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A transcriptional signature detects
homologous recombination deficiency
in pancreatic cancer at the individual level
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Pancreatic cancer (PC) with homologous recombination defi-
ciency (HRD) has been reported to benefit from poly ADP-
ribose polymerase (PARP) inhibitors. However, accurate identi-
fication of HRD status for PC patients from the transcriptional
level is still a great challenge. Here, based on a relative expression
ordering (REO)-based algorithm, we developed an HRD signa-
ture including 24 gene pairs (24-GPS) using PC transcriptional
profiles from The Cancer Genome Atlas (TCGA). HRD samples
classified by 24-GPS showed worse overall survival (p = 4.4E-3
for TCGA; p = 1.2E-3 for International Cancer Genome Con-
sortium-Australia cohort; p = 6.4E-2 for GSE17891; p = 7.5E-2
for GSE57495) and higher HRD scores than non-HRD samples
(p = 1.4E-4). HRD samples showed highly unstable genomic
characteristics and also displayed HRD-related alterations at
the epigenomic and proteomic levels. Moreover, HRD cell lines
identified by 24-GPS tended to be sensitive to PARP inhibitors
(p = 6.6E-2 for olaparib; p = 2.6E-3 for niraparib). Compared
with the non-HRD group, the HRD group presented lower im-
mune scores and CD4/CD8 T cell infiltration proportion. Inter-
estingly, PC tumor cells with co-inhibition of PARP-related
genes and ATR showed reduced survival ability. In conclusion,
24-GPS can robustly identify PC patients with HRD status at
the individualized level.
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INTRODUCTION
Pancreatic cancer (PC) is a lethal malignancy with a poor prognosis.
Only 20% of PC patients are suitable for surgery, while most patients
eventually experience recurrence after surgical resection and others
receive limited benefit from chemotherapy and radiotherapy.1,2

Recently, according to the National Comprehensive Cancer Network
(NCCN) Clinical Practice Guidelines in Oncology for Pancreatic
Adenocarcinoma (Version2, 2021), the poly ADP-ribose polymerase
(PARP) inhibitor, olaparib, based on synthetic lethal effect, has been
recommended to treat BRCA1/2-defective metastatic PC.3

Loss-of-function in BRCA1/2 results in homologous recombination
deficiency (HRD) accompanying by highly genomic instability.4 About
11% � 27% PC patients display HRD characteristics,5 and Park et al.
and McIntyre et al. suggested that HRD PC patients showed favorable
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prognosis under platinum exposure.6,7 However, PC with HRD dis-
played a poor prognosis without platinum chemotherapy,8 suggesting
an urgent need to distinguish the HRD sub-population for better treat-
ment. Some popular HRD signatures, such as HRD score,9 HRDetect
score,10 and mutational signature 3,11 have been developed based on
genomic scars. However, due to the BRCA-mediated phenotype
shaped by different tumor types, the designated threshold of these
genome signatures applied in ovarian cancer and breast cancer is inap-
plicable in PC.12 Moreover, the accuracy of genetic mutation detection
varies with the sequencing depth and the quality of the sample, which
may fail to capture some hot-spot mutations and thus lead to a high
false-negative prediction. Therefore, it is urgent to develop a reliable
HRD signature for PC patients.

At present, high-throughputRNA sequencing (RNA-seq) data provides
new insights into the detection ofHRDat the transcriptome level. Tran-
scriptome reflects the alterations in other omics, such as genome, epige-
nome, and proteome. Currently, no transcriptional signature of HRD
has been established for PC. In epithelial ovarian cancer, the BRCAness
profile consisting of 60 geneswas previously developed to correlate with
responsiveness to platinum and PARP inhibitors.13 However, quantita-
tive signatures couldnot be applied to individual patients. Thus,wehave
proposed a qualitative method named within-sample relative expres-
sion ordering (REO) of genes in previous works.14 The core procedure
of REO is to transform the quantitative information of gene pairwise
expression to a binary value of gene pairwise. The REO-based signature
displays robustness against experimental batch effects with various un-
certain factors, including RNA degradation, technical sources, and data
The Author(s).
tp://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Discovering HRD signature for PC

(A) Kaplan-Meier curve depicts the survival difference among four subgroups. (B) Comparison of the differences of HRD scores among four clusters. (C) Comparing the

difference of HRD scores between C3 and non-C3 groups (C1, C2 and C4).

