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1 Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, Paris, France, 2 Sorbonne Universités, UPMC Univ Paris 6, IFD, Paris,

France, 3CNRS, UMR3525, Paris, France

Abstract

Trinucleotide repeat expansions are responsible for more than two dozens severe neurological disorders in humans. A
double-strand break between two short CAG/CTG trinucleotide repeats was formerly shown to induce a high frequency of
repeat contractions in yeast. Here, using a dedicated TALEN, we show that induction of a double-strand break into a CAG/
CTG trinucleotide repeat in heterozygous yeast diploid cells results in gene conversion of the repeat tract with near 100%
efficacy, deleting the repeat tract. Induction of the same TALEN in homozygous yeast diploids leads to contractions of both
repeats to a final length of 3–13 triplets, with 100% efficacy in cells that survived the double-strand breaks. Whole-genome
sequencing of surviving yeast cells shows that the TALEN does not increase mutation rate. No other CAG/CTG repeat of the
yeast genome showed any length alteration or mutation. No large genomic rearrangement such as aneuploidy, segmental
duplication or translocation was detected. It is the first demonstration that induction of a TALEN in an eukaryotic cell leads
to shortening of trinucleotide repeat tracts to lengths below pathological thresholds in humans, with 100% efficacy and
very high specificity.
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Introduction

Trinucleotide repeat expansions are involved in at least two

dozens dramatic neurological and developmental disorders in

human [1,2,3,4,5]. A large amount of studies were devoted to

understanding the mechanisms responsible for large CAG/CTG

repeat expansions, using model systems as diverse as bacteria

[6,7], yeast [8,9,10], drosophila [11], mice [12,13,14,15] or

human cell lines [16,17,18]. Over the last 20 years or so, it was

demonstrated that replication slippage, double-strand break

repair, base excision repair, nucleotide excision repair, mismatch

repair, basically any mechanism involving de novo DNA synthesis

within CAG/CTG triplet repeats would favor repeat size changes

(reviewed in: [1,19,20,21]. However, the precise mechanism by

which hundreds or thousands of triplets are added in one single

human generation is still obscure.

Given that trinucleotide repeat disorders are always associated

to an expansion of the repeat array, shortening the expanded array

to non-pathological length should suppress the pathology. Indeed,

when a large trinucleotide repeat contraction occured during

transmission from father to daughter, of an expanded myotonic

dystrophy allele, complete clinical examination of the daughter

showed no sign of myotonic dystrophy symptoms [22]. It was

previously reported that frequent expansions and contractions of a

CAG/CTG repeat occured during double-strand break repair

induced by a specific endonuclease such as I-Sce I [23] or HO

[24], in Saccharomyces cerevisiae [25,26,27,28]. More specifically,

when an I-Sce I recognition site was inserted between two short

(CAG)5 repeats and a double-strand break (DSB) was induced,

two-thirds of the repair events led to shortening of the repeat array

by single-strand annealing, even though a homologous template

was available to repair the break by gene conversion [26]. This

observation led us to the idea that inducing a specific DSB within a

given trinucleotide repeat could lead to its shortening to non-

pathological length.

Historically, the first nucleases used to induce a specific double-

strand break into an eukaryotic chromosome were I-Sce I [29,30]

and HO [31]. Subsequently, homing endonucleases of the

LAGLIDAGD family were engineered to recognize a large variety

of restriction sites [32] and used for gene targeting in a wide

variety of eukaryotes, including human cells [33,34]. However, the

efficacy of such engineered nucleases is highly variable between

the different genomic targets tested [35]. Zinc-finger nucleases

(ZFN) were developed for the same purpose. They were built by

fusing modular zinc-finger DNA-binding domains to the catalytic

domain of the Fok I endonuclease [36]. They were used for

targeted gene editing in eukaryotes [37,38], but seem to induce

high toxicity and a high frequency of off-target mutations,

probably due to recognition and cutting of many degenerate

sequences differing only slightly from the targeted sequence [33].
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More recently, a new family of specific endonucleases, called

TALEN, was developed. TALENs relie on modular transcription

factors, TAL effectors discovered in the genus Xanthomonas, a plant

pathogen, that can be assembled to recognize any specific DNA

sequence [39,40]. TAL effectors were subsequently fused to Fok I

[41,42] or more recently to Tev I catalytic domains [43], to create

modular proteins used in genome editing [44,45,46,47,48].

