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INTRODUCTION 
 

Clear cell renal cell carcinoma (ccRCC) is the most 

common among all renal cell carcinoma (RCC) 

subtypes, and accounts for 75% of all renal tumors [1]. 

It represents a hypervascular parenchymal malignancy 

originating from the proximal tubular cells of the 

nephron [2]. The prognosis of patients with metastatic 

ccRCC is poor and the five-year survival rate is less 

than 10% [3, 4]. In the last two decades, the roles of 

several genes in the regulation of the growth and 

progression of ccRCC have been recognized, but, the 

underlying pathogenetic mechanisms are still not 

understood fully. 

 

Metabolic reprogramming is a common feature of tumor 

cells and is associated with tumor growth and progression 

[5]. The most common metabolic changes observed in 

several types of cancer cells include upregulation of 

nucleotide biosynthesis and downregulation of 

mitochondrial metabolism [6]. Peng et al. investigated the 

mRNA expression patterns of seven major metabolic 

processes in the tumor subtypes of 33 different cancers 

and found that those with increased carbohydrate, 
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ABSTRACT 
 

In this study, we performed bioinformatics and statistical analyses to investigate the prognostic significance of 
metabolic genes in clear cell renal cell carcinoma (ccRCC) using the transcriptome data of 539 ccRCC and 72 
normal renal tissues from TCGA database. We identified 79 upregulated and 45 downregulated (n=124) 
metabolic genes in ccRCC tissues. Eleven prognostic metabolic genes (NOS1, ALAD, ALDH3B2, ACADM, ITPKA, 
IMPDH1, SCD5, FADS2, ACHE, CA4, and HK3) were identified by further analysis. We then constructed an 11-
metabolic gene signature-based prognostic risk score model and classified ccRCC patients into high- and low-
risk groups. Overall survival (OS) among the high-risk ccRCC patients was significantly shorter than among the 
low-risk ccRCC patients. Receiver operating characteristic (ROC) curve analysis of the prognostic risk score 
model showed that the areas under the ROC curve for the 1-, 3-, and 5-year OS were 0.810, 0.738, and 0.771, 
respectively. Thus, our prognostic model showed favorable predictive power in the TCGA and E-MTAB-1980 
ccRCC patient cohorts. We also established a nomogram based on these eleven metabolic genes and validated 
internally in the TCGA cohort, showing an accurate prediction for prognosis in ccRCC. 

mailto:twang@tjh.tjmu.edu.cn
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


 

www.aging-us.com 23166 AGING 

nucleotide, and vitamin/co-factor metabolism were 

consistently associated with worse prognosis [7]. Aberrant 

regulation of the tricarboxylic acid (TCA) cycle, 

glutamine metabolism, and lipid metabolism are 

associated with the growth and progression of RCC [8–

11]. Hakimi et al. performed metabolomic profiling of 

ccRCC tissues and found significant alterations in central 

carbon metabolism, one-carbon metabolism, and the 

antioxidant response; metabolic changes in glutathione 

and cysteine/methionine metabolism pathways were 

associated with progression and metastasis of ccRCC; a 

metabolic differentiation group in chromophobe RCC was 

associated with worse survival outcomes [12]. The 

investigation related to ccRCC have mainly focused on 

the metabolic changes involved ccRCC, but, the 

information regarding the expression patterns of key 

metabolism-related genes involved in the metabolic 

reprogramming and the metabolomic characteristics of 

ccRCC are not clear. 

 

Hence, in the current study, we systematically analyzed 

the transcriptome data from ccRCC patient tissues to 

identify the metabolic genes that can accurately predict 

the prognosis of ccRCC patients. 

 

RESULTS 
 

Identification of differentially expressed metabolic 

genes in the ccRCC patients  

 

Figure 1 shows the study strategy used to systematically 

analyze the prognostic prediction values of the 

metabolic genes in ccRCC. We downloaded the ccRCC 

transcriptome data for 72 normal renal tissue samples 

and 539 ccRCC tissue samples from The Cancer 

Genome Atlas (TCGA) database. Then, we identified 

differentially expressed metabolic genes in ccRCC 

using the edgeR package (http://www.bioconductor.org/ 

packages/release/bioc/html/edgeR.html) by screening 

the 1,466 metabolism-related genes that are listed in the 

70 metabolism-related gene sets from the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database 

in the gene set enrichment analysis (GSEA) website 

(https://www.gsea-msigdb.org/gsea/msigdb/collections. 

jsp#C2). We used the selection criteria as |log2 fold 

change (FC)| >1.0 and P < 0.05 and identified 124 

differentially expressed metabolic genes, including 79 

up-regulated and 45 down-regulated genes (Figure 2).  

 

Functional enrichment analysis of the differentially 

expressed metabolic genes  
 

Next, we performed Gene Ontology (GO) and KEGG 

functional enrichment analysis of the 124 differentially 

expressed metabolic genes using the WEB-based Gene 

Set Analysis Toolkit (WebGestalt) online tool and the 

results are shown in Table 1. The significantly enriched 

biological processes were small molecule catabolism, 

organic acid biosynthesis, organic hydroxy compound 

metabolism, cellular amino acid metabolism, generation 

of precursor metabolites and energy, fatty acid 

derivative metabolism, monosaccharide metabolism, 

nucleoside phosphate biosynthesis, ribonucleotide 

metabolism, and fatty acid metabolism. The 

significantly enriched cellular components were the 

mitochondrial matrix, ficolin-1-rich granule, and the 

myelin sheath. The enriched molecular functions were 

the co-factor binding, oxidoreductase activity acting on 

paired donors with incorporation or reduction of 

molecular oxygen, lyase activity, organic acid binding, 

iron ion binding, monooxygenase activity, transferase 

activity, transferring glycosyl groups, vitamin binding, 

oxidoreductase activity acting on the aldehyde or oxo 

group of donors, and oxidoreductase activity acting on 

CH-OH group of donors. KEGG analysis showed 

enrichment in metabolic pathways including those 

involved in drug metabolism, retinol metabolism, 

chemical carcinogenesis, purine metabolism, porphyrin 

and chlorophyll metabolism, steroid hormone bio-

synthesis, metabolism of xenobiotics by cytochrome 

P450, and carbon metabolism. 

