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The liver is one of the most important immunological organs that remains tolerogenic in

homeostasis yet promotes rapid responses to pathogens in the presence of a systemic

infection. The composition of leucocytes in the liver is highly distinct from that of the blood

and other lymphoid organs, particularly with respect to enrichment of innate T cells, i.e.,

invariant NKT cells (iNKT cells) and Mucosal-Associated Invariant T cells (MAIT cells).

In recent years, studies have revealed insights into their biology and potential roles in

maintaining the immune-environment in the liver. As the primary liver-resident immune

cells, they are emerging as significant players in the human immune system and are

associated with an increasing number of clinical diseases. As such, innate T cells are

promising targets for modifying host defense and inflammation of various liver diseases,

including viral, autoimmune, and those of tumor origin. In this review, we emphasize and

discuss some of the recent discoveries and advances in the biology of innate T cells, their

recruitment and diversity in the liver, and their role in various liver diseases, postulating

on their potential application in immunotherapy.
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INTRODUCTION

The liver is a primary internal organ that plays a unique role in pathogen defense. Approximately
1/3 of total blood passes through the liver every minute (1, 2). Once the blood enters, it circulates
at a reduced flow rate through the sinusoids, which comprise a complex vascular network of
capillary-like vessels. The reduced flow rate maximizes the opportunity for pathogens to recognize
the hepatic immune environment.

The ability to restrict and eliminate invading pathogens is one of the main features of the
immune system. Much hepatology literature has focused on the adaptive, antigen-specific classical
T-cell populations and their role in the protection and pathogenesis of liver disease. However,
human liver is selectively enriched in innate T cells, including natural killer T (NKT) cells (3)
and Mucosal-Associated Invariant T (MAIT) cells (4, 5). These innate T cells are unconventional
T cells with diverse functions that play an essential role in liver immune surveillance. Similar to
other innate cells, recognition of antigens from microbial, endogenous glycolipids or metabolites
activates innate T cells, allowing them to produce cytokines and cytolytic proteins (4, 5). One
of the most important features of innate T cells is bridging the innate and adaptive immune
response, and various types of cytokines produced after innate T cell activation can modulate
CD4+ and CD8+ T cell immune response (6). During liver injury, innate T cells infiltrating
into the inflammatory site after neutrophils and monocytes are proposed to be sensors that
control the local immune response (7). Although innate T cells have previously been defined
primarily by phenotypic markers, recent emerging evidence has revealed considerable functional
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complexity in this population. This review summarizes the
current literature regarding iNKT, type II NKT and MAIT
cells, which have important roles in a variety of liver diseases,
particularly focusing on their role in human liver diseases.

THE BIOLOGY OF INNATE T CELLS

iNKT cells, also known as type I NKT cells or classic NKT
cells, are a subset of natural killer T (NKT) cells, while another
subset of NKT cells is type II NKT cells. iNKT cells are
characterized by signatures of both T and NK cells, including
broad range expression of molecular markers that are typically
associated with NK cells, for example, NK1.1 in mouse and
CD161/CD56 in human (8, 9). Notably, these markers alone may
be insufficient to distinguish iNKT cells, because inmouse, NK1.1
is not expressed in certain strains, including AKR, BALB/c,
CBA/J, C3H, DBA/1, DBA/2, NOD, SJL, and 129 (10). There
are reasonable amounts of MAIT cells in human peripheral
blood and liver that also express CD56 (11); therefore, co-
staining with CD1d tetramer should precisely identify iNKT
populations. The so-called invariant is based on limited TCR
arrangement, Vα14Jα18/Vβ2, Vβ7, and Vβ8 in mouse and
Vα24Jα18/Vβ11 in human (12, 13). Mouse and human iNKT
cells can recognize lipid and glycolipid antigens of self or
microbial origin presented on MHC class-I-like CD1d molecules
(14, 15). Activation by the agonist α-galactosylceramide (α-
Galcer) allows mice and human iNKT cells to readily proliferate,
undergoing significant remodeling of their surface expression
patterns with regard to several markers, such as NK1.1 and
the semi-invariant TCR, resulting in production of abundant
Th1, Th2 and Th17 type cytokines, including IFN-gamma, IL-
4, IL-13, and IL-17 (16–18). Apart from the TCR dependent
pathway, human iNKT cells can recognize and eliminate target
cells expressing NKG2D ligands in a TCR-independent manner
(19). Cytokines released by stimulated iNKT cells are able to
transactivate other innate and innate-like immune cell subsets,
thereby amplifying their initial responses (20–24). In addition,
iNKT cells provide both antigen-specific cognate and non-
cognate aid to B cells (25) and in turn, are activated by B
cells (26, 27). Interestingly, unlike the non-cognate iNKT cell–
B cell interactions Figure 1, antigen-specific cognate iNKT cells
induce a more innate-biased B cell response characterized by
a discontinuous germinal center B cell expansion and rapid
initial proliferation of IL-10-producing B cells that fails to induce
humoral memory (28).