In the present work, a TALEN designed to recognize and cut a

CAG/CTG trinucleotide repeat was assayed in a dedicated yeast

experimental system. We show that, in a diploid strain containing

a CAG/CTG trinucleotide repeat integrated in only one of the

two homologues, the repeat-containing locus was replaced by its

allelic copy by gene conversion, following TALEN induction. In a

diploid strain containing CAG/CTG trinucleotide repeats inte-

grated in both homologues, both repeats were shortened by

TALEN induction. Deep-sequencing of yeast colonies in which the

TALEN was expressed or not expressed showed that induction of

the nuclease did not increase the mutation rate, nor did it induce

formation of genomic rearrangements, segmental duplications or

chromosomal translocations. Therefore, TALENs appear to be the

safest and most straightforward way, at the present time, to

shorten a trinucleotide repeat to non-pathological lengths.

Materials and Methods

Yeast Strains and Plasmids
Both TALEN and split-TALEN were designed and ordered at

Cellectis (Paris, France). The target sequence was chosen at the

centromeric-proximal junction of the trinucleotide repeat tract.

Cellectis validated the design with their own appropriate

bioinformatics tools, built the TALEN and validated its cutting

efficiency with a dedicated single-strand annealing assay (cleavage

rate 0.5 on a scale 0 to 1). Plasmid pCLS9996 (marked with

KANMX), carrying the TALEN right arm was transformed in

strain GFY40 (MATa ura3D851 leu2D1 his3D200 lys2D202 ade2-

opal SUP4-opal), or GFY6162-3C (MATa ura3D851 leu2D1
his3D200 lys2D202 ade2-opal sup4::CAG), both previously de-

scribed [25,26]. Strain GFY6162-3D (MATalpha ura3D851 leu2D1
his3D200 trp1D63 ade2-opal sup4::CAG) was transformed with

pCLS16715 (TALEN left arm) or with pCLS9984 (split-TALEN

left arm), both marked with LEU2. Haploid transformants were

crossed on rich medium (YPGlucose), and diploids containing both

TALEN arms were selected on SC-Leu supplemented with G418

sulfate (200 mg/ml). Repeat lengths were checked by Southern

blot in several independent diploids before galactose induction

(Figure S1).

TALEN Induction
Yeast cells were grown overnight in liquid SC -Leu medium

supplemented with 200 mg/ml G418 sulfate. Cultures were

washed twice with water, diluted to ca. 106 cells/ml and grown

in YPLactate for five more hours (one generation). They were

diluted to an appropriate concentration, then plated on SC -Leu

plates supplemented with 200 mg/ml G418 sulfate, containing

either 20 g/l glucose or galactose. Survival was determined as the

ratio of CFU on galactose plates over CFU on glucose plates, after

3–5 days of growth at 30uC. Alternatively, after growth in

YPLactate, cells were diluted to an appropriate concentration,

then plated on SC -Leu -Ade plates supplemented with 200 mg/ml

G418 sulfate, containing either 20 g/l glucose or galactose and a

small amount of adenine (6.4 mg/l) in order to score colony color.

In all induction experiments performed, only a subset of the plated

colonies was analyzed by Southern blots and/or PCR.

Analysis of Trinucleotide Repeat Size
Red and white colonies were picked, total genomic DNA was

extracted, digested with Eco RV or Ssp I, loaded on a 1% agarose

gel and run overnight at 1 V/cm. The gel was vacuum transfered

in alkaline conditions to a Hybond-XL nylon membrane (GE

Healthcare) and hybridized with a randomly-labeled probe [49]

specific of a unique region downstream of SUP4. After washing,

the membrane was overnight exposed on a Fujifilm FLA-9000.

When repeat tracts were short enough, it was possible to PCR

amplify the SUP4 locus, using primers su3

(TTTCTCGTGTCCCCTCTTCCGT) and su9

(TTCTCTCTGGGTATGTAGGAAT). The PCR fragment was

sequenced using a primer (su7: TTCAAGTATTTGTTCAT-

TAATTT) located ca. 210 bp upstream of the repeat tract. Sanger

sequencing was performed by GATC Biotech.

Library Preparation and Deep-sequencing of Yeast
Colonies
Each colony, collected on a glucose or on a galactose plate, was

grown in non-selective rich medium (YPGlu), whose DNA was

extracted and sonicated to an average size of 500 bp (Bioruptor,

maximum power (H), 3099 ON/3099 OFF cycles, 9 cycles). DNA

ends were subsequently repaired with T4 DNA polymerase (15

units, NEBiolabs) and Klenow DNA polymerase (5 units,

NEBiolabs) and phosphorylated with T4 DNA kinase (50 units,

NEBiolabs). Repaired DNA was purified on two MinElute

columns (Qiagen) and eluted in 16 ml (32 ml final for each library).