(D) Determination of a threshold for 24-GPS to distinguish HRD and non-HRD samples. The x axis represents different thresholds (one control and 10 experimental groups)

and the y axis represents the significance (-log(p value)) of the difference between HRD and non-HRD groups at five indexes. (E) AUC represents the efficiency of 24-GPS

under the established threshold. (F) Kaplan-Meier curve depicts the survival difference between HRD and non-HRD groups classified by 24-GPS. (G) Kaplan-Meier curve

depicts the survival difference between high HRD scores (HRD score > 42) and low HRD scores (HRD score < 42) groups. (H) The histogram displays the proportion of

samples divided by the above two grouping methods. *p < 0.05, **p < 0.01, and ***p < 0.001.
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normalization.15,16 Importantly, the advantage of REO is also demon-
strated by the ability to perform individualized analysis.17

Herein, based on the REO method, we discovered an HRD signature
by performing the qualitative analysis of RNA-seq expression profiles
for PC from The Cancer Genome Atlas (TCGA). The performance of
the signature was validated in several independent datasets.
RESULTS
Discovering HRD signature for PC

To characterize HRD status for PC, four clusters were obtained by the
consensus clustering basedon the gene expressionprofiles ofDNAdam-
age response (DDR) genes in the TCGA cohort (n = 147) (Figure S1A).
Cluster 3 (C3), including 33 samples, displayed theworst overall survival
(OS) and the highest HRD scores (Figures 1A and 1B). Besides, C3
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presented a remarkable higher genomic instability than the other clus-
ters at the level of number of fraction, single nucleotide variation
(SNV) neoantigens, tumor mutation burden (TMB), and aneuploidy
score (Wilcoxon rank-sum test; Figures S1B–S1E).Moreover, compared
with non-C3 group (C1,C2, andC4), C3 showed a higher score in above
HRD-related features (p = 2.1E-4 forHRD score, p = 9.9E-6 for number
of fraction, p = 7.5E-3 for SNV neoantigens, p = 3.4E-4 for TMB, p =
2.5E-4 for aneuploidy score; Wilcoxon rank-sum test; Figures 1C and
S1F–S1I). These results indicated that C3harbored a distinctHRD char-
acteristic and thus was considered an HRD-like group for discovering
HRD signature.

Using the REO-based algorithm, 156,399 significantly reversal gene
pairs were identified and the 1,000 gene pairs with top frequency differ-
ence (FD) values were included for the following analysis (see section,
“materials and methods”). We discovered a signature composed of 24
gene pairs (24-GPS) by performing a least absolute shrinkage and selec-
tion operator (LASSO) model (see section, “materials and methods;
Table S2). The cutoff of 65% in 24-GPS was an optimal threshold
due to the highest difference in HRD score and a higher difference in
other HRD-related features between HRD-like and non-HRD-like
groups (p = 1.4E-4 for HRD score, p = 1.08E-6 for number of fraction,
p = 2.1E-3 for SNV neoantigens, p = 1.6E-4 for TMB, p = 2.9E-5 for
aneuploidy score; Wilcoxon rank-sum test; Figure 1D). As a result,
147 PC samples were classified into 37 HRD (25.2%) and 110 non-
HRD (74.8%) with an area under curve (AUC) of 0.98 (Figure 1E).
Then, survival analysis revealed a significantly poorer OS in the
HRD group compared with non-HRD samples (p = 4.4E-3; log-rank
test; Figure 1F). However, according to the previous HRD score cutoff,9

there was no difference observed in five high-HRD-score cases (HRD
score > 42) compared with 157 low-HRD-score cases (HRD score <
42) in OS (p = 0.36; log-rank test; Figure 1G). Compared with the
25.2% HRD samples identified by 24-GPS, the proportion of high
HRD scores (3.1%) was much lower than the HRD frequency (11%
� 27%), as discovered by Golan et al.5 (Figure 1H).

Notably, four non-C3 samples classified into HRD group by 24-GPS
showed a significantly poorer OS (p = 9.5E-4; log-rank test; Fig-
ure S2A) and a considerable higher HRD score than the non-HRD
group (p = 0.25;Wilcoxon rank-sum test; Figure S2B), which suggests
that 24-GPS displays better performance than the clustering method.

Validating 24-GPS in independent datasets

The performance of 24-GPS was validated in independent datasets.
For the International Cancer Genome Consortium-Australia
(ICGC-AU) cohort, 17 patients classified into the HRD subgroup
by 24-GPS displayed a significantly worse OS than 78 patients in
the non-HRD group (p = 1.2E-3; log-rank test; Figure 2A), and the
HRD subgroup displayed a higher HRDetect score (p = 0.092; Wil-
coxon rank-sum test; Figure 2B). However, under the previous
HRDetect score cutoff established in ICGC-AU,10 there was no signif-
icant difference in OS between PC patients with high HRDetect scores
(HRDetect scoreR 0.7) and low HRDetect scores (HRDetect score <
0.7) (p = 0.37; log-rank test; Figure 2C). In datasets GSE57495 and
1016 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
GSE17891, HRD cases showed poorer OS than non-HRD cases
(P = 7.5E-2 for GSE57495, P = 6.4E-2 for GSE17891; log-rank test;
Figures 2D and 2E). Additionally, RAD51 deficiency is one of the
most specific cellular hallmarks of homologous recombination
(HR) dysfunction,18 and a significantly higher proportion of RAD51
deficient cases was found in the HRD group than in the non-HRD
group (22.22% versus 5.41%; p = 2.1E-2; Fisher’s exact test;
Figure 2F).