 

Protein-protein interaction (PPI) network and key 

co-expression modules  

 

We used the STRING database and the cytoscape 

software to construct a PPI network of the differently 

expressed metabolic genes in ccRCC tissues. The PPI 

network consisted of 381 edges and 118 nodes (Figure 

3A). We also identified two key co-expression modules 

using the Molecular Complex Detection (MCODE) 

plug-in of the Cytoscape software. Module 1 consisted 

of 36 edges and 9 nodes (Figure 3B), and module 2 

consisted of 24 edges and 11 nodes (Figure 3C).  

 

ROC curve analysis of the hub metabolic genes 

 

We identified ten metabolic genes as hub genes using the 

cytoHubba plug-in of the Cytoscape software and the 

maximal clique centrality (MCC) algorithm. We then 

performed the receiver operating characteristic (ROC) 

curve analysis to evaluate the efficacy of these ten hub 

genes to discriminate between tumor and normal renal 

tissue. As shown in Figure 4, the area under the ROC 

curve (AUC) values showed good diagnostic accuracy, 

namely, GAPDH (AUC=0.971, P<0.001), POLR3B 

(AUC=0.943, P<0.001), NME1-NME2 (AUC=0.836, 

P<0.001), ADCY10 (AUC=0.858, P<0.001), ADCY7 

(AUC=0.894, P<0.001), POLR2F (AUC=0.889, 

P<0.001), NME1 (AUC=0.830, P<0.001), ENTPD2 

(AUC=0.781, P<0.001), ADCY8(AUC=0.626, P=0.001), 

ADCY3 (AUC=0.861, P<0.001). 

http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp#C2
https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp#C2
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Analysis of mutation frequencies and copy number 

variations of the hub genes  

 

We used the cBioPortal online tool to analyze the 

mutation frequencies in the 10 hub genes, namely, 

GAPDH, POLR3B, NME1-NME2, ADCY10, 

ADCY7, POLR2F, NME1, ENTPD2, ADCY8, and 

ADCY3 in ccRCC tissues (TCGA, Firehose Legacy). 

We observed mutations in these 10 candidate hub 

genes in 39% (172 of 446) of the ccRCC patients 

(Figure 5A). The mutation frequency in each of the 

ten candidate hub genes ranged from 0% to 12% 

(Figure 5B). Kaplan– Meier survival curve analysis 

showed that the overall survival (OS) was 

significantly shorter in the ccRCC patients with 

mutations in the candidate hub genes compared to the 

ccRCC patients without mutations in the candidate 

hub genes (Figure 5C). 

 

 
 

Figure 1. The flow chart of the study strategy for identifying metabolic genes with prognostic significance in ccRCC. 
 

 
 

Figure 2. Differentially expressed metabolic genes in ccRCC samples. (A) The heat map shows the expression of 124 differentially 
expressed metabolic genes in ccRCC and normal renal tissue samples. (B) The volcano plot shows the upregulated or downregulated 
metabolic genes in the ccRCC samples relative to normal renal tissue samples. 
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Table 1. KEGG pathway and GO enrichment analysis of differentially expressed metabolic genes. 

 GO term P-value FDR 

Biological processes small molecule catabolic process 0 0 

 organic acid biosynthetic process 6.55E-14 2.78E-11 

 organic hydroxy compound metabolic process 3.20E-10 9.06E-8 

 cellular amino acid metabolic process 4.93E-10 1.05E-7 

 generation of precursor metabolites and energy 6.84E-10 1.16E-7 

 fatty acid derivative metabolic process 3.62E-9 5.12E-7 

 monosaccharide metabolic process 5.46E-9 6.63E-7 

 nucleoside phosphate biosynthetic process 1.17E-8 0.000001 

 ribonucleotide metabolic process 1.26E-8 0.000001 

 fatty acid metabolic process 2.06E-8 0.000002 

Cellular component mitochondrial matrix 0.000070 0.012090 

 ficolin-1-rich granule 0.000265 0.022800 

 myelin sheath 0.000774 0.044374 

Molecular function cofactor binding 6.66E-16 1.88E-13 

 
oxidoreductase activity, acting on paired donors, with incorporation 

or reduction of molecular oxygen 
7.64E-14 1.08E-11 

 lyase activity 1.11E-11 1.04E-9 

 organic acid binding 9.99E-9 6.93E-7 

 iron ion binding 1.23E-8 6.93E-7 

 monooxygenase activity 1.75E-8 8.24E-7 

 transferase activity, transferring glycosyl groups 4.15E-8 0.000002 

 vitamin binding 5.28E-8 0.000002 

 
oxidoreductase activity, acting on the aldehyde or oxo group of 

donors 
0.000003 0.000084 

 oxidoreductase activity, acting on CH-OH group of donors 0.000003 0.000095 

KEGG pathway metabolic pathways 0 0 

 drug metabolism 2.43E-12 3.71E-10 

 retinol metabolism 3.41E-12 3.71E-10 

 chemical carcinogenesis 6.20E-11 3.62E-9 

 purine metabolism 6.67E-11 3.62E-9 

 porphyrin and chlorophyll metabolism 1.24E-9 5.76E-8 

 steroid hormone biosynthesis 3.52E-9 1.43E-7 

 metabolism of xenobiotics by cytochrome P450 3.97E-9 1.44E-7 

 carbon metabolism 6.20E-8  0.000002 

 