Addition of a 39 dATP was performed with Klenow DNA

polymerase (exo-) (15 units, NEBiolabs). Home-made adapters

containing a 4-bp unique tag used for multiplexing, were ligated

with 2 ml T4 DNA ligase (NEBiolabs, high concentration, 26106

units/ml). DNA was size fractionated on a Pippin Prep (Sage

Science) and the fraction containing 400–600 bp DNA fragments

was recovered in LoBind microtubes (Eppendorf). DNA was PCR

amplified with Illumina primers PE1.0 and PE2.0 and Phusion

DNA polymerase (1 unit, Thermo Scientific). Depending on PCR

efficiency, 9, 12 or 15 PCR cycles were performed on each libary.

Twenty-four PCR reactions were pooled, for each library, and

purified on Qiagen purification columns (two columns were used

for 24 PCR reactions). Elution was performed in 60 ml (twice
30 ml) and DNA was quantified on a spectrophotometer and on an

agarose gel.

Analysis of Paired-end Illumina Reads
One library or two multiplexed libraries were loaded on each

lane of a HiSeq 2000 (Illumina), and 110 bp paired-end reads

were generated. Reads quality was evalued by FastQC v.0.10.1

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)

and trimmed off using the paired-end mode of Trimmomatic

v0.30 (http://www.usadellab.org/cms/index.

php?page = trimmomatic). Trimmed reads were mapped along

S288C chromosomes reference sequence (GenBank NC_001133

to NC_001148, PLN 06-DEC-2008), plus the two SUP4 alleles

(SUP4-opal and sup4-(CAG)) using the paired-end mapping mode

of BWA v0.6.2 [50] with default parameters. The output SAM

files were converted and sorted to BAM files using SAMtools

v0.1.18 [51]. The command IndelRealigner from GATK v2.2 [52]

was used to realigned the reads. Duplicated reads were removed

using the option ‘‘MarkDuplicates’’ implemented in Picard v1.81

(http://picard.sourceforge.net/). Reads uniquely mapped to the

reference sequence with a minimum mapping quality of 30

(Phred-scaled) were kept. Mpileup files were generated by

SAMtools without BAQ adjustments. SNPs and INDELs were
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called by the options ‘‘mpileup2snp’’ and ‘‘mpileup2indel’’ of Varscan2

v2.3.5 [53] with a minimum depth of 5 reads and a threshold of

0.45 for minimum variant allele frequency (strains are diploids).

Mismatches were kept when they represented at least 20% of the

reads supporting the variant on each strand. They were manually

examined and compared between all sequenced libraries for

interpretation.

Results

TALEN Induction Induces Trinucleotide Repeat Deletions
and Contractions
The genetic assay used in the present work relies on a modified

suppressor tRNA gene (SUP4) in which the natural intron was

replaced by either a short spacer sequence (18 bp, hereafter called

SUP4-opal) or a CAG/CTG trinucleotide repeat (30–75 triplets,

hereafter called sup4::CAG). The SUP4-opal allele is functional

and suppresses an ade2-opal non-sense mutation that accumulates

a red pigment into yeast cells, whereas the sup4::CAG is not

functional [25,26]. Diploid yeast cells carrying homozygous ade2-

opal mutations are red if only one copy of SUP4-opal is present,

but they revert to white if two copies are present (Figure 1A).

Haploid cells of opposite mating types containing either SUP4-opal

or sup4::CAG, were transformed with one of the two TALEN

arms. As a control, a TALEN arm modified to bind a recognition

site split in two halves separated by 49 bp, was also transformed in

one of the two haploid strains. The left arm of this split-TALEN

should not be able to bind its cognate site and therefore no double-

strand break should be induced (Figure 1B). TALEN arms are

carried by multicopy plasmids (2 micron) and their expression is

under the control of the inducible GAL1-10 promoter [54,55].

Cells were simultaneously plated on glucose and galactose media

and colonies were scored after 3–5 days of growth. Yeast survival

to the TALEN induction was 81.4%67.2%, slightly less than

survival to the split-TALEN induction (96.4%, Figure 2A). White

colonies were scored and represent a majority of cells on both

media, even though they are more frequent on galactose (82.5% of

white colonies) as compared to glucose (66.7%). This suggests that

even in repressing conditions (glucose), the GAL1-10 promoter

shows some level of leakiness which is, associated to multicopy

plasmids, apparently sufficient to induce TALEN expression. In

support of this observation, we noticed that when crossing two

haploids strains containing a stable trinucleotide repeat and one of

the two TALEN arms, none of the diploids obtained contained a

repeat longer than 30 triplets, strongly suggesting than even in

repressing conditions, leaky expression of both TALEN arms

occur to a level high enough to induce repeat contractions when

both plasmids are in the same diploid cell (Figure S1).

Quantification of steady-state TALEN transcripts in glucose and

galactose media confirmed a low but detectable level of transcripts

in glucose (Figure S2).