Concordance analysis for the top 1,000 differentially expressed genes
(DEGs) derived from datasets of TCGA, ICGC-AU, and GSE17891
showed the consistent ratio between two DEG lists was over 98.03%
(Figure 2G). In total, 80 overlapped DEGs were detected from the
three datasets (Figure 2H). Further, Kyoto Encyclopedia of Genes
and Genomes (KEGG) analysis showed 80 DEGs participated in
some HRD-related pathways, such as cell cycle, DNA replication,
and HR (Figure S3A).

Although lacking PARP inhibitor treatment-related data, low expres-
sion of PARP1/2/3 genes could be regarded as a mimic of treatment
with PARP inhibitors. Then, PARP-positive expression samples
(PARPpos) and PARP-negative expression samples (PARPneg) sam-
ples were defined (see section, “materials and methods”) and no
obvious difference was observed in the TCGA cohort (p = 0.83;
log-rank test; Figure S2C), but a significantly prolonged OS in PARP-

neg samples was discovered in the ICGC-AU cohort (p = 2.5E-3; log-
rank test; Figure S2D).

Moreover, pharmacogenomic data, accessed from the Cancer Thera-
peutics Response Portal (CTRP), the Genomics of Drug Sensitivity in
Cancer database lab version 2 (GDSC2), and CRISPR/Cas9 data were
employed to further test whether HRD cells identified by 24-GPS
showed vulnerability to PARP inhibition. For PC cell lines treated
with olaparib in CTRP, 30 HRD cell lines were classified by 24-GPS
and presented a lower AUC score than in eight non-HRD cell lines
(p = 6.6E-2; one-sided Wilcoxon rank-sum test; Figure 2I). Similar re-
sults were found in GDSC2, and 15 HRD cell lines were more suscepti-
ble to niraparib than 16 non-HRD cell lines (p = 2.6E-3; one-sidedWil-
coxon rank-sum test; Figure 2J). The mutation landscape analysis
discovered that 24-GPS correctly divided all cell lines with BRCA1/2
mutation into HRD group in GDSC2 (Figure S2E). In addition, three
BRCA1/2 mutation cell lines were rightly divided into HRD group
with only one BRCA1/2 mutation sample misclassified into non-HRD
group in CTRP (Figure S2F). Besides, all cell lines with RAD51Cmuta-
tion fell in the HRD group in both CTRP and GDSC2. Interestingly,
PARP1 gene exclusively mutated in non-HRD cases from CTRP. In
the CRISPR/Cas9 dataset, HRD cell lines presented lower survival
viability than non-HRD cell lines after knocking out PARP1/2 gene
(p = 6.5E-2 for knocking out PARP1; p = 0.17 for knocking out
PARP2; one-sided Wilcoxon rank-sum test; Figures 2K and 2L).

Multi-omics landscape of PC patients with HRD

Integrated analysis of multi-omics data was performed in the TCGA
dataset. As shown in Figure 3A, the heatmap depicted the 10 most
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Figure 2. Verification for the performance of 24-GPS

(A) Kaplan-Meier curve depicts the survival difference between HRD and non-HRD groups in the ICGC-AU. (B) Box plot displays the difference of HRDetect score between

HRD and non-HRD groups in ICGC-AU cohort. (C) Kaplan-Meier curve depicts the survival difference between high HRDetect scores group and low HRDetect scores group.

(D and E) Kaplan-Meier curve depicts the survival difference between HRD and non-HRD groups in dataset GSE57495 (D) and GSE17891 (E), respectively. (F) The histogram

displays the proportion of different RAD51 status (deficient or proficient) in HRD and non-HRD samples. (G) Concordance analysis for DEGs derived from different datasets.

The x axis represents the combination of any two data cohorts in TCGA, ICGC-AU, and GSE17891, and the y axis represents the consistent ratio of two datasets. (H) Venn

diagram depicts the overlapped quantity of DEGs among the three data cohorts. (I and J) Box plot shows the differences in the response of PC cell lines to olaparib in CTRP (I)

and to niraparib in GDSC2 (J). (K and L) Box plot shows the differences in tumor cell survival ability after separately knocking out PARP1 (K) or PARP2 (L) genes.

SgPARP1/2, single-guide PARP1/2.
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mutated genes, DDR genes, and genes with differential mutation fre-
quency. Notably, two typical markers for HRD, BRCA1 and BRCA2
genes, were found mutated only in HRD samples. Meanwhile, some
other DDR genes were also found exclusively mutated in HRD group,
such asATRX and FANCA. In addition, 10 genes showed significantly
higher mutation frequency in HRD samples compared with non-
HRD samples (p < 0.05; one-sided Fisher’s exact test). Among
them, FAT4 is recurrently mutated in several types of human cancers,
including PC, and suppresses tumor growth via activation of Hippo
signaling.19 The expression of FBN1 is considered to be positively
correlated with tumor-related immune infiltration.20 Together, these
results demonstrated HRD PC harbors a specific genetic mutation
spectrum.