Identification of the prognosis-related metabolic 

genes 

 

We used the caret R package to divide the ccRCC 

samples (n=539) from TCGA database into the training 

group (n=381) and the test group (n=158). We first 

investigated the prognostic significance of the 124 

differentially expressed metabolic genes in the training 

group using univariate Cox regression analysis and 

identified 46 potential candidate metabolic genes 

(Supplementary Table 1). Then, we performed the least 

absolute shrinkage and selection operator (LASSO) 
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Figure 3. Protein-protein interaction network and key co-expression modules. (A) The protein-protein interaction (PPI) network 
shows the interactions between 124 differentially expressed metabolic genes. (B, C) The two key modules consisting of co-expressing 
differentially expressed metabolic genes, module 1 and module 2 are shown. The red and green circles denote upregulated and 
downregulated metabolic genes, respectively. 

 

 
 

Figure 4. ROC curve analysis of hub metabolic genes. The figure shows the ROC curves evaluating the diagnostic accuracy of the 10 
hub metabolic genes, namely, (A) GAPDH; (B) POLR3B; (C) NME1-NME2; (D) ADCY10; (E) ADCY7; (F) POLR2F; (G) NME1; (H) ENTPD2; (I) 
ADCY8; (J) ADCY3 in ccRCC patients. 
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regression analysis and identified 12 metabolic  

genes with potential prognostic value, including  

NOS1, ALAD, ALDH3B2, ACADM, ITPKA, 

IMPDH1, SCD5, FADS2, ACHE, CA4, HK3, and 

VAMP1 (Supplementary Figure 1). Multivariate Cox 

regression analysis showed that 11 of the 12 genes, 

namely, NOS1, ALAD, ALDH3B2, ACADM,  

ITPKA, IMPDH1, SCD5, FADS2, ACHE, CA4, and 

HK3 independently predicted prognosis of ccRCC 

patients.  

 

Evaluation of the 11-metabolic gene signature-based 

prognostic risk score model 
 

We performed stepwise Cox regression analysis using 

the eleven metabolic genes to construct a prediction 

model (Table 2). The risk score of each patient was 

calculated with the following formula: Risk score = (-

0.0555 * Exp NOS1) + (0.0180 * Exp ALAD) + 

(0.1302 * Exp ALDH3B2) + (-0.0948 * Exp ACADM) 

+ (0.0490 * Exp ITPKA) + (0.1788 * Exp IMPDH1) + 

(-0.1354 * Exp SCD5) + (0.1488 * Exp FADS2) + 

(0.0594 * Exp ACHE) + (-0.0570 * Exp CA4) + 

(0.2213 * Exp HK3). 

We then divided the 381 patients in the training group into 

high- and low-risk groups based on the median risk score. 

Kaplan-Meier survival curve analysis showed that the OS 

was significantly shorter for the high-risk group ccRCC 

patients compared to the low-risk group ccRCC patients 

(Figure 6A). Time-dependent ROC analysis of the 11-

metabolic gene signature-based prognostic risk score 

model showed that AUC values for 1-year, 3-year and 5-

year OS were 0.810, 0.738, and 0.771, respectively 

(Figure 6B). Figures 6C, 6D show the heat map and risk 

curve analyses of the eleven genes in the high- and low-

risk group ccRCC patients, respectively. These results 

show moderate performance of the 11-metabolic gene 

signature-based prognostic prediction model. We then 

calculated the risk scores of the test group patients using 

the same prognostic risk score formula and assessed the 

predictive performance of the prognostic risk model. 

Kaplan-Meier survival curve analysis showed that the OS 

was significantly shorter for the ccRCC patients in the 

high-risk group compared to the low-risk group ccRCC 

patients (Figure 7). We obtained similar results for the E-

MTAB-1980 cohort (Figure 8). These results demonstrate 

stable performance of the 11-metabolic gene signature-

based prognostic prediction model. 

 

 
 

Figure 5. The mutation frequency of the ten hub metabolic genes in the ccRCC patients (TCGA, Firehose Legacy). (A) The 
overall mutation frequency of the hub metabolic genes in 446 ccRCC patients. (B) The mutation frequency of the individual hub metabolic 
genes in 446 ccRCC patients. (C) Kaplan–Meier survival curves show the OS of ccRCC patients with mutations in the hub metabolic genes 
(n=172) compared to those without mutations in the hub metabolic genes (n=274). 
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Table 2. Multivariate Cox regression analysis to identify prognosis-related metabolic genes. 