DNA originating from red and white colonies was subsequently

analyzed by Southern blotting. Forty-nine out of 52 red colonies

contain the two alleles, only three colonies showed the complete

deletion of the sup4::CAG allele (Figure 2B). Conversely, 119 out

of 120 white colonies only contain the SUP4-opal allele, whose

signal intensity was twice the intensity detected in red colonies,

suggesting that it corresponds to a near-complete deletion of the

sup4::CAG allele. We took advantage of a restriction site

polymorphism between SUP4-opal and sup4::CAG alleles, to

discriminate between a perfect homozygotization and a large

contraction of the sup4::CAG allele. DNA extracted from red or

white diploid survivors was amplified and digested with enzymes

recognizing one of the two alleles. In all ten white survivors

analyzed, restrictions showed the presence of only the SUP4-opal

allele (Figure 2C). Sequencing the same PCR products amplified

from white diploid survivors confirmed that only one sequence was

present, and not a mix of two different sequences, as would be

expected for an heterozygous SUP4/sup4 locus. These experiments

proved that gene conversion of the sup4::CAG allele by the SUP4-

opal allele was more than 99% efficient following TALEN

expression. Comparatively, there was no difference between

glucose and galactose and no gene conversion was detected when

inducing the split-TALEN (Figure 2B).

In a second set of experiments, we built a diploid strain

containing two sup4::CAG alleles of different lengths. In such a

strain, it is not possible to screen for white colonies, since both

alleles are deficient in suppressing ade2-opal mutation. In the

diploid strain containing the split-TALEN (GFY623), survival to

galactose induction was 78.1%613.7%, a slightly lower figure

than survival of the SUP4-opal/sup4::CAG heterozygote (GFY620,

96.4%, Figure 2A). However, in the diploid strain containing the

TALEN (GFY622), survival dropped to 37.1%618%, a figure 2.2

fold lower than survival of the SUP4-opal/sup4::CAG heterozy-

gote. This shows that cutting both chromosomes instead of one

decreases viability by about a two-fold factor. Molecular analysis

showed that ca. 5% of colonies on glucose (2 out of 37) showed a

small expansion, whereas 59% (22 out of 37) of colonies exhibited

a contracted or deleted allele (Figure 2D), suggesting again that

some TALEN induction occurs in repressing conditions.

In galactose, 100% of the 153 colonies analyzed showed one

single band corresponding in size to the near-complete contraction

of both repeat tracts (Figure 2D: Double contraction). However,

Southern blot resolution was not sufficient to determine if both

alleles harbored repeats of the exact same length. DNA extracted

from diploid survivors was therefore amplified and sequenced. In

23 out of 60 sequenced survivors (38%), only one sequence was

present, as shown by good quality, evenly spaced peaks (Figure 3A).

In 37 out of 60 survivors (62%), a mix of two DNA sequences was

read after the repeat tract, indicating that the two alleles carry

repeat tracts of different lengths. Using this approach, only the

shortest of the two repeat tract lengths could be determined, and

was found to range from three to 13 triplets (with one exception,

one sequence of 20 triplets was found). Therefore, the minimal

spacing between the two TALE DNA-binding domains necessary

to obtain active dimerization of the Fok I nuclease and subsequent

DSB formation was calculated as being 39 nt (13 triplets) minus

the number of triplet repeat nucleotides bound to the left TALE

(5 nt) and the number of triplet repeat nucleotides bound to the

right TALE (16 nt, Figure 1B), for a total of 18 nt, a figure slightly

higher than expected but compatible with former reports [56].

When survivors of the sup4::CAG/sup4::CAG strain containing

the split-TALEN were analyzed, no colony containing two

contracted alleles was detected (Figure 2D). However, six colonies

out of ten on glucose and 17 colonies out of 20 on galactose

showed a contraction of the largest of the two alleles (scored as

‘‘Contraction’’, Figure 2D). This strongly suggests that presence of

the right TALE DNA-binding domain is sufficient to increase the

instability of a CAG trinucleotide repeat, probably by interfering

with repeat tract replication. Indeed, when only the right TALE

DNA-binding domain was expressed in a haploid strain containing

a sup4::CAG allele, stability of the repeat tract was decreased (our

own unpublished data).