In addition to the somatic mutation spectrum, we also compared copy
number aberration (CNA) profiles between two subgroups.
Compared with non-HRD cases, a large number of genes with signif-
icantly higher frequencies of CNA in HRD cases were observed (false
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Figure 3. Multi-omics analysis in HRD

(A) Top: differences in the distribution of aneuploidy score, TMB, SNV neoantigens, number of fraction, and HRD score between HRD and non-HRD groups in TCGA. Bottom:

the heatmap comprehensively depicts the mutation landscape of highly mutated genes, DDR genes, and differential mutation genes. *p < 0.05, **p < 0.01, and ***p < 0.001 .

(B) Pie charts depict the proportion of DEL and AMP of DDR genes in all altered genes. (C) The histograms depict the proportion of different CNA statuses (DEL, neutral, or

AMP) of TP53, BRCA2, RAD51, and ATR genes in HRD and non-HRD samples. (D) Venn diagram depicts the overlap of transcriptome and methylation differential genes. (E)

The heatmap displays the expression of genes with consistent differential expression at the level of transcriptome and epigenome. (F) Distribution of the expression of ATM,

MSH6, CHEK1, CCNB1, CCNE1, and YWHAZ proteins in HRD and non-HRD cases. (G) The dot plot exhibits the top 20 significant enriched pathways from KEGG.
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discovery rate [FDR] < 0.05; one-sided Fisher’s exact test). CNA
events of DDR genes accounted for 1.6% deletion (DEL) and 1.4%
amplification (AMP), respectively (Figure 3B). Notably, TP53,
BRCA2, and RAD51 genes had higher frequencies of deletions in
the HRD group, while a higher frequency of amplification for ATR
gene was observed (Figure 3C).

Using the methylation profiles in the TCGA cohort, 2,998 genes
showed significant differential methylation between HRD and non-
HRD groups (FDR < 0.05;Wilcoxon rank-sum test). As shown in Fig-
ure 3D, 1,159 of them were overlapped with previously identified
DEGs, and the correlation ratio reached 97% (1,132/1,159; over-ex-
pressed and hypomethylated genes, under-expressed and hyperme-
thylated genes), which did not happen by chance (p < 2.2E-16; bino-
mial distribution test). Then, the heatmap depicted the differences
between HRD and non-HRD groups at the transcriptome and epige-
nome levels (Figures 3E and S3B).

Finally, we identified 30 proteins with significant differential expres-
sion in HRD samples compared with non-HRD samples (p < 0.05;
one-sidedWilcoxon rank-sum test). Compared with non-HRD cases,
HRD displayed higher expression of several cell cycle proteins
(CHEK1, CCNB1, CCNE1 and YWHAZ) and remarkably lower
expression of ATM protein (Figure 3F). Functional enrichment anal-
ysis of 30 proteins demonstrated that multiple HRD-related pathways
are dysregulated, such as PI3K-Akt signaling pathway, P53 signaling
pathway, and cell cycle pathway (FDR < 0.05; Figure 3G).

HRD PC showed inhibitory immune microenvironment

We investigated the infiltration differences of 24 immune cells pre-
dicted by ImmuneCellAI between HRD and non-HRD groups in
the TCGA cohort. The results showed significantly higher infiltration
proportion of Tr1 (p = 3.7E-4), MAIT (p = 3.9E-3), Gamma delta
(p = 3.1E-2), CD4 T (p = 2.5E-3), and CD8 T cells (p = 2.5E-3) in
the HRD group, while there was a lower infiltration proportion of
CD8-naive (p = 4.9E-2), effect memory (p = 5.0E-3), and monocyte
(p = 6.7E-3) cells in the HRD group (Figure 4A). Notably, CD4 and
CD8 T cells are positive regulators of immunity, and lower infiltration
may indicate immunosuppression. Besides, immune checkpoint in-
hibitor response-predicted results indicated that HRD cases might
be insensitive to immunotherapy (p = 5.3E-4; one-sided Fisher’s exact
test; Figure 4A). Next, a significantly lower immune score was
observed in the HRD group when compared with non-HRD group
using Estimation of STromal and Immune cells in MAlignant
Tumours using Expression data (ESTIMATE) method (p = 2.3E-4;
Wilcoxon rank-sum test; Figure 4A). In summary, these results
demonstrated that PC samples with HRD display lower immune
cell infiltration.

Finally, we compared the expression level of 20 immune checkpoint
genes between HRD and non-HRD groups. As a result, most immune
checkpoint genes were found to be significantly downregulated in the
HRD group, such as CD274 (PD-L1) and CTLA4 genes. Significantly,
only CD276 (B7-H3) gene expression was significantly upregulated in
HRD samples compared with non-HRD samples (p = 0.01; Wilcoxon
rank-sum test; Figure 4B). Comparisons over T cell receptor (TCR)
richness and TCR Shannon showed that the HRD group had a signif-
icantly lower TCR diversity than the non-HRD group, indicating a
weaker immune response in these cases (p = 1.6E-3 for TCR richness,
p = 6.6E-4 for TCR Shannon; Wilcoxon rank-sum test; Figures 4C
and 4D).