Gene Coef Exp(coef) se(coef) z Pr (>|z|) 

NOS1 -0.0555 0.9460 0.0694 -0.8002 0.4236 

ALAD 0.0180 1.0181 0.2081 0.0863 0.9312 

ALDH3B2 0.1302 1.1391 0.0538 2.4218 0.0154 

ACADM -0.0948 0.9095 0.1425 -0.6653 0.5058 

ITPKA 0.0490 1.0502 0.0583 0.8396 0.4011 

IMPDH1 0.1788 1.1958 0.2212 0.8084 0.4189 

SCD5 -0.1354 0.8734 0.0687 -1.9707 0.0488 

FADS2 0.1488 1.1604 0.0890 1.6715 0.0946 

ACHE 0.0594 1.0612 0.0646 0.9189 0.3582 

CA4 -0.0570 0.9446 0.0577 -0.9884 0.3230 

HK3 0.2213 1.2477 0.1045 2.1166 0.0343 

 

We then constructed a nomogram based on the 11-

metabolic gene signature to establish a quantitative 

method for ccRCC prognosis (Figure 9). We 

calculated total points for each ccRCC patient by 

adding up the points for each variable and normalized 

it to a distribution between 0 and 100. Then, we 

estimated the one-year, three-year and five-year 

survival rates for each of the ccRCC patient’s by 

drawing a line perpendicular to the prognosis axis and 

the total point’s axis. We then performed Cox 

regression analysis and observed that age, tumor 

grade, tumor stage, primary tumor location, lymph 

node infiltration, distant metastasis and the prognostic 

risk score were significantly associated with the OS of 

ccRCC patients (Table 3). Multiple regression analysis 

showed that age (P=0.003), tumor grade (P=0.016), 

tumor stage (P<0.001), primary tumor location 

(P=0.038) and the prognostic risk score (P < 0.001) 

were independent prognostic factors associated with 

OS (Table 3). 

 

We used Kaplan–Meier plotter (http://www. 

proteinatlas.org/) online tool to determine the 

relationship between these metabolic genes and OS, and 

survival curve analysis showed that all the eleven 

metabolic genes were associated with the OS in the 

ccRCC patients (Figure 10). We used the 

immunohistochemical-stained results from the Human 

Protein Atlas database (https://www.proteinatlas.org/) to 

determine the expression of these 11 metabolic proteins 

in the ccRCC tissues. The ALDH3B2 and FADS2 

protein levels were significantly higher in the ccRCC 

tissues compared to the normal renal tissue (Figure 11C, 

11H). Furthermore, NOS1, ALAD, ACADM, ITPKA, 

IMPDH1, SCD5, and CA4 levels were significantly 

reduced in the ccRCC tissues compared to the normal 

renal tissues (Figure 11A, 11B, 11D–11G, 11I). The 

expression of HK3 protein was similar in the ccRCC 

and normal renal tissues (Figure 11J). 

 

DISCUSSION 
 

Cancer cells reprogram metabolism to gain survival 

advantage when competing with normal cells for 

limited nutrient resources. The ccRCC cells 

demonstrate the Warburg effect characterized by 

enhanced glucose uptake and glycolysis in normoxia 

conditions [13]. Furthermore, oncogenic mutations 

cause changes in glycolysis, fatty acid biosynthesis, and 

amino acid metabolism in the ccRCC tissues [14, 15]. 

However, the genes that drive these metabolic changes 

in ccRCC tissues are not clear. Moreover, the clinical 

significance of the metabolic genes in the diagnosis, 

treatment and prognosis of ccRCC patients is not well 

characterized. 

 

In the current study, we identify 124 differentially 

expressed metabolic genes based on transcriptome data 

analysis of ccRCC and normal kidney tissues from the 

TCGA database. Functional enrichment analysis shows 

that these 124 differentially expressed metabolic genes 

are related to pathways such as small molecule 

catabolism, amino acid metabolism, fatty acid 

metabolism, ribonucleotide metabolism, nucleoside 

phosphate biosynthesis, oxidoreductase activity, mito-

chondrial matrix, iron ion binding, transferase activity, 

and glycosyl transfer activity. These pathways are 

involved in the metabolic reprogramming-related 

alterations of the biological functions of ccRCC cells. 

Warburg effect or aerobic glycolysis is the most well

http://www.proteinatlas.org/
http://www.proteinatlas.org/
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Figure 6. Risk score analysis of the 11 metabolic gene signature-based prognostic model in the training group ccRCC patients. 
(A) Kaplan-Meier survival curve analysis shows the overall survival of high- (n=190) and low-risk (n=191) training group ccRCC patients based 
on the median risk score calculated using the 11 metabolic genes-based prognostic model. (B) Time dependent ROC curve analysis shows the 
prognostic performance of the 11-metabolic gene signature-based prognostic model in predicting 1-year, 3-year, and 5-year survival times of 
the high- and low-risk training group ccRCC patients. (C) Heat map shows the expression of the 11 metabolic genes in high- and low-risk 
training group ccRCC patients. (D) Risk curve analysis of the 11 metabolic genes in high- and low-risk training group ccRCC patients. 
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Figure 7. Risk score analysis of the 11 metabolic gene signature-based prognostic model in the test group ccRCC patients. (A) 
Kaplan-Meier survival curve analysis shows the overall survival of high- (n=79) and low-risk (n=79) test group ccRCC patients based on the 
median risk score calculated using the 11 metabolic gene signature-based prognostic model. (B) Time dependent ROC curve analysis shows 
the prognostic performance of the 11 metabolic gene signature-based prognostic model in predicting 1-year, 3-year, and 5-year survival 
times of the high- and low-risk test group ccRCC patients. (C) Heat map shows the expression of the 11 metabolic genes in high- and low-risk 
test group ccRCC patients. (D) Risk curve analysis of the 11 metabolic genes in high- and low-risk test group ccRCC patients. 
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Figure 8. Risk score analysis of the 11 metabolic gene signature-related prognostic model in the E-MTAB-1980 cohort. (A) 
Kaplan-Meier survival curve analysis shows the overall survival of high- (n=50) and low-risk (n=51) ccRCC patients from the E-MTAB-1980 
cohort based on the median risk score calculated using the 11 metabolic gene signature-based prognostic model. (B) Time dependent ROC 
curve analysis shows the prognostic performance of the 11 metabolic gene signature-based prognostic model in predicting 1-year, 3-year, 
and 5-year survival times of the ccRCC patients from the E-MTAB-1980 cohort. (C) Heat map shows the expression of the 11 metabolic genes 
in high- and low-risk ccRCC patients from the E-MTAB-1980 cohort. (D) Risk curve analysis of the 11 metabolic genes in high- and low-risk 
ccRCC patients from the E-MTAB-1980 cohort. 
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characterized metabolic reprogramming process in 

