

cu~1

X
i[Tu

yi{
Xp

j~1

xij b̂b
(u)
ja

" #2

, ð12Þ

where Tu is uth validation samples for u~1,2,:::,k, and the data

T{Tu is used to estimate for each u. In numerical studies, we use

the 3-fold cross validation, which has been used in high

dimensional data analysis like genomic data analysis

[13,20,22,26,32]. The robust Mahalanobis distance is calculated

based on the robust principal components that contributed 95% of

the total variation.

Monte Carlo simulations
We simulated 100 datasets consisting of n~100 observations

from the model

yi~xT
i b(ma)zei, i~1,:::,n, ð13Þ

where ei are assumed to be distributed as N(0,1) and ma are

generated from a uniform distribution U ½0,1� for a~1,2,:::,n. The

correlation between xl and xm is rDl{mD with r ~ 0:5 in p~1000
dimensional multivariate normal distribution with mean zero. We

consider a 1000 dimensional vector of coefficients with randomly

selected 100 non-zero and 900 zero coefficients.

Two types of coefficient functions in the above varying

coefficient model are considered, as shown in Figure 2. We

consider s% of samples as outliers in n~100 samples. If the ith
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sample is an outliers, ei*N(5,s2) and 1% of xij (j~1,:::,p) follow

N(5,s2). Here we set s~5,10,15, and 20, and s2~1 and s2~5 in

simulations 1 and 2, respectively.

We consider a training dataset with 75 samples and a test

dataset with 25 samples in each 100 simulations. The hyperpara-

meters are selected by 3-fold cross validation in the training

dataset, and the prediction errors are calculated in test dataset

based on the selected parameters. We then compare the prediction

accuracy given as average of the median squared error, and the

variable selection accuracy given as true positive (i.e., average

percentage of non-zero coefficients, that were estimated as non-

zero) and true negative (i.e., the average percentage of true zero

coefficients, that were correctly set to zero) for each of the 100

generated datasets.

A large number of predictor variables leads to time consuming

analysis, and thus increases the overall computational cost of a

method. Furthermore, it has been exposed that a large number of

predictor variables with noisy genes may disturb the modeling

procedure, and thus leads to poor prediction results [19]. Table 1

shows the prediction accuracy of the NetworkProfiler based on all

features and based on a pre-selected small number of features that

have the highest variance. It can be seen through Table 1 that

Figure 1. Iteration for coefficients in the regularized regression modeling with lasso (i.e., d = 1) penalty.
doi:10.1371/journal.pone.0108990.g001

Figure 2. Coefficient functions of varying coefficient model.
doi:10.1371/journal.pone.0108990.g002
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consideration of all features does not produce high prediction

performance compared with the performance of a regression

model built on a pre-selected small number of features. It implies

that there is no need to consider all features for patient-specific

analysis, because it leads to inefficient modeling without improving

model performance.

Thus, we compare the proposed robust method to the

NetworkProfiler and elastic net based on model with p~200
predictor variables that have the highest variance in all samples.

Tables 2 and 3 show the simulation results (i.e., true positive (T.P),

true negative (T.N) and prediction error (P.E)) in simulations 1 and

2, respectively, where the bold values indicate the best perfor-

mance among the three methods (i.e., elastic net: ELA,

NetworkProfiler: NP, robust method: R). The varying coefficient

model produces discriminative variable selection results in each

sample, and thus we only compare the feature selection results of

the NetworkProfiler and proposed robust one, because the elastic

net cannot perform sample-specific feature selection.

Tables 2 and 3 show that the proposed robust method for

patient-specific analysis outperforms for predicting response

variable in all simulation situations and coefficient function types.

We also observe that the proposed robust method and Network-

Profiler make no difference results in variable selection. From the

results, we can see that controlling outliers in the modeling

procedure produces outlier-resistant estimation results, and the

results lead to outstanding prediction of interesting response

variable.