TALEN Induction does not Increase Mutation Rates
In order to determine TALEN specificity, particularly if an

increase in off-site mutations was associated with its expression, we

completely resequenced eight colonies growing on glucose plates

CAG Trinucleotide Repeat Contractions by TALEN
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and seven colonies growing on galactose plates. Paired-end

Illumina reads were generated and mapped to the S288C

reference genome for each colony (Table S1). After removal of

duplicates, coverage of unique sequences was homogeneous in all

15 clones sequenced, showing no aneuploidy nor segmental

duplication. Among eight glucose colonies, seven unique hetero-

zygous SNPs were detected, whereas among seven galactose

colonies no heterozygous SNP was detected (Figure 3B). These

numbers are not significantly different from each other and are in

good agreement with predictions. Lynch and colleagues [57]

determined that the average base substitution rate per nucleotide

site was 3.3610210 per cell division, in S. cerevisiae. Given that

glucose and galactose colonies underwent respectively 33 and 30

cell divisions before DNA was extracted and sequenced, following

a Poisson distribution it was expected that ca. 11% of the

sequenced colonies (one or two colonies out of 15) contained at

least one mutation. Four colonies out of 15 (27%) actually

contained at least one mutation, a number not statistically different

from expected (Fisher exact test p-value: 0.43 for two mutant

colonies, 0.21 for one mutant colony).

Mutant colonies contained between one (two colonies) and three

SNPs (one colony). Altogether, three transitions for four transver-

sions were found, a proportion not statistically different from

expected (expected ratio: 0.61 [57]). Insertions and deletions

Figure 1. Experimental design. A: Plasmids pCLS9996 and pCLS16715, carrying the two TALEN arms, were transformed into MATa and MATalpha
haploid strains, and strains were crossed to obtain diploids containing both TALEN arms. The TALEN is normally repressed on glucose medium. One
copy of the active SUP4 tRNA being insufficient to suppress the ade2-opal mutation, yeast cells are red [25,26,27] (top). In the presence of galactose,
the TALEN is expressed, binds CAG/CTG trinucleotide repeats and induces a double-strand break into the repeat tract. If a second copy of an active
SUP4 tRNA is generated during double-strand break repair, the ade2-opal mutation will be suppressed and yeast cells will now be white (bottom). B:
Sequences recognized by both TALE DNA-binding domains and by the split-TALE. The length of the minimal spacer (18 bp) needed to induce a DSB
was deduced from repeat tract lengths analyzed in surviving cells after TALEN induction (see text).
doi:10.1371/journal.pone.0095611.g001
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(Indels) of one base pair in non-monotonous DNA are expected to

be ten times less frequent than base substitutions [58], whereas

indels within long poly-A/T stretches (12 bp) are more frequent

[57]. Indeed, we only found one deletion of a GC dinucleotide in

an intergenic region (zero expected) and three colonies containing

indels in monotonous poly-A/T stretches (four expected). More

importantly no mutation was detected in any one of the naturally

occuring 88 CAG/CTG trinucleotide repeats (at least five triplet

long ) of the S288C genome [59]. All indels and one out of seven

SNPs fall within intergenic regions. Out of six remaining SNPs in

coding regions, two are synonymous (third codon base) whereas

four are non synonymous and encode point mutations in five

different genes (Table S2). We concluded that expression of a

TALEN targeted to a specific CAG/CTG trinucleotide repeat has

no effect on other triplet repeats nor on the overall mutation rate

of the yeast genome.

Since deep-sequencing cannot reveal reciprocal translocations

that could be induced by the TALEN, as a last control experiment,

a PFGE was run on the heterozygous SUP4-opal/sup4::CAG

strain. DNA from two colonies grown on glucose and 20 colonies

grown on galactose was prepared embedded in agarose plugs and

loaded on a PFGE. All karyotypes were normal, showing no

evidence for aneuploidies, large segmental duplications or

translocations (Figure 3C).