Genes in 24-GPS positively regulate HRD process via perturbing

cell cycle pathway

Eighteen genes in 24-GPS were remarkably upregulated in the HRD
group compared with the non-HRD group and were significantly en-
riched with cell cycle pathways and so forth (p = 5.2E-6; Figures S3C
and S3D). Investigating the correlations among 18 genes and HRD-
related genes (80 DEGs) in a protein-protein interaction (PPI)
network from the Pathway Commons database, we found 76 signifi-
cantly correlated gene pairs with PPI interactions, which could not be
expected in random experiments and constructed as HRD network
(p = 4.0E-3; see section, “materials and methods; Figures 5A and
S3E). In the HRD network, all the PPI interactions were significantly
positively correlated except for two negative interactions. In addition,
some cell cycle pathway genes, such as CDC45 and E2F1, had a high
degree in the HRD network. In addition, CCNB1 correlated with
many genes in 24-GPS and might act as a key factor regulated by
the cell cycle pathway.

Interestingly, E2F1, a member of the transcription factor E2F family,
had a high degree in the HRD network, and it was found to be signif-
icantly over-expressed in HRD samples compared with non-HRD
samples in the TCGA cohort (p = 2.2E-15; Wilcoxon rank-sum
test). Twenty-two target genes of E2F1 showed significant correla-
tions with E2F1 in HRD cases rather than non-HRD cases (Figure 5B).
Specifically, CHD4 and NONO genes were oncogenes, CTCF and
E2F3 acted as transcription factors, and these four functional genes
were significantly negatively correlated with E2F1 in the HRD group
(R = -0.36 and p =0.028 for CHD4, R = -0.34 and p = 0.039 forNONO,
R = -0.34 and p = 0.039 for CTCF, R = -0.35 and p = 0.032 for E2F3;
Spearman rank correlation). Among them, CHD4, CTCF, and E2F3
showed weak negative correlation with E2F1 in the non-HRD group
(R = -0.045 for CHD4, R = -0.16 for CTCF, R = -0.18 for E2F3;
Spearman rank correlation) and were found to be down-expressed
in the HRD group compared with the non-HRD group (p = 0.096
for CHD4, p = 0.052 for CTCF, p = 0.17 for E2F3; Wilcoxon rank-
sum test; Figure 5C). However, NONO, whose expression was posi-
tively correlated with E2F1 in the non-HRD group (R = 0.046;
Spearman rank correlation), was significantly over-expressed in the
HRD group compared with the non-HRD group (p = 5.0E-3; Wil-
coxon rank-sum test; Figure 5C), indicating that E2F1 upregulates
its expression during HRD.

Predicting the combination therapy with PARP inhibitors

Because that deregulation of the cell cycle pathway in the HRD
group was found at both transcriptomic and proteomic levels, and
considering that ATR is a member of cell cycle pathway with the
Molecular Therapy: Nucleic Acids Vol. 26 December 2021 1019
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Figure 4. Immune landscape in HRD

(A) Top: annotation bars show the prediction of the response status of TCGA cases to immune checkpoint inhibitors. R, response; NR, not response. Center: the heatmap

displays the infiltration differences of 24 immune cells between HRD and non-HRD groups. Bottom: the differences of StromalScore, ImmuneScore, and ESTIMATE score

were evaluated in two groups. (B) Box plots display the comparison of expression of immune checkpoint genes between HRD and non-HRD samples. The x axis represents

20 immune checkpoint genes and the y axis exhibits expression value. (C and D) Differences of TCR richness (C) and TCR Shannon (D) between HRD and non-HRD groups.

*p < 0.05, **p < 0.01, and ***p < 0.001.
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target drug, we investigated the co-inhibition effect of ATR and
PARP genes. First, we observed the tendency of higher expression
of ATR in HRD cases compared with non-HRD cases in the training
cohort (p = 0.25; one-sided Wilcoxon rank-sum test; Figure 6A).
Although without significance, PC samples with ATR and PARP
co-low expression displayed longer OS than other PC samples
(p = 0.40; log-rank test; Figure 6B), where low expression was
1020 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
defined as expression level lower than the median value. Addition-
ally, based on 13 HRD cell lines identified earlier, seven cell lines
with ATR expression higher than their median level were defined
as hiATR samples and the remaining six cell lines were classified
as the loATR group. Comparative analysis discovered significantly
lower survival viability in the loATR group compared with the
hiATR group when knocking out the PARP2 gene (p = 0.037;
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Figure 5. Functional analysis of genes in 24-GPS

(A) PPI network of genes in 24-GPS and HRD-related genes. (B) Comparison of the correlations of E2F1 transcription factor expression and target genes in HRD and non-

HRD groups. Genes of interest are indicated by red arrows. (C) Regulatory network of E2F1. The thickness of the edge is positively related to the strength of the expression

correlation.
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one-sided Wilcoxon rank-sum test; Figure 6C). However, the above
difference was not found in the cell lines with knocked down PARP1
or PARP3 genes, respectively (p = 0.69 for PARP1; p = 0.58 for
PARP3; one-sided Wilcoxon rank-sum test; Figure 6C).