Real world example: Sanger dataset
We apply the proposed modeling strategy to the publicly

available Sanger Genomics of Drug Sensitivity in Cancer dataset

from the Cancer Genome Project (http://www.cancerrxgene.org/).

The main goal of the project is to identify the molecular features of

various cancers and to predict sensitivity of anti-cancer drugs. The

dataset consists of gene expression levels, copy number and

mutation status for 654 cell lines. The IC50 values (i.e., half

maximal inhibitory drug concentrations) of 138 drugs are given as

the natural log of drug sensitivity value. The IC50 values from the

Sanger dataset contain not a few of missing values, and thus we

perform biomarkers discovery and anti-cancer drug response

prediction based on 200 randomly selected samples, of which 150

cell lines were used as a training data and 50 cell lines were used as a

test data for each of the 138 drugs.

To evaluate the proposed robust methodology, we first decide

whether the dataset constructed with IC50 values of each drug and

expression levels of 13,321 genes is contaminated or not. For each

of the 138 dataset (i.e., gene expression levels and IC50 values)

corresponding 138 drugs, we find a first principal component of

the dataset, and then decide based on the following criterion,

Cdr~

n{
Pn

i~1 minfx2
0:95

(df ~1)

R:MD
pc1
i

,1g

n
, dr~1,:::,138, ð14Þ

where R:MD
pc1
i is the robust Mahalanobis distance calculated

from the first principal component. The criterion Cdr has a zero

value in a non-contaminated dataset, while a large value of Cdr

indicates that the dataset contains outliers. Figure 3 shows the

sorted Cdr values for the 138 datasets.

We consider the datasets with Cdr located in top-right side of

Figure 3 as contaminated datasets, which have relatively large Cdr

values that are highly deviated from the mean of Cdr values. The

proposed robust method is then applied to the contaminated
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datasets to evaluate the performance of the methods when

identifying biomarkers and predicting anti-cancer drug sensitivity.

We compare the prediction accuracy based on 10 datasets

corresponding to the 10 drugs shown as red dots in Figure 3:

drugs FTI.277, DMOG, NSC.87877, AKT.inhibitor.VIII, Mid-

ostaurin, BMS.754807, Thapsigargin, Bleomycin, Doxorubicin,

Epothilone.B.

As mentioned previously, a large number of features not only

leads to inefficient modeling, but may also produce poor results

compared with modeling based on a pre-selected small number of

features. We first compare the prediction accuracy (i.e., median

squared error of 50 test samples) of anti-cancer drug response

based on expression levels of 133 (1% of total 13,321 genes) genes

and the 500 genes that have the highest variance based on the

NetworkProfiler in Table 4. Table 4 shows that modeling based

on the expression levels of 133 genes produces outstanding

prediction accuracy compared with modeling based on 500 genes.

From the result, we can also conclude that there is no need to

consider a large number of genes with noise, and that a large

number of features only leads to inefficient modeling and poor

prediction results. Thus, we evaluate the proposed robust method

compared with the NetworkProfiler and elastic net based on the

expression levels of 133 genes. Table 5 shows the median squared

error of 50 test samples as a prediction error of anti-cancer drug

response. The proposed robust method outperforms the existing

methods for predicting anti-cancer drug response in the contam-

inated datasets.

Figure 4 shows the uncovered cancer biomarkers that are

selected in greater than 80% of models for the each 150 tissues

(i.e., selected in greater than 120 samples based on varying

coefficient model) by our method for each drug’s response. In

order to show a reliability of our method, we also show the 10 most

frequently discovered genes when predicting the sensitivity of 10

drugs and their references in Table 6. There are differences

between the biomarkers discovered based on our method and

those discovered using the elastic net [8], since our method

identifies cancer biomarkers for each patient rather than the

average biomarkers for all samples. However, the drug sensitivity-

specific biomarkers discovered by our method were strongly

supported as true cancer biomarkers in the literatures (column of

‘‘Reference’’ in Table 6). The result implies that the proposed

method for patient-specific analysis produces a reliable result for

uncovering cancer biomarkers.