cancer cells, wherein the cancer cells rely on lactic acid 

fermentation for their energy needs regardless of 

oxygenation levels; this metabolic reprogramming helps 

cancer cells to thrive under nutrient-deprived conditions 

commonly encountered in the tumor microenvironment 

and in metastasized tissues [16]. Several studies have 

shown abnormal expression of glucose transporters, 

glycolytic enzymes and some key enzymes of the 

tricarboxylic acid cycle in the ccRCC cells [17–19]. The 

tryptophan metabolic pathway is also altered in ccRCC 

cells because it generates metabolites that promote 

tumor growth and induce immunosuppression, thereby 

reducing the efficacy of interferon-like immunotherapy 

[20, 21]. Fatty acid metabolism is also altered in the 

ccRCC cells [22]. Fatty acid metabolism is a complex 

process regulated by various enzymes, including acyl-

CoA dehydrogenase, hydroxyacyl-CoA dehydrogenase 

and enoyl-CoA hydratase [23]. Elevated expression of 

fatty acid synthase is associated with tumor 

invasiveness and poor OS rates in ccRCC patients [24]. 

Furthermore, alterations in the tricarboxylic acid (TCA) 

cycle, electron transport chain (ETC), and glutamine 

and arginine metabolic pathways contribute to changes 

in the energy supply and intrinsic antioxidant properties 

of the ccRCC cells, thereby promoting tumor 

progression [19, 25]. Therefore, alterations in the 

expression of metabolic genes modulate several 

metabolic pathways involved in the synthesis and 

breakdown of amino acids, fatty acids, and nucleotides, 

mitochondrial oxidative phosphorylation, and other 

pathways. Thus, metabolic reprogramming alters the 

ATP and oxidative stress levels in the tumor cells, and 

also provides metabolic intermediates that serve to 

modulate immune cell infiltration in the tumor 

microenvironment, thereby influencing tumor growth 

and progression. 

 

In addition, we constructed a PPI network for these 

differentially expressed genes and screened 10 hub genes 

including GAPDH, POLR3B, NME1-NME2, ADCY10, 
ADCY7, POLR2F, NME1, ENTPD2, ADCY8, and 
ADCY3. Among these genes, ADCY10, ADCY7, 

ADCY8, and ADCY3 are members of adenylate cyclase 

family, which catalyzes ATP generation of cAMP [26]. 

They have different reactions to upstream regulatory 

pathways and their distribution, and play an important 

role in tumorigenesis [27]. GAPDH has been found to 

play an important role in tumor cell survival, tumor 

angiogenesis, control of tumor cell gene expression, and 

post-transcriptional regulation of tumor cell mRNA [28]. 

And we found that ccRCC is associated with cellular 

amino acid metabolic process, generation of precursor 

metabolites and energy, organic acid biosynthetic 

process, nucleoside phosphate biosynthetic process, 

ribonucleotide metabolic process, and metabolic path-

ways through the PPI network module analysis. 

 

Moreover, our analysis identified eleven prognosis-

related metabolic genes, including NOS1, ALAD, 
ALDH3B2, ACADM, ITPKA, IMPDH1, SCD5, FADS2, 
ACHE, CA4, and HK3. NOS1 is a nitric oxide synthase 

 

 
 

Figure 9. The nomogram based on the 11 metabolic genes for predicting the one- year, three-year and five-year OS of ccRCC 
patients. 
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Table 3. The prognostic value of different clinical parameters. 

 HR 
Univariate analysis 

P-value  HR 
Multivariate analysis 

P-value 
95%CI 95%CI 

Age 2.03 1.40-2.93 <0.001  1.76 1.21-2.58 0.003 

Gender 0.89 0.61-1.28 0.5231  0.86 0.59-1.26 0.429 

Grade 2.55 1.99-3.27 <0.001  1.41 1.07-1.88 0.016 

Stage 2.03 1.73-2.38 <0.001  2.26 1.59-3.21 <0.001 

T 2.04 1.68-2.48 <0.001  0.68 0.47-0.98 0.038 

N 0.83 0.69-0.99 0.0438  0.87 0.72-1.05 0.149 

M 1.85 1.41-2.43 <0.001  0.74 0.44-1.23 0.241 

Risk 

score 
2.72 2.16-3.42 <0.001  1.88 1.41-2.51 <0.001 

HR, hazard ratio; CI, confidence interval. 
 

that generates nitric oxide and plays an important role in 

the development, progression and metastasis of various 

tumors [29]. NOS1 also generates reactive oxygen 

species including superoxide ions (O2
−) and hydrogen 

peroxide (H2O2) at low arginine concentrations [30]. 