To unearth more feasible combination strategies with PARP inhibi-
tors, we investigated another 451 cell cycle genes derived from the
work of Lundberg et al.21 Finally, CDCA2 and HJURP genes, which
were both significantly upregulated in the HRD group (p < 0.05;
Wilcoxon rank-sum test), were screened out. Notably, both of them
were risk factors for poor prognosis of PC as reported.22,23 As shown
in Figure 6C, PC cells with low expression of CDCA2 or HJURP ex-
hibited a remarkable lower survival ability than those cells with
high expression (p = 0.73 for sgPARP1 and p = 0.31 for sgPARP2
and p = 0.017 for sgPARP3 in CDCA2, p = 0.42 for sgPARP1 and
p = 0.47 for sgPARP2 and p = 0.037 for sgPARP3 in HJURP; one-
sided Wilcoxon rank-sum test; Figure 6D). Further, a significantly
higher expression of HJURP was found in HRD cells compared
with non-HRD cells, and a similar result was discovered in CDCA2
(p = 0.021 for HIURP, p = 0.12 for CDCA2; Wilcoxon rank-sum
test; Figure 6E). These results revealed the potential for co-inhibition
of the cell cycle pathway and PARP genes.
DISCUSSION
In this work, we developed a transcriptional qualitative signature,
24-GPS, to detect HRD for PC. HRD samples classified by 24-GPS
had a significantly unfavorable prognosis without platinum treatment
and harbored a higher HRD score compared with non-HRD samples.
The HRD group showed genome instability, such as high TMB,
greater number of fractions, and more frequent genomic alterations
of DDR genes, including mutations and CNA events. Interestingly,
the cell cycle pathway was activated in the HRD group at the tran-
scriptome and proteome levels. Furthermore, immune analysis found
that PC samples with HRD exhibited lower CD4 and CD8 T cell infil-
tration, lower immune scores, and under-expression of immune
checkpoint genes, which suggests that HRD patients might be not
suitable for immunosuppressive therapy. However, our results sug-
gested HRD PC could benefit from the combination of PARP inhib-
itors and ATR inhibitors.
Molecular Therapy: Nucleic Acids Vol. 26 December 2021 1021
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Figure 6. Exploration of the combination of PARP inhibitors and the inhibition of cell cycle pathway in HRD

(A) Box plot displays the expression difference of ATR between HRD and non-HRD groups in the TCGA cohort. (B) Kaplan-Meier curve depicts survival difference in samples

with high ATR expression (hiATR) and low expression (loATR) in PARPneg cases in the TCGA cohort. (C) The differences of CRISPR score between hiATR and loATR samples

after knocking out PARP1, PARP2, and PARP3 genes, respectively. (D) Box plot displays the difference of tumor cell survival ability between low and high expression of

CDCA2 and HJURP genes after knocking out PARP1, PARP2, and PARP3 genes, respectively. (E) Distribution of expression of CDCA2 and HIURP genes.
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Although HRD also could be induced by some alterations of certain
HR genes beyond BRCA1/2 genes,6 no gold standard gene panels
for HRD detection had been proposed in PC. Besides, for instance,
a clinical study showed that patients with germline BRCA1 mutation
underwent disease progression after receiving FOLFIRINOX treat-
ment, but still benefited from olaparib.24 A similar finding was found
in another case, which reported that a patient with a novel somatic
BRCA2 point mutation (p. I2315T) also experienced a progressive
disease after 6 weeks of first-line chemotherapy and finally acquired
an improved progression-free survival after olaparib treatment.25

These two case reports indicated that patients with germline or so-
matic BRCA1/2 mutation display poor prognosis before treatment
1022 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
with PARP inhibitors, highlighting the great importance of deter-
mining the HRD sub-population before clinical treatment. In general,
identifying patients who may benefit from treatment with PARP in-
hibitors is important and challenging.

Because that the success of the unsupervised clustering method in
previous research on determining specific subtypes in PC,26 we per-
formed unsupervised clustering to identify a subgroup with HRD.
However, the clustering method could not be applied to individual
PC patients. Thus, we developed 24-GPS based on the REO algorithm
using transcriptome data to determine HRD status in individuals. The
24-GPS could probably be applied in clinical practice and because (1)



Table1. Detailed information about cohorts

Item Training Validation

Data TCGA ICGC-AU GSE17891 GSE57495

Platform Illumina HiSeq GPL10558 GPL570 GPL15048

All samples 147 95 27 63

Subtype PDAC PDAC PDAC PDAC

OS time
0 � 75.07
(months)

1 � 1715
(days)

20 � 1858
(days)

2.93 �79.83
(days)

Age (years) 35 � 85 34 � 90 44 � 86 –

Gender

– –Male 79 (53.7%) 50 (52.6%)

Female 68 (46.3%) 45 (47.4%)

Grade

– –

G1 21 (14.3%) 4 (14.8%)

G2 84 (57.1%) 12 (44.4%)

G3 41 (27.9%) 11 (40.7%)

G4 1 (0.7%) –

Stage

I 12(8.2%) 9 (6.1%) 3 (11.1%) 13 (20.6%)

II 128(87.1%) 79 (53.7%) 19 (70.4%) 50 (79.4%)

III 3(2%) 1(0.68%) – –

IV 3(2%) 6(4.1%) – –

Chemotherapy Yes No No No

PDAC, pancreatic ductal adenocarcinoma
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the pairwise relative transcript abundance measurements of genes
could be acquired using a low-throughput detection technique,
such as real-time PCR; (2) this qualitative signature is relatively
robust against experimental and technical variations; (3) the qualita-
tive signature can be applied at an individual level, without pre-col-
lecting a set of samples for setting a reliable cutoff or for data
standardization.