There are three functional subsets of iNKT cells in mouse and
human, which produce a distinct combination of cytokines
and lineage-specific transcription factors, namely, NKT1, NKT2,
and NKT17. Murine studies have demonstrated that T-box 21
(T-bet), GATA binding protein-3 (GATA3), and retinoic acid
receptor-related orphan nuclear receptor gamma (RORγt) are
expressed on iNKT1, iNKT2, and iNKT17 cells, respectively,
and these transcription factors are correlated with the function
of iNKT cells (29). Mirroring T helper cell subtypes, iNKT1,
iNKT2, and iNKT17 cells produce IFN-γ, IL-4, and IL-17
(29). These cytokines allow iNKT cells to interact with other

immune cells. For example, IL-4 produced by NKT2 cells
at steady state through phosphorylation of signal transducer
and activator of transcription 6 (STAT6) regulates CD8T cells
developing to a memory-like phenotype in the thymus (30).
Additionally, IL-4 promotes antibody production by B cells
and induces dendritic cells to secrete T helper (Th) 2-type
chemokines, such as chemokine (C-Cmotif) ligand (CCL) 17 and
CCL22 (30). Moreover, in lymphoid organs, each iNKT subset
displays different anatomic localization, which determines their
responsiveness to intravenous or oral antigenic challenges (31).
Recently, RNAseq analysis has suggested that each iNKT subset
has a unique genetic signature, and these footprints are more
similar to γδ T cells and innate lymphoid cells (ILCs) than to
conventional T cells (32).

Compared to iNKT cells, type II NKT cells express
relatively diverse TCRs that can recognize antigens derived
from microbial, endogenous glycolipids, phospholipids and
endogenous hydrophobic peptides presented by CD1dmolecules
(33). Type II NKT cells are unable to recognize α-linked
glycolipids, for example, α-Galcer, but are responded to β-
linked glycolipids (34). Igor Maricic et al. found that mice type
II NKT cells are activated by self-phospholipids, for example,
lysophosphatidylcholine (LPC), lysosphingomyelin (LSM) and
lyso-platelet-activating factor (LPAF) (34). According to their
function, type II NKT cells can be divided into pro-inflammatory
and anti-inflammatory subsets (34). Stimulating type II NKT cells
with self-glycolipid sulfatide inhibits inflammatory responses
induced by CD4+ T (35) and iNKT cells (36) in mice. In
a mouse bone marrow transplantation model, donor type
II NKT cells inhibit graft-vs.-host disease via releasing IL-
4 (37). In a rat model, activating type II NKT cells with
SCP2 peptide promotes the inflammatory response through
production of inflammatory cytokines IL-5 and IL-6 (38). In an
iNKT cell-deficient (Jα18−/−) mouse model, Sagami et al. found
adoptive transfer of type II NKT cells exacerbated DSS-induced
colitis (39).

MAIT cells are a subset of αβ T cells that possess both
innate and effector-like qualities (40, 41). They are preferentially
located in the gut lamina propria and express an invariant α

chain (42). Similar to other αβ T cells, MAIT cells undergoing
conventional TCR arrangement express canonical Vα7.2-Jα33
TCRs paired with variable β-chains in human (43, 44) and Vα19-
Jα33 TCR in mice (42). In general, MAIT cells are equipped with
effector properties before exiting from the thymus (45, 46). These
cells were initially discovered as invariant α chain-expressing
cells in the double-negative T cell fraction of human peripheral
blood by Steven Porcelli et al. in 1993 (47). Later studies found
that MAIT cells express high levels of CD161 and are also
present in CD4-positive, as well as CD8-positive, lymphocytes
(48).