Discussion

In the present work, we show that a TALEN designed to

recognize and cut a CAG/CTG trinucleotide repeat integrated in

a yeast chromosome was 100% efficient in shortening the repeat

tract, without inducing any other mutation in the yeast genome. In

a former similar experiment, a zinc-finger nuclease was designed

to recognize and cut a plasmid-born CAG/CTG trinucleotide

repeat tract, in human cells. It was shown to increase triplet repeat

instability by 15 fold, inducing repeat contractions, deletions of the

complete repeat tract along with flanking DNA sequences, and

insertions of plasmidic DNA within the repeat tract [60]. In other

experiments, in which a ZFN was directed at chromosome-borne

CAG/CTG repeats in human cells [61], frequent contractions

were observed, along with less frequent expansions of the repeat

Figure 2. Molecular analysis of survivors after TALEN induction. A: Survival after galactose induction. Survival was determined as the ratio of
CFU on galactose plates over CFU on glucose plates. GFY620, 621, 622 and 623 are strain names used in these experiments. Error bars indicate 95%
confidence intervals. B: Molecular analysis of heterozygous diploids (SUP4-opal/sup4::CAG), on glucose or galactose plates, in strains expressing either
the TALEN (GFY621) or the split-TALEN (GFY620). C: PCR analysis of heterozygous diploids on glucose or galactose. PCR products were digested using
restriction enzyme I-Sce I (I) or Pst I (P). For each clone, numbered 1 to 20, the two lanes show the result of restriction with one of the two enzymes.
When both alleles are present, bands of slightly different sizes corresponding to uncut alleles are visible in both lanes (arrow labeled ‘‘Uncut’’), along
with restriction products of cut alleles (arrows labeled ‘‘Cut’’). When only the SUP4-opal allele is present, no cut product is detected in the ‘I’ lane
(clones 8 and 11 to 20). Note that these 20 survivors correspond to the same clones in figure 2B (strain GFY621). D: Molecular analysis of homozygous
diploids (sup4::CAG/sup4::CAG), on glucose or galactose plates, in strains expressing either the TALEN (GFY622) or the split-TALEN (GFY623). Note that
in all induction experiments, only a subset of all colonies growing on glucose or galactose was analyzed by Southern blot and/or PCR.
doi:10.1371/journal.pone.0095611.g002
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tract. These expansions were proposed to occur by homologous

recombination between sister chromatids in S or G2 phase of the

cell cycle. However, in these two previous experiments with ZFN,

no estimate of the rate of genome wide off-target mutations

induced by the nuclease was provided. Targeting efficiencies

between ZFN and TALEN have been compared in nematode [62]

and drosophila [63]. Both ZFN and TALEN are mutagenic,

making a double-strand break that will be repaired by unfaithful

non-homologous end joining, generating mutations at the broken

locus. However, frequencies of mutagenesis vary greatly between

ZFN and TALEN, depending on the locus targeted. It is possible

that TALEN efficacy, as compared to ZFN, at recognizing and

cutting CAG/CTG secondary structures, is due to different DNA-

protein structures. TAL Effectors wrap around DNA, each

repeated motif consisting of two alpha helices connected by a

short loop containing the Repeat Variable Diresidue (RVD). Each

RVD contacts its cognate nucleotide within the major groove, and

the protein is wrapped around DNA in a superhelical structure

[64]. Therefore, if some secondary structures are formed within

triplet repeats, it is possible that they are disrupted by the binding

of the TALEN left arm at the repeat junction (Figure 1B), allowing

efficient binding of the TALEN right arm on the triplet repeat

sequence. Very recently, a new family of highly specific

endonucleases, called CRISPR, based on a guide RNA associated

to a bacterial nuclease (Cas9), was engineered to modify eukaryotic

genomes. The guide RNA is homologous to the target sequence

and only 20–30 base pairs of homology are required for the RNA-

nuclease complex to recognize and cut its cognate sequence [65].

Given that CUG-containing RNAs are known to form stable

secondary structures [66], it is probable that these structures will

Figure 3. Karyotypes and sequencing of TALEN-induced yeast colonies. A: Sanger sequencing of survivors. PCR fragment amplified with
su3/su9 (Figure 2C) was sequenced using a primer (su7) located ca. 210 bp upstream of the repeat tract. Left: when only one allele was present, one
unique sequence was read (upper graph, homozygous tract length). When two alleles of different lengths were present, the sequence was blurry and
unreadable after the shortest of the two repeat tracts (lower graph, heterozygous tract length). The freeware 4Peaks was used to visualize sequences.
Right: length distribution of alleles in homozygous tract length (green bars) and heterozygous tract length (orange bars) survivors to TALEN
induction. Homozygous tract lengths are shorter on the average (mean= 7 triplets) than heterozygous tract lengths (mean= 9 triplets), this difference
being very significant (Wilcoxon test, p-value= 0.0021). Note that for heterozygous alleles only the length of the shortest repeat can be precisely
known, hence the statistical difference observed between the two distributions is more significant than shown. B: Deep sequencing of yeast
genomes from yeast colonies isolated on glucose or galactose plates. Each of the 15 yeast genomes was resequenced to 700 X coverage, on the
average (see Table S1). For each colony, the number of unique SNPs, insertions/deletions or size changes in other CAG/CTG triplet repeats of the
yeast genome, are indicated. C: Pulse-field gel electrophoresis of red and white colonies after galactose induction. Chromosomal DNA was prepared
from yeast cells embedded in agarose plugs according to standard methods [72]. Agarose plugs were loaded on 1% agarose gels (SeaKem GTG,
TEBU) and electrophoresis was run on Rotaphor (Biometra) at 12uC in 0.25X TBE buffer at pH8.3, 140V, with decreasing pulse ramp 140 sec to 80 sec,
and field angle 120u. Karyotypes are identical among all clones and do not show any large chromosomal rearrangement, neither on chromosome X
(bearing SUP4) nor on any other chromosome. D: Two models proposing how heterozygous and homozygous tract lengths may be formed following
TALEN induction (see text).
doi:10.1371/journal.pone.0095611.g003
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interfere either with binding of the RNA guide to the nuclease or

recognition of the cognate sequence, making it unlikely that

CRISPR will be very efficient at recognizing and cutting

structured sequences. More importantly, the CRISPR-associated

protein (Cas9) requires a protospacer adjacent motif (PAM) whose

sequence is 59-NGG-39, in order to bind and cleave its target [67].