Regardless of the successful application of immune checkpoint inhibi-
tors in melanoma, they are rarely effective on PC.27 According to the
NCCNClinical Practice Guidelines in Oncology for Pancreatic Adeno-
carcinoma (Version3, 2019.6), only differentmismatch repair ormicro-
satellite Instability-high patients, accounting for only 1% in PC, were
suggested to treat pembrolizumab (anti-PD-L1). Beyond single-agent
checkpoint inhibitors in PC, recent research has pointed out that
PARP inhibitors and immune checkpoint inhibitors represent a rational
combination at present, and several I/II clinical trials are ongoing, such
as the combination of niraparib with the anti-CTLA-4 ipilimumab or
the anti-PD-L1 nivolumab in advanced PC (NCT03404960). However,
our results suggested thatHRDPCpatientsmight not be suitable for im-
mune checkpoint inhibitor treatment, although a significantly higher
TMB was discovered in this group. High TMB has been shown to pre-
dict response to immune checkpoint inhibitors across multiple cancer
types.28,29 Notably, beyond the TMB level, some other factors could in-
fluence the response rate to immune checkpoint inhibitors, such as the
types of mutation, binding affinity for class I MHC proteins, and T cell
receptor recognition.30,31 Thus, although HRD PC patients harbored
high TMB and SNV neoantigens, these patients displayed lower TCR
diversity (TCRrichness andTCRShannon),whichmay lead to aweaker
immune response.

Interestingly, without PARP inhibitors or platinum-based treatment,
HRD PC cases classified by 24-GPS displayed worse OS compared
with non-HRD PC cases. Although HRD is an important character-
istic in cancer, heterogeneity does exist among different cancer types.
Ovarian cancer and breast cancer patients with HRD show better
prognosis to platinum-based treatment, while, in PC and prostate
cancer, HRD may act as a prognostic risk factor.32

There were some limitations in our work. Lacking transcriptomics
data of PC with PARP inhibitors treatment hindered a more direct
validation for 24-GPS, so we employed both pharmacodynamic and
CRISPR/Cas9 data to test the efficiency of 24-GPS in predicting the
HRD population and susceptibility to PARP inhibitors. In addition,
due to limited research on CDCA2 and HJURP inhibitors, we could
not verify the co-inhibition effect with PARP inhibitors using public
data. Finally, considering these findings were obtained by bioinfor-
matics analysis, it is worthwhile to further verify the clinical applica-
tions of 24-GPS and validate the combination of co-inhibition of
PARP and cell cycle pathway in cell line and animal models.

In summary, we developed 24-GPS based on REO, which could detect
the HRD status of PC patients at the individual level. HRD PC sam-
ples classified by 24-GPS showed distinct HRD characteristics at the
multi-omics levels and in clinical factors. 24-GPS has potential impli-
cations for selecting PC patients who may benefit from PARP inhib-
itors in the clinic.
MATERIALS AND METHODS
Data sources

The gene expression profiles of PC patients were downloaded from
the Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/
geo), cBioportal (https://www.cbioportal.org/), and the ICGC
(https://icgc.org/). PC samples from TCGA were used as the training
cohort to discover the HRD signature. For samples documented in
ICGC-AU, GSE17891 and GSE57495 datasets were used to validate
the signature. The multidimensional data of PC patients were derived
from cBioportal and TCGA (https://portal.gdc.cancer.gov). In this
study, only PC patients with clinical data were included. Detailed in-
formation for these datasets is provided in Table 1.
Data processing

For RNA-seq data, the expression of each gene was normalized by the
fragment per kilobase million method and transformed by Z score.
The illumina Human Methylation 450 array detected 16,826 genes
and the reverse-phase protein arrays (RPPA) for 157 selected pro-
teins. The silent mutation was excluded in our work. PC CNA,
including AMP, neutral, and DEL, was obtained from cBioportal.
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The gene expression profiles from the GEO database have been pro-
cessed in the following processes: if a gene was mapped to multiple
probes, the expression amount of the gene was generated by aver-
aging. Probes that failed to map to any gene ID or map to more
than one gene ID were removed.
Cell lines datasets

PC cell line data, including drug toxicity data and knockout data, were
accessed from the GDSC database (https://www.cancerrxgene.org/),
the CTRP database (http://portals.broadinstitute.org/ctrp/), and the
work of Dwane et al.33 Detailed information for cell lines is provided
in Table S1.
Unsupervised clustering