Distribution of MAIT cells differs between humans and mice.
The frequency of MAIT cells in C57BL/6 mice accounts for
∼0.1% of the peripheral T cell population (49), whereas 1–10%
of them are identified in human peripheral blood. Moreover, the
occurrence of MAIT cells varies widely among tissues in healthy
adults, ranging from 2% (ileum) to 60% (jejunum), and they can
make up∼20–50% of intrahepatic T cells.
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FIGURE 1 | The dual role of iNKT cells as immune regulators.

Interestingly, MAIT cells are absent in germ-free mice,
indicating that their expansion in the periphery depends on the
presence of microbial ligands (40, 42). MAIT cells are MR1,
an MHC class I-like protein, restricted-T cells. Recognizing
bacterial-produced vitamin B metabolites presented by MR1
allows MAIT cells to secrete a vast amount of pro-inflammatory
cytokines, including IFN-γ, TNF-α, IL-2, and IL-17 (11, 41,
50), which lyse bacterially infected cells (51, 52). Additionally,
comparative genomic analysis has demonstrated that MR1
is only expressed in marsupial and placental mammals and
is exceptionally highly conserved, particularly at the α1 and
α2 domains of ligand-binding grooves (53). Both MR1 and
MAIT TCR genes are extremely highly conserved, implying that
evolutionary pressure is involved in maintaining conservation of
these genes (42).

MAIT cells can defend against microbial activity and
infections caused by bacteria or yeast through activating the
vitamin B2/riboflavin pathway in an innate manner (42, 45, 54).
A study by Michael S. Bennett et al. provided evidence that
supernatants from stimulated human MAIT cells promote B cell
plasmablast differentiation and IgA, IgG, and IgM production
(55). Additionally, humanMAIT cells respond tomycobacterium
tuberculosis infection and provide an early source of IFN-γ
required for activation of the Th1 response (56). Together, these
results indicate the potentially important role of MAIT cells in
the defense against microbial invasion.

CD1D RESTRICTED T CELLS IN LIVER
HEALTH AND DISEASE

iNKT cells contribute to a significant subset of lymphocytes in
the liver. In mice, iNKT cells are most abundant in the liver
(10–30%), with lower frequencies found in the thymus, blood,
bone marrow and lymph nodes (0.1–0.2%). In humans, high

iNKT cell numbers are detected in the liver (1%) (57, 58),
compared to 0.01–0.5% in their peripheral counterparts (59, 60).
The distribution of type II NKT cells is difficult to investigate
due to their lack of specific surface markers (61). The literature
suggests that type II NKT cells may outnumber iNKT cells in
humans (61).

iNKT cells mediate various functions in the liver, including
hepatic injury, fibrogenesis, and carcinogenesis. As one of the
important immune subsets in the liver, iNKT cells demonstrate
a pathogenic role in IRI, primary biliary cirrhosis, non-
alcoholic fatty liver, and hepatitis. Interestingly, a protective
role was identified for these cells in an acute liver injury
model (Figure 2). To date, literature appears to suggest that
iNKT cells exert a protective role during the acute phase
of liver injury and a pathogenic role in chronic conditions
(62). Some attention has also been focused on the implication
of NKT cells in liver transplantation, including their role in
ischaemia/reperfusion injury and transplantation rejection (63,
64). The study of type II NKT cells in liver disease progression
is limited, focusing on hepatitis viral infection, where type II
NKT cells appear to play a controversial role in controlling
liver injury. A new subset of type II NKT cells, II NKT-Tfh
cells, have been found to regulate metabolic lipid disorders
(65).

Hepatocellular Carcinoma
HCC is often linked to chronic inflammatory liver diseases, such
as NASH and viral hepatitis (66). A murine model suggested
that TLR4 and canonical nuclear factor-κB signaling in the liver
facilitate NASH-to-HCC conversion. Fundamentally, iNKT cells
have a dual role in cancer that either promotes an anti-tumor
response or elevates tumor growth via activation of effector T
cells promoting Th1 responses or recruitment of regulatory T
cells to induce Th2 responses (67, 68). Although hepatic iNKT
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FIGURE 2 | The protective and pathogenic roles of iNKT cells in the liver.

cells are rich in number, relatively few studies have attempted to
clarify their role in HCC, and results from these studies appear
contradictory.