Since there is no NGG triplet in a CAG/CTG trinucleotide

repeat, at the present time the CRISPR technology cannot be used

to induce a DSB into such repeats.

It will be interesting to test the efficacy and specificity of a

similar TALEN in mammalian cells containing large CAG/CTG

trinucleotide repeat expansions. The DM1 locus, containing such

an expansion in myotonic dystrophy patients has been well studied

by several authors. It was shown that the triplet repeat instability at

this locus was dependent on the presence and activity of a nearby

CTCF binding site [68]. Given that CTCF is a regulatory factor

involved in chromatin remodeling, and that it plays a direct role in

regulating replication (and therefore DNA accessibility) at the

DM1 locus [69], its presence could affect the efficacy of

recognition and binding of the trinucleotide repeat by the

TALEN. Additional experiments will be needed to properly

adress these questions.

The mechanism by which CAG/CTG trinucleotide repeats are

shortened by the TALEN can only be infered from former

experiments with I-Sce I [26] and from known pathways of DSB-

repair in yeast [70]. DSBs made in heterozygous diploids are

repaired almost exclusively by gene conversion, effectively

removing the repeat tract (Figure 2B). However, six cases of

repeat contractions (in red colonies) were detected on galactose

plates. These contractions may correspond to intramolecular

repair of the DSB by single-strand annealing, leading to small

shortenings of the repeat tract. Alternatively, it may also

correspond to natural instability of the trinucleotide repeat. In

diploids homozygous for repeat tracts, it is likely that DSBs are

repaired by single-strand annealing, although this must be

confirmed by redoing similar experiments in dedicated yeast

mutants. Homozygous survivors may result from iterative coordi-

nated or uncoordinated breaks on both chromosomes, one (or two)

allele(s) being cut and repaired by intra-molecular mechanism,

while the other allele is repaired by gene conversion using the

shortest one as a template (Figure 3D). Heterozygous survivors

may result as before, from iterative coordinated or uncoordinated

breaks, that will not be repaired by gene conversion and will

therefore lead to repeat tracts of different lengths. This may be due

to the presence of CAG repeats at DSB ends, which may impede

one or more steps of homologous recombination, including correct

processing of the break, subsequent formation of Rad51

nucleofilament, or strand invasion of the homologous template

(which also contains CAG repeats). In support of this hypothesis,

distribution of repeat tract lengths among heterozygous and

homozygous survivors shows that homozygous tract lengths are

shorter on the average (mean= 7 triplets) than heterozygous tract

lengths (mean= 9 triplets), this difference being very significant

(Wilcoxon test, p-value = 0.0021, Figure 3A). This suggests that

gene conversion between repeat tracts may be hindered when tract

lengths are too long, probably inhibiting an early step in the

recombination process. In these cases, intramolecular repair is

favored, giving rise to longer repeat tracts of unequal lengths.

However, we cannot totally exclude that heterozygous survivors

result from slippage occuring during DNA synthesis associated to

gene conversion, as was previously demonstrated for CAG/CTG

trinucleotide repeats [25,26,27]. In our previous work, when an I-

Sce I DSB was induced between two short (CAG)5 tracts, the

break was repaired by annealing between the two repeats 67% of

the time [26], although a homologous donor sequence was also

available, a figure close to the proportion of heterozygous survivors

obtained here. This suggests that when competition is possible

between intra- and intermolecular repair mechanisms, intramo-

lecular events are favored, even though gene conversion is highly

efficient in yeast [70]. Interestingly, it was very recently shown that

induction of a TALEN, 129 bp downstream of a (TG)70
dinucleotide repeat in zebrafish induced frequent contractions of

the repeat tract [71]. In this experiment, three types of mutations

were obtained: 56% of the sequenced zebrafish embryos showed a

contraction of the TG tract but no modification of the TALEN

recognition site, 15% of the embryos exhibited mutations of the

recognition site but an unchanged TG tract, and 5% of the

embryos showed both modifications of the recognition site and

repeat contraction. Various modes of DSB-repair are proposed to

account for mechanism(s) contracting tandem repeats 129 bp

away from a DSB. It would be interesting to know whether

mechanisms involved in zebrafish to repair TALEN-induced DSBs

are similar to those happening in yeast.