The activity of NOS1 is closely related to protein 

tyrosine nitration [31]. Renaudin et al. demonstrated that 

NOS1 expression correlated with the pathological grade 

of renal tumors [32]. ALAD catalyses the second step of 

heme biosynthesis and is an endogenous inhibitor of 

26S proteasome, which is a therapeutic target for 

several tumors [33–35]. ALAD gene variants are 

associated with the risk of genitourinary tumors [36]. 

ALDH3B2 is a member of the aldehyde dehydrogenase 

family that plays an important role in exogenous drug 

metabolism [37]. ALDH3B2 polymorphisms are related 

to the esophageal squamous cell carcinoma in the 

Chinese population [37]. ALDH3B2 also plays an 

important role in colorectal carcinogenesis [38, 39]. 

ACADM is an enzyme that catalyzes the initial step of 

mitochondrial fatty acid-oxidation pathway [40]. In this 

study, we demonstrate that ACADM is downregulated 

in ccRCC tissues. Huang et al. demonstrated that HIF-1 

promotes various cancer progression by inhibiting fatty 

acid oxidation and acyl-CoA dehydrogenases [40]. Niu 

et al. showed that inhibition of ACDAM activity 

accelerated breast cancer progression in the mouse 

model [41]. Amino acid metabolizing enzymes play an 

important role in the evasion of tumor cells from 

immune surveillance [42]. IPTKA is a member of the 

inositol triphosphate kinase family that regulates actin 

dynamics and Ins (1, 4, 5) P3-mediated calcium 

signaling [43]. IPTKA is upregulated in several cancers, 

including those of the breast, lung, colon, liver, prostate 

and testis [43, 44]. Our study demonstrates that IPTKA 

mRNA levels are significantly increased in the ccRCC 

tissues. Guan et al. reported that high expression of 

IPTKA correlates with higher vascular infiltration and 

shorter survival time of liver cancer patients [45]. Liu et 

al. reported that ITPKA gene expression and the IPTKA 

subtypes correlate with the prognosis of ccRCC patients 

[46]. IMPDH is a rate-limiting enzyme in the 

biosynthesis pathway of guanosine triphosphate. It has 

two subtypes, IMPDH1 and IMPDH2, and is essential 

for DNA and RNA synthesis and signal transmission in 

all organisms [47]. In this study, we demonstrate that 

IMPDH1 mRNA levels are significantly increased in 

ccRCC tissues. Ruan et al. also reported that high 

IMPDH1 expression is associated with shorter overall 

survival and disease-free survival of RCC patients [47]. 

In a mouse model of non-small cell lung cancer 

(NSCLC), inhibition of IMPDH1 expression reduced 

the expression of RNA polymerase-I-dependent pre-

ribosomal RNA expression, inhibited the growth of 

tumor cells, and improved the survival of NSCLC 

model mice treated with chemotherapy [48]. SCD 

proteins regulate the biosynthesis of cellular lipid fatty 

acids. SCD1 and SCD5 are the main subtypes in 

humans. The monounsaturated fatty acids produced by 

these enzymes promote the mobility of cell membranes 

and the growth rate of cancer cells. SCD1 is up-

regulated in cancer cells and plays an important role in 

tumor progression [49]. Our study found that SCD5 

mRNA levels were significantly down-regulated in 

ccRCC tissues. Bellenghi et al. reported that the 

expression of SCD5 was significantly higher in the 

primary melanoma cells, but significantly decreased in 

the metastatic melanoma cells; SCD5 overexpression in 

the melanoma mouse model significantly reduced the 

invasiveness of the melanoma cells [49]. Fatty acid 

desaturase 2 (FADS2) is an enzyme that catalyzes the 

biosynthesis of highly unsaturated fatty acids (HUFAs) 
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[50]. Our study demonstrates that FADS2 mRNA 

expression is significantly up-regulated in the ccRCC 

tissues. Tian et al. showed that FADS2 was 

overexpressed in the colorectal cancer (CRC) tissues 

and promoted CRC cell proliferation [50]. The ACHE 

gene encodes the acetylcholinesterase, an enzyme that 

hydrolyzes acetylcholine, which is involved in signal 

transmission [51]. The gene structure and expression of 

ACHE is altered in various tumors [51, 52]. Motamed-

Khorasani et al. reported that high acetylcholinesterase 

levels correlated with shorter overall survival in ovarian 

cancer patients [53]. Perry et al. demonstrated that 

ACHE gene variants were associated with the 

aggressiveness of human astrocytomas [54]. CA4 is a 

class of zinc-containing metalloenzymes that catalyze 

the reversible hydration of carbon dioxide and the 

dehydration of carbonic acid [55]. The down-regulation 

of CA4 cognate CAI or CAII is associated with 

colorectal carcinogenesis [56]. Hexokinase is the first 

step in catalyzing glycolysis. A recent study found that 

HK3 plays an important role in acute promyelocytic 

leukemia [57]. Pudova et al. reported that HK3 

overexpression was associated with the epithelial-

mesenchymal transition (EMT) of colorectal cancer 

cells [58]. Our study suggests that these eleven key 

metabolic genes may participate in the functional 

regulation of ccRCC by modulating metabolism. 

 

We then used multivariate Cox proportional hazards 

regression analysis to establish a prognostic risk score 

model to predict the prognosis of patients with ccRCC. 