HCC patients exhibit increased iNKT cell numbers in the
tumor site compared to the peripheral blood. More importantly,
hepatic iNKT cells are found to secrete Th2 cytokines, thus
inhibiting tumor-specific CD8+ T-cell responses (66, 69). In
contrast, murine studies identified that CD4+ iNKT cells
could mediate anti-tumor responses through inhibition of the
inflammatory response triggered by activation of the oncogenic
β-catenin pathway (70). Additionally, iNKT cells are able to
suppress tumor growth after adoptive transfer of HCC tumor
lines in mice (71, 72).

Very recently, a study by Ma et al. found that commensal
bacteria are important regulators of anti-tumor immunity that
alter hepatic natural killer T cells. This regulation strengthens
IFN-gamma production by hepatic natural killer T cells and
promotes anti-tumor effects (73).

Current studies have suggested that type II NKT cells
may play an immune regulatory role in cancer settings.
In CD1d knockout and Jα18 knockout mice, Terabe
et al. found that activation of CD1d-restricted type II
NKT cells is sufficient for downregulation of tumor
immunosurveillance in mouse fibrosarcoma, mammary
carcinoma, colon carcinoma, and lung metastases of the
CT26 colon carcinoma models (74). Using the same knockout
method, Renukaradhya et al. demonstrated that type II NKT
cells supress anti-tumor immunity against B-cell lymphoma
(75). In addition, there are higher frequencies of IL-13
releasing type II NKT cells in myeloma patients than in healthy
donors (76).

Hepatitis Viral Infection (HCV and HBV)
Overall, 57% of liver cirrhosis cases and 78% of liver cancers
are caused by chronic HBV and HCV infections, accounting
for almost a million deaths every year. A few studies have

attempted to identify the role of iNKT cells in controlling HCV
infections, in particular, during the initial phase of infection. In
human hepatic CD3+CD56+ cells, including iNKT cells, HCV
replication is inhibited in hepatocytes by IFN-γ secretion, and
this activity is positively correlated with disease progression
(77). Furthermore, it modulates the effectiveness of IFN-alpha
in late HCV infection. However, studies have shown that iNKT
cells are considerably depleted in chronic HCV infection (78–
80). This finding may suggest that iNKT cells contribute to
the early phase of HCV infection but not as much to disease
progression.

Similarly, high numbers of activated type I NKT cells
have been identified in the early stages of HBV infection
in humans (78–80). In agreement with those results, CD1d
expression is elevated in HBV+ve liver tissue compared to
HBV–ve counterparts (81). Similar to their action in HCV
infections, the inhibitory effect of iNKT cells on HBV occurs
through secretion of IFN-γ as well, activating the adaptive
immune response and inhibiting viral replication (82). Recently,
Xu and colleagues have shown that exhaustion marker Tim-
3 is upregulated on hepatic iNKT cells from HBV-transgenic
mice (83). Blockade of Tim-3 by anti-Tim-3 antibody strongly
enhances expression of IL-4, IFN-γ, TNFα, and CD107a in
iNKT cells and augments α-Galcer-induced inhibition of HBV
replication (83). Interestingly, researchers have found that on the
one hand, iNKT cells control the replication of hepatic viruses,
while on the other hand, they contribute to virally induced
liver injury through production of pro-inflammatory cytokines
that induce hepatocyte apoptosis and inhibit proliferation
(84–86).

The function of type II NKT cells in hepatitis viral infection is
debatable. In a ConA-induced mouse hepatitis model, activation
of type II NKT cells with sulfatide or LPC evoke anergy in iNKT
cells that suppresses inflammation-triggered liver damage (34).
In contrast, hepatic type II NKT cells promote development of
liver injury in a transgenic mouse model of acute hepatitis B
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virus infection (87). Stimulation of type II NKT cells triggers
conventional T-cell activation and pro-inflammatory cytokine
production, resulting in augmentation of hepatic injury in
murine autoimmune hepatitis models (88).