A panel of 247 DDR genes, also detected in the expression profile
of the TCGA dataset, was collected from the KEGG database and
literature.34,35 Based on the 247 DDR gene expression profiles,
we performed consensus clustering analysis in the k = 1 � 10
(the pre-assigned number of clusters) using the hierarchical
clustering algorithm. The clustering process was performed by
the R package ConsensusClusterPlus.36 Multiple HRD-related fea-
tures were compared among clusters using Wilcoxon rank-sum
test.
Discovering a REO-based HRD signature

The REO-based HRD signature-discovering procedure included
three main parts: (1) using E i and E j to represent the expression
value of a gene pair (gene i and gene j, respectively). We screened
out a panel of gene pairs, which had a stable expression pattern
of E i > E j in more than 95% of HRD-like samples and significantly
reversed in non-HRD-like samples examined by Fisher’s exact test
with 5% FDR control. (2) Then we ranked these gene pairs in de-
scending order according to FD value (Equations 1 and 2), and
the top 1,000 gene pairs were used for further signature discovery.
(3) Finally, we implemented the LASSO model to further optimize
the 1,000 gene pairs. A set of 24 gene pairs with regression coeffi-
cient greater than 0 was obtained. The process was carried out by
the R package glmnet.37

pijðcÞ = P
�
Ei >Ej

��c
�
; c = 1; 2; Equation 1

Equation 1 calculates the probabilities of observing E i > E j in HRD-
like and non-HRD-like group, respectively.

FDðijÞ = pijð1Þ � pijð2Þ; Equation 2

Equation 2 calculates the FD value of gene pair (gene i, gene j).
Definition of HRD samples

A patient was classified into the HRD group if at least 65% of the
24-GPS voted for HRD, otherwise the non-HRD group. A cell line
was classified into the HRD group only if at least 23 gene pairs voted
for HRD, otherwise the non-HRD group.
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HRD-related features score

HRD score, number of fraction, SNV neoantigens, and aneuploidy
score were derived from research by Thorsson et al.38 HRDetect score
was acquired from Davies et al.10 TMB was defined by mutations per
million bases and calculated by the R package maftools.

The definition of RAD51-defective samples

We ranked the protein expression level of RAD51 gene from high to
low across all samples and defined the bottom 10% as RAD51 defi-
cient, with the others regarded as RAD51 proficient. Fisher’s exact
test was used to examine whether RAD51-defective cases were signif-
icantly enriched in the HRD group.

Defining PARPneg and PARPpos samples

PC samples whose expression of any PARP1/2/3 gene was lower than
median level were defined asPARPneg, otherwise they were PARPpos.

Multi-omics analysis

Fisher’s exact test was performed to detect genes with significantly
differential mutations or significantly higher-frequency CNA be-
tween HRD and non-HRD groups. Differential expression and
methylation genes were identified by a two-sided Wilcoxon rank-
sum test with FDR values less than 0.05 adjusted by Benjamini and
Hochberg (BH). One-sidedWilcoxon rank-sum test was used to iden-
tify proteins with significant DEGs in HRD samples compared with
non-HRD samples.

Immune analysis

The relative fraction of 24 immune cells and immune checkpoint in-
hibitor response prediction were estimated using the ImmuneCellAI
method based on TCGA RNA-seq data.39 Then, the overall immune
score and stroma score were calculated by the R package estimate.40

Twenty known immune checkpoint genes were acquired from Mak
et al.41 Finally, TCR diversity scores, TCR richness, and TCR Shannon
were obtained from Thorsson et al.38 Wilcoxon rank-sum test was
used to compare the differences of immune cell infiltration abun-
dance, immune score, immune checkpoint gene expression, and
two TCR-related features between HRD and non-HRD groups.
The difference in immune checkpoint inhibitor response prediction
between the two groups was examined by Fisher’s exact test.

Functional enrichment analysis

Functional enrichment analysis of HRD-related DEGs and differen-
tially expressed proteins was performed by the R package clusterPro-
filer based on KEGG. A hypergeometric test was used to test the sig-
nificance of enrichment results with FDR value adjusted by BH.

PPI network analysis

The HRD network consisting of interactions between HRD-related
genes and 18 genes in 24-GPS was constructed using pathway com-
mon database (https://www.pathwaycommons.org). The HRD
network was visualized by the Cytoscape tool (version 3.7.0).
Spearman rank correlation was used to calculate the correlation of in-
teractions in the HRD network.

https://www.cancerrxgene.org/
http://portals.broadinstitute.org/ctrp/
https://www.pathwaycommons.org
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Then we set up 1,000 random networks to test the biological signifi-
cance of the HRD network. The process was performed as follows: (1)
in each experiment, we randomly extracted nodes with the same
amount of HRD-related genes and 18 genes, and calculated the num-
ber of interactions between them. (2) We counted the number of
times that the interactions in random experiments exceeded those
in the HRD network, and divided it by 1,000 to get the statistical p
value. If the p value was less than 0.05, the HRD network was consid-
ered biologically significant.

Survival analysis

OS was estimated by Kaplan-Meier curves and tested by log-rank test
with p value less than 0.05.

Statistical analysis

All statistical analyses were carried out using R software version 4.0.2
(http://www.r-project.org/).
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