The ROC curve of the risk score model indicates 

moderate to good performance in predicting one-year 

OS (AUC= 0.810), three-year OS (AUC=0.738), and 

 

 
 

Figure 10. Prognostic value of the prognosis related metabolic genes in ccRCC by Kaplan-Meier plotter. Survival curve analysis 
of ccRCC patients based on the expression status of (A) NOS1; (B) ALAD; (C) ALDH3B2; (D) ACADM; (E) ITPKA; (F) IMPDH1; (G) SCD5; (H) 
FADS2; (I) ACHE; (J) CA4; (K) HK3 genes. 
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five-year OS (AUC=0.771). We then developed a 

nomogram based on the eleven metabolic genes to help 

doctors determine the prognosis of the ccRCC patients 

and decide on the therapeutic strategy. We showed that 

the prognostic risk score based on these eleven genes 

was an independent prognostic factor associated with 

OS. Kaplan-Meier survival curve analysis showed that 

low expression of NOS1, ALAD, ACADM, SCD5, and 

CA4 genes and high expression of ALDH3B2, ITPKA, 

IMPDH1, FADS2, ACHE, and HK3 genes was 

associated with shorter overall survival of ccRCC 

patients. These results demonstrate that the prognostic 

risk signature of these eleven metabolic genes can be 

used for determining the recurrence risk stratification, 

treatment outcomes, prognostic prediction. These genes 

may also serve as potential therapeutic targets.  

 

In the past decade, advances in molecular science and 

the identification of new molecular biomarkers have 

shed newer insights into the biology of ccRCC. This has 

resulted in the development of new targeted therapies 

and cancer-related biomarkers, including, proliferation 

markers such as Ki-67, p53 and PTEN, hypoxia-

inducible factor pathways, carbonic anhydrase IX, 

vascular endothelial growth factor (VEGF) and others 

[59]. Several studies have investigated the relationship 

between the somatic mutations, variations in gene 

methylation, differential gene expression, germline 

variations, and the status of immune biomarkers such as 

CD8 and PD-L1 with prognosis of ccRCC, and several 

different prognosis models have been proposed [60–62]. 

Brannon et al. identified two subtypes of ccRCC based 

on stratified consensus clustering of gene expression 

microarray data, and developed a 34-gene classifier for 

localized ccRCC [63]. Rini et al. analyzed the 

expression of 732 genes in 942 patients with stage I-III 

ccRCC, and selected eleven genes of interest including 

five reference genes to determine a continuous 

recurrence score [64]. Klatte et al. used tissue 

microarray technology to determine the correlation 

between the expressions of Ki-67, p53, VEGFR-1 and 

VEGF-D with ccRCC patient survival time, and 

constructed a prognostic model in combination with 

other clinical factors [65]. Recently, Zhao et al. 

constructed a prognostic model based on the expression 

status of three prognostic N6-methyladenosine genes 

[66]. In this study, we systematically analyzed the 

expression of metabolic genes that regulate metabolic 

 

 
 

Figure 11. The expression status of the prognosis related metabolic proteins in ccRCC and normal renal tissues in the HPA 
database. (A) NOS1; (B) ALAD; (C) ALDH3B2; (D) ACADM; (E) ITPKA; (F) IMPDH1; (G) SCD5; (H) FADS2; (I) CA4; (J) HK3. 
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reprogramming in ccRCC and developed a new 

prognostic model based on 11 metabolic genes. 

 

This study has some limitations. Firstly, our study is 

based only on bio-omics data. However, we need to 

consider that analysis of different patient characteristics 

on different platforms can lead to patient heterogeneity. 

Secondly, the prognostic model construction and 

verification in our study was based on retrospective data 

analysis. Therefore, our findings need to be verified 

with a multicenter, large prospective cohort of ccRCC 

patients. Thirdly, variability in the clinical information 

from different datasets may reduce the statistical 

reliability and effectiveness of the Cox regression 

analysis. Finally, we used bioinformatics techniques to 

evaluate the diagnostic and prognostic prediction value 

of several key metabolic genes in ccRCC. However, the 

specific functions and mechanisms of these key 

metabolic genes in the growth and progression of 

ccRCC have not been well characterized, and hence, 

require further in-depth investigations.  

 

In summary, we systematically studied the biological 

function and prognostic value of differentially 

expressed metabolic genes in ccRCC by a series of 

bioinformatics techniques. We also established a 

prognostic risk score model based on 11 metabolic 

genes, which proved to be an independent prognostic 

factor that can accurately predict the overall survival 

time of ccRCC patients. Our results will be of great 

significance in revealing the pathogenesis of ccRCC 

and developing new therapeutic targets or prognostic 

molecular markers. 

 

MATERIALS AND METHODS 
 

RNA-seq data analysis of ccRCC patients 
 

We downloaded the transcriptome data consisting of 72 

normal renal and 539 ccRCC tissue samples from The 

Cancer Genome Atlas database (TCGA, https:// 

portal.gdc.cancer.gov/). We also downloaded the 

clinical data of all the ccRCC patients. We also obtained 

seventy metabolism-associated gene sets from the 

GSEA database (https://www.gsea-msigdb.org/gsea/ 

msigdb/collections.jsp#C2). For data analysis, we first 

pre-processed the raw RNA-seq data with the edgeR 

package (http://www.bioconductor.org/packages/ 

release/bioc/html/edgeR.html). This included averaging 

the genes with the same name, removing the genes with 

average expression of less than 1, and normalizing the 

expression data with the trimmed mean of M-values 

(TMM) normalization algorithm. We then identified the 

differentially expressed metabolic genes using |log2 FC| 

>1.0 and false discovery rate (FDR) <0.05 as the 

selection criteria. 