Non-alcoholic Fatty Liver Disease
In the modern era, NAFLD is considered the most frequent
chronic liver disease in developed countries, affecting ∼10–
20% of the population. NAFLD is characterized by abnormal
accumulation of fat in the liver, leading to infiltration
of inflammatory cells accompanied by fibrosis or necrosis
progressing to liver cirrhosis or hepatocellular carcinoma (HCC)
(89, 90). Current studies on systemic analysis of iNKT cell subsets
in non-alcoholic fatty liver disease are very limited, with a few
studies confirming their importance. In human hepatic CD1d
cells, the number of CD3+CD56+ cells are elevated in NASH
patients (91). Reduced iNKT cell counts were found in mice fed
high-fat diets and in obese mice (92, 93). In addition, mice with
NAFLD lacking iNKT cells showed increased pro-inflammatory
mediator factor and increased levels of TLR4 and PDGF2 mRNA
(94). Activation of Kupffer cells (KCs) could cause apoptosis
in these cells and further contribute to steatosis and insulin
resistance (92, 95). Depletion of KCs could reduce hepatic IL-
12 expression and rescue iNKT cells from apoptosis, preventing
further pathological changes in the disease. Tim-3/galectin-9 is
known to regulate the homeostasis of liver iNKT cells in the
murine system (96).

Indeed, depletion of KCs via treatment with gadolinium
chloride reduces hepatic IL-12 expression and does not lead
to iNKT apoptosis, thereby preventing diet-induced hepatic
steatosis and insulin resistance. Consistently, activation of the
Hedgehog pathway andHSCs have been revealed to be associated
with iNKT cells in mice fed an MCD diet or a combination
of a CD-HFD (97–99). Using a diet-induced mouse obesity
model, Satoh and colleague show that type II NKT cells trigger
inflammation in the liver and exacerbate obesity (100).

Alcoholic Liver Disease
ALD is caused by chronic alcohol abuse resulting in
alcoholic fibrosis or cirrhosis. The disease currently one of
the most frequent causes of death. Activation of KCs via
LPS/TLR signaling-dependent mechanisms following alcohol
consumption result in increased secretion of a variety of
pro-inflammatory cytokines and chemokines, in addition to
eicosanoids and reactive oxygen species (101, 102). Mechanisms
underlying ALD include a complex network of hepatocytes,
KCs, DCs and innate T cells (103). Studies found activation of
KCs via the LPS/TLR pathway following alcohol intake, which
increases secretion of a variety of pro-inflammatory substances
(101, 102, 104). In a murine model, increasing TNFα and IL-1β
production were observed in alcohol-fed mice that neutralize
IL-1β in KCs to allowed iNKT cell accumulation and steatosis.
The study also demonstrated that NLRP3 inflammasome and
IL-1β secretion are essential factors for hepatic iNKT cells
to accumulate and activate in ALD (105). Consistently, gut
microbes can also trigger KC NLRP3 activation, resulting in
iNKT cell activation (105). A study by Mariric et al. examined

the role of both type I and type II NKT cells in alcoholic liver
disease, demonstrating that only iNKT cells became activated
following heavy alcohol consumption, resulting in inflammation
and liver tissue damage. This study suggests that type I and II
NKT cells are functionally distinct in liver inflammation and
tissue injury (106). A more recent study identified the interplay
between IL-10-producing iNKT cells silencing the productive
roles of NK cells in alcoholic liver disease (107).

Despite these findings, the role of iNKT cells in human ALD
has not been well-examined. In agreement with the murine data,
pro-inflammatory cytokine levels were increased in alcoholic
hepatitis human subjects, suggesting a correlation with disease
severity (57). In addition, in patients with alcoholic hepatitis,
NKG2D expression in NK and iNKT cells has been found to
correlate with disease severity, suggesting these cells are involved
in promoting liver damage (108).

MAIT CELLS IN LIVER HEALTH AND
DISEASE

MAIT cells are significantly enriched in the liver, where they
comprise up to 50% of liver-resident lymphocytes. These cells
are located primarily in the biliary tract, and in the context of
liver infection, MAIT cells can be activated by MR1-presenting
bacterial ligands or indirectly via IL-12 and IL-18 produced
by antigen-presenting cells in response to Toll-like receptor 8
signaling triggered by viral RNA (109, 110). The importance of
MAIT cells in liver immunosurveillance is highlighted by three
findings. First, liver MAIT cells are highly activated and express
the activation marker CD69, as well as HLA-DR and CD38
(11, 110). This activation status suggests that liver MAIT cells
are in a highly activated state, poised to respond to incoming
antigens from the gut. Second, intra-hepatic MAIT cells, along
with CD56bright NK cells, are the main source of IFN-γ post-
TLR8 stimulation by liver-derived mononuclear cells through
IL-12 and IL-18 activation (80). Finally, MAIT cells are the
predominant IL-17 producers among intrahepatic T cells (∼65%
of IL-17+ T cells) in response to phorbol 12-myristate 13-
acetate/ionomycin stimulation (11). As IL-17 targets multiple cell
types in the liver, including Kupffer cells and BECs, to produce
pro-inflammatory cytokines and chemokines (111), MAIT cells
may be important regulators of hepatic inflammation and fibrosis
Figure 3.