In short, our method is a useful tool for predicting anti-cancer

drug sensitivity and uncovering patient-specific cancer biomarkers.

Figure 3. Sorted Cdr values of 138 dataset.
doi:10.1371/journal.pone.0108990.g003

Table 4. Prediction results of drug sensitivity by using NetworkProfiler based on 133 and 500 genes.

FTI.277 DMOG NSC.87877 AKT.inhibitor.VIII Midostaurin

p500 0.402 0.222 0.208 0.303 0.263

p133 0.291 0.239 0.211 0.232 0.134

BMS.754807 Thapsigargin Bleomycin Doxorubicin Epothilone.B

p500 0.107 0.140 0.201 0.318 0.760

p133 0.124 0.131 0.049 0.182 0.725

doi:10.1371/journal.pone.0108990.t004
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Discussion

We have proposed a novel outlier-resistant method for

uncovering patient-specific biomarkers and predicting anti-cancer

drug response. By using the robust Mahalanobis distance

calculated in robust principal component space, the proposed

method effectively detects and controls outliers in high dimen-

sional genomic alterations datasets. Thus, the proposed robust

method can effectively perform to uncover cancer biomarkers and

predict drug sensitivity, even in the presence of outliers. From the

Monte Carlo simulations, we have found that our method shows

outstanding prediction accuracy as compared to the existing

NetworkProfiler and elastic net. We have also applied the

proposed method to the Sanger dataset from the Cancer Genome

Project. By using our method, we have uncovered cancer

biomarkers and predicted anti-cancer drug response. It can be

seen from the results that the proposed method is a useful tool for

predicting anti-cancer drug response. Furthermore, the biomark-

ers uncovered by our method had been previously identified as

cancer biomarkers. The results implies that our method provides

not only reliable feature selection, but also accurate prediction

results.

There is currently much discussion about patient-specific

analysis and personalized medicine based on high dimensional

genomic datasets. We expect that our methodology will be useful

for the fields, since genomic data usually contains outliers.

Although the patient-specific method based on a varying

coefficient model is an efficient tool, it controls the effects of

observations in order to provide sample-specific results. In other

words, it reduces the effect of observations far from a target

patient, and thus leads to a high dimensional data frame. Building

models based on a large number of features with a small number

of samples can lead to overfitting in feature selection, and can

Table 5. Comparison of prediction accuracy of drug sensitivity.

FTI.277 DMOG NSC.87877 AKT.inhibitor.VIII Midostaurin

R 0.293 0.220 0.162 0.177 0.120

NP 0.291 0.239 0.211 0.232 0.134

Elastic net 0.269 0.561 0.323 0.447 0.477

BMS.754807 Thapsigargin Bleomycin Doxorubicin Epothilone.B

R 0.099 0.120 0.044 0.153 0.621

NP 0.124 0.131 0.049 0.182 0.725

Elastic net 0.720 0.274 0.279 0.367 0.954

doi:10.1371/journal.pone.0108990.t005

Figure 4. Identified biomarkers on each anti-cancer drug.
doi:10.1371/journal.pone.0108990.g004
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produce inefficient prediction results. In order to improve

modeling performance, future work can involve extending the

patient-specific analysis based on the bootstrap technique.

The Sanger dataset from the Cancer Genome Project provides

comprehensive information about the molecular features of a

cancer (e.g., mutation, expression levels and copy number

variation) and response of various anti-cancer drugs. Thus,

analysis of the dataset may provide informative results about the

systems biology of cancer and valuable information for personal-

ized treatment and anti-cancer therapy. The IC50 values of 138

drugs given as drug sensitivity, however, contain many missing

values (from 44 to 364 missing values in total 654 cell lines). In

order to effectively use the Sanger dataset to reveal the mechanism

of cancer, rather than ignoring the incomplete fields, a proper

treatment of the missing values is required.

Furthermore, we have also identified through numerical studies

that a large number of noisy features may disturb modeling

performance, and thus strategies for pre-selecting a candidate set

will be required to improve modeling performance.
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