TALEN expression leads to trinucleotide repeat contractions

with a 100% efficacy in yeast cells, giving rise to survivors

containing homozygous or heterozygous shorter alleles. Although

precise molecular mechanisms by which contractions occur

following TALEN induction may only be infered from our

knowledge of DSB-repair following irradiation, drugs or mega-

nuclease action, yeast will certainly prove to be helpful in

dissecting mechanisms of trinucleotide repeat contractions induced

by a TALEN.

Supporting Information

Figure S1 Instability of trinucleotide repeats in diploid
strains containing TALEN or split-TALEN, on glucose
medium. A: Left: strains GFY6161-3C (MATa leu2D1 his3D200
lys2D202 ade2-opal sup4::(CAG)30) and GFY6162-3D (MATalpha

ura3D851 leu2D1 his3D200 trp1D65 ade2-opal sup4::(CAG)75) were

respectively transformed with pCLS9996 (KANMX marker) or

pCLS16715 (LEU2 marker). Six transformants were analyzed by

Southern blot, for each strain, to estimate repeat length variability

after transformation, as well as the untransformed strain as a size

control (labeled ‘‘C’’). On each gel a ladder corresponding in size

to different triplet repeat lengths, hybridizing with the probe, was

loaded in the rightmost lane. Transformant #3 in strain

GFY6162-3C shows extensive contractions of the repeat tract,

but all other transformants exhibit stable trinucleotide repeats after

transformation. Right: Transformants GFY6162-3C/1 and

GFY6162-3D/1 were crossed, and diploids were selected on

glucose SC-Leu plates supplemented with G418 sulfate (200 mg/
ml). Twelve independent diploids were analyzed by Southern blot,

as previously. None of the diploids contained the repeat band

around 75 triplets, showing that it was contracted during or right

after the cross, even though cells were crossed on glucose medium.

In this particular cross, diploid #5 was selected for further

induction experiments. B: Left: strain GFY6162-3D (MATalpha

ura3D851 leu2D1 his3D200 trp1D65 ade2-opal sup4::(CAG)75) was

transformed with pCLS9984 (split-TALEN left arm) and 12

independant transformants were analyzed by Southern blot.

Transformant #3 shows an expansion and transformant #6

shows a contraction of the repeat tract, but all other transformants

exhibit stable trinucleotide repeats after transformation. Clone

GFY6162-3D/2 was crossed to GFY6162-3C/1, and diploids

were selected on glucose SC-Leu plates supplemented with G418

sulfate (200 mg/ml). Right: Molecular analysis of four diploids

shows that two of them (#3 and #4) exhibit a large contraction of
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the (CAG)75 repeat, that occured during or right after the cross,

even though cells were crossed on glucose medium and the split-

TALEN is not active. The two haploid parental strains are used as

an additional size control (labeled ‘‘C’’). In this particular cross,

diploids #3 and #4 were selected for further induction

experiments of the split-TALEN.

(PDF)

Figure S2 Steady-state level of TALEN transcript in
repressing (glucose) and inducing (galactose) condi-
tions. Strains GFY621 (SUP4-opal/sup4::CAG) and GFY622

(sup4::CAG/sup4::CAG) were grown overnight in liquid SC -Leu

glucose medium supplemented with 200 mg/ml G418 sulfate.

Cultures were washed twice with water, diluted to ca. 107 cells/ml

and grown in 20 ml SC -Leu glucose or galactose medium

supplemented with 200 mg/ml G418 sulfate, for four hours. Total

RNAs were extracted and analyzed by Northern blot as previously

described [73,74]. The full left TALE arm purified from

pCLS16715 was labeled by random priming and used as probe.

Blots were stripped in boiling 0.5% SDS and rehybridized with a

randomly labeled actin probe, covering the ACT1 yeast gene.

Membranes were exposed and signals were quantified on a

Fujifilm FLA-9000. Relative amounts of TALEN as compared to

actin transcripts are shown on the graph, in both growth

conditions. There is a 10–32 fold increase of TALEN transcripts

in galactose as compared to glucose, depending of the strain. In

GFY622 the level of TALEN transcripts is lower than in GFY621,

in both conditions. The reason for this difference was not further

investigated. Note that the level of actin is lower in galactose as

compared to glucose, reflecting that cells in galactose grew more

slowly than in glucose medium, reducing the final number of cells,

and therefore the final amount of RNAs extracted in glucose as

compared to galactose.

(PDF)

Table S1 Illumina sequencing data. Each library corre-

sponds to one individual colony, collected on glucose or galactose

plates (Origin). Total number of reads, initial read lengths, lengths

after trimming and sequencing depths are indicated for each

sequenced library.

(PDF)

Table S2 Summary of mutations detected in the 15
sequenced colonies.

(PDF)
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