Hepatocellular Carcinoma
Recent studies have found that MAIT cells are recruited from
peripheral blood to solid tumors in several cancers (112–
114). Infiltration and accumulation of MAIT cells into tumor
sites suggest that MAIT cells play an essential role in tumor
development. MAIT cells are highly enriched in human liver
(109) but are resisted to skew to an IL-17-producing phenotype,
as they fail to release to IL-17 upon TCR stimulation (11). On
the other hand, the function of tumor-infiltrating MAIT cells is
proposed to be impaired in response to a panel of TCR ligands
and cytokines (115). In a colorectal liver metastasis setting, IFN-γ
produced by hepatic tumor-infiltratingMAIT cells is significantly
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FIGURE 3 | The role of hepatic MAIT cells during steady state (left) and disease state (right).

suppressed (115). Taken together, the role of MAIT cells in
hepatocellular carcinoma is still obscure, and further studies
investigating the phenotype of tumor-infiltrating MAIT cells and
their interactions with liver-resident cells will help to understand
the role of MAIT cells in HCC.

Hepatitis B Virus (HBV)
To date, the role of hepatic MAIT cells in HBV is still poorly
understood. Two studies have compared peripheral MAIT cells
in healthy controls and chronic HBV patients, showing opposing
results. The first study found that MAIT cells were not deleted
nor functionally impaired in HBV patients (116). In contrast,
there was a higher frequency of MAIT cells expressing CD38 and
releasing granzyme B in HBV patients, suggesting that MAIT
cells were more activated in the HBV setting (116). The second
study demonstrates that in HBV patients, MAIT cells are in an
exhausted phenotype, where the frequency of cells in circulation
is reduced, the expression of the early activation marker CD69
is inhibited, and the production of IFN-γ and granzyme B
are significantly suppressed (43). Why there are discrepancies
between these two studies is not clear. The opposite observations
on granzyme B production may be explained by different
activation methods, as Boeijen et al. activated MAIT cells with
IL-12/IL-18/CD28+ Escherichia coli (116), while Yong et al.
stimulated MAIT cells with PMA/ionomycin (43). It should be
taken into consideration that the size of both studies is relatively
small. Therefore, the patients could have been in various clinical
phases and undergoing different treatments. Indeed, MAIT cells
are abundant in the peripheral blood but account for only a small
percent of T cells (1–10%) (117). MAIT cells are further enriched
in the liver (20% to 50% of T cells), which is also the primary site
of infection (117). Therefore, further research with larger cohorts
that focus on intrahepatic MAIT cells is required to solve the
mystery of MAIT cells in HBV.

Hepatitis C Virus (HCV)
Several studies have shown that CD8+, rather than CD4+, MAIT
cells in the peripheral blood were significantly reduced in the
setting of chronic HCV (118, 119). These results may be due to
CD8+ MAIT cells belonging to a newly defined pro-apoptotic
phenotype expressing high levels of caspase 3 and 7 (120). Further
phenotypic and functional studies reveal that the remaining
CD8+ MAIT cells represent a chronic activation phenotype with
signs of immune exhaustion, which is characterized by elevated
levels of CD38, HLA-DR, CD69, PD-1, TIM-3, CTLA-4, and
Granzyme B (118, 119). Notably, the function of these MAIT
cells is also impaired, as reflected by the production of IFN-
γ and TNFα being actively suppressed upon stimulation with
TCR-dependent E. coli but not TCR-independent IL-12+IL-18
(118, 121). This result suggests that the loss and functional
impairment of MAIT cells is a non-reversible process in chronic
HCV patients, as antiviral treatment cannot reinvigorate these
MAIT cells (118, 121, 122). Arguably, Ben Youssef et al found that
adult MAIT cells in peripheral blood expand from cord blood
Vα7.2+ CD161high T cells, and this process lasts ∼5 years before
filling up the adult MAIT pool (123). Therefore, the dysfunction
and loss of MAIT cells after antiviral therapy may be due to
the slow kinetics of differentiation and proliferation in MAIT
cells.

There is an inverse correlation between the frequency of
hepatic MAIT cells with liver inflammation and liver fibrosis
in the setting of chronic HCV, demonstrating that MAIT cells
are crucial mediators against HCV infection in the liver (121).
Similarly, the percentage of hepatic MAIT cells is also reduced
in chronic HCV patients (121). Importantly, the expression
of HLA-DR and CD69 on MAIT cells is higher in the liver,
suggesting that intrahepatic MAIT cells are more activated than
are peripheral MAIT cells (121). This difference may because
there is a higher frequency of activated monocytes in the liver,
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as they are an important source of IL-18 (121). MAIT cells are
deleted in both blood and liver in the setting of HCV, and it is
hypothesized that blood MAIT cells migrate to the organ, where
they are further stimulated by inflammatory cytokines, resulting
in activation-induced death, a mechanism that has been observed
and well-characterized in HIV-induced MAIT cell depletion
(121, 124).

Non-alcoholic Fatty Liver Disease
The major cause of NASH/ NAFLD is chronic liver inflammation
induced by tissue damage or pathogen infection (125).
Hegde et al. finds that the number of hepatic MAIT cells
is decreased in patients with non-alcoholic fatty liver
disease-related cirrhosis (126). Compared with controls,
cirrhotic liver MAIT cells exhibit an activated phenotype
characterized by increasing IL-17 production with no differences
in the percentage of MAIT cells producing granzyme B,
IFN-γ, or TNF (126). Another study demonstrated that
MAIT cells in NASH patients also display an activated
phenotype defined by enhanced cytotoxicity but reduced
cytokine production (127). These experiments suggest that
MAIT cells are activated and contribute to pathogenesis in
NAFLD/NASH.

Alcoholic Liver Disease
One of the most frequent complications of ALD is bacterial
infection. One study has shown that over 50% of severe
alcoholic hepatitis patients suffer from bacterial infection (128).
As potent antibacterial lymphocytes in the liver, the number,
cytokine production (IL-17) and cytotoxic response (Granzyme
B, CD107a) of MAIT cell are impaired in peripheral blood of
severe alcoholic hepatitis and alcoholic cirrhosis patients (129).
Dysfunction ofMAIT cells in ALD patients occurs from exposure
to bacterial antigens and metabolites, but not ethanol (129).
Importantly, in the liver, microarray data show that expression of
transcription factors RORC/RORγt, ZBTB16/PLZF, and Eomes
that mediate the function of MAIT cells is lower in ALD patients
than in controls (129). Together, these results suggest that MAIT
cells in ALD display a defective phenotype, which may explain
why there is a high rate of bacterial infection complications in
ALD patients.

CONCLUSIONS

Herein, we have discussed several key aspects of innate T cells
and their potential role in liver diseases. Their enrichment in the
liver suggests their unique role in liver disease progression and
protection. The distinctive features and functions of innate T cells
impart both pathogenic and protective abilities to the host. Thus,
modulation of these cells represents a very attractive therapeutic
strategy in liver diseases.

Our current knowledge of these cell subsets in the liver and
their potential role in liver disease mainly comes from studies
in animal models. Data from human and clinical studies are
insufficient and are primarily complicated by the opposing effect
these cell types have, both pathogenic and protective. In addition,
most liver diseases are chronic disorders, and this further
complicates analysis of these cells. The dynamic effect of these
cells at different time points during the progression of disease
could be significantly different regarding both number and
function. Another critical factor is that a vast number of immune-
regulatory cells resides in the liver, where they all modulate the
activity level of iNKT and MAIT cells. In turn, these two innate
T-cell subtypes also act as key modulators of other immune cell
activity, including KCs, classical innate cells (macrophages and
DCs) and conventional T cells. These factors form an involved
local liver environment; thus, a molecular understanding of these
cross-regulatory effects is key to understanding the liver immune
system. Understanding liver immunity and function is also key
to maintaining a proper balance between immune tolerance and
immunity in the liver. To further understand the mechanism of
these cells, it will be essential to developmore specific and reliable
reagents to characterize and analyse these cells.
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