Functional enrichment analysis of the differentially 

expressed metabolic genes  

 

We performed a comprehensive functional and pathway 

enrichment analysis of the differentially expressed 

metabolic genes in ccRCC using the WEB-based Gene 

Set Analysis Toolkit (WebGestalt, http://www. 

webgestalt.org/). This included identifying the GO 

terms for the cellular components, biological processes, 

and molecular functions, as well as the enriched KEGG 

signaling pathways in which the differentially expressed 

genes are enriched. GO terms and KEGG pathways 

with P<0.05 and FDR <0.05 were considered 

statistically significant. 

 

Construction of protein-protein interaction (PPI) 

networks and identification of key co-expression 

modules 

 

The STRING database (https://string-db.org/) was used 

to identify the protein-protein interactions involving all 

the differentially expressed metabolic genes. Then, the 

PPI network was built using the Cytoscape 3.8.0 

software (https://cytoscape.org/). The MCODE plug-in 

was used to select key modules based on the MCODE 

score and the node number. The cytoHubba plug-in was 

used to screen the hub genes according to the maximal 

clique centrality (MCC) algorithm. The GraphPad 

Prism 5.0 software was used to perform receiver 

operating characteristic (ROC) curve analyses of the 

hub genes to assess their ability to differentiate between 

normal and ccRCC tissues.  

 

Analysis of hub gene mutation frequency and copy 

number variation 

 

The cBioPortal (https://www.cbioportal.org/) database 

was used to determine the gene mutations (missense 

mutations, gene amplifications, and deletions) and 

copy-number alterations of the hub genes. Then, the 

correlation between the hub gene mutations and 

survival time were determined by the survival module 

in the cBioPortal database. 

 

Identification of prognosis-associated metabolic 

genes 
 

The caret R package was used to divide the ccRCC 

patients from TCGA cohort into training and test 

groups. Univariate Cox regression analysis was then 

performed for the differentially expressed metabolic 

genes in the training group using the survival R 

package. These genes were further screened using the 

LASSO regression analysis algorithm to identify the 

potential prognosis-associated metabolic genes, which 

were then subjected to multivariate Cox regression 

http://www.webgestalt.org/
http://www.webgestalt.org/
https://string-db.org/
https://cytoscape.org/
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analysis to identify metabolic genes that can 

independently predict prognosis of ccRCC patients. 

 

Evaluation of the 11-metabolic gene signature-based 

prognostic model 

 

The multivariate Cox proportional hazards regression 

model was established based on the selected metabolic 

genes to predict the prognosis of patients. The risk score 

of each patient was calculated according to the 

following formula:  

 

1

  , 
n

i

Risk score Expi i


  

 

where, β is the regression coefficient of each gene and 

Exp is the expression value of each gene. We then 

divided the training group patients into high- and low-

risk groups based on the median risk score. Then, the 

log-rank test was used to compare the differences in 

overall survival times between the two groups. 

Furthermore, we generated ROC curves using the 

survival ROC package to evaluate the model 

performance. The rms R package was used to construct 

a nomogram to predict survival probabilities. Finally, 

we used the test group and the E-MTAB-1980 dataset 

(https://www.ebi.ac.uk/arrayexpress/experiments/E-MT 

AB-1980/) to validate the predictive value of the 

prognostic model. In addition, we used the Kaplan-

Meier plotter (https://kmplot.com/analysis/) online tool 

to verify the prognostic value of these 11 metabolic 

genes, and used The Human Protein Atlas 

(http://www.proteinatlas.org/) online database to detect 

the protein expression of these 11 metabolic genes. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. LASSO regression analysis for screening prognosis-related metabolic genes. (A) Trajectories of model 
coefficients; (B) Cross validation fitting and performance evaluation of the model. 
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Supplementary Table 
 

Supplementary Table 1. Univariate Cox regression analysis to identify prognosis metabolic genes in the TCGA. 

Gene name HR P value Gene name HR P value 

ACADM 0.5802 4.01E-08 HMGCS2 0.8956 9.85E-05 

ACHE 1.3247 7.16E-07 IMPDH1 2.1759 4.47E-09 

ACLY 0.7799 0.0098 ITPKA 1.2809 4.60E-10 

ADCY10 1.2619 0.0017 LRAT 1.1379 0.0222 

ADH7 1.1916 0.0111 NOS1 0.8395 0.0033 

ALAD 0.5415 1.51E-05 OXCT2 1.1932 0.0171 

ALDH3B2 1.1657 0.0013 PCCA 0.5600 8.29E-08 

ALDH6A1 0.6252 6.75E-08 PGK1 0.6002 0.0001 

ALOX5 1.1594 0.0311 PLA2G2D 1.1194 0.0041 

ATP4A 1.1907 0.0026 PLOD3 1.4620 0.0207 

CA4 0.8238 3.01E-06 POLE2 1.5127 0.0002 

CA6 1.2337 0.0164 POLR2F 1.2325 0.0220 

CSAD 1.3518 0.0001 POLR3B 0.6935 0.0498 

CYP4A11 0.9089 7.56E-05 PRODH 0.9227 0.0453 

CYP4F3 1.1068 0.0070 RRM2 1.4365 9.25E-06 

DEGS1 1.2887 0.0264 SCD5 0.7803 2.06E-05 

FADS2 1.3121 0.0014 STX4 2.3725 1.03E-05 

FMO4 0.7187 0.0068 SUCLG2 0.6215 0.0081 

GAPDH 1.3166 0.0487 TAT 1.2076 0.0010 

GK 0.8063 0.0257 TYMP 1.6270 5.93E-06 

GPD1L 0.6178 0.0011 UGT2A3 0.9200 0.0045 

GYS1 1.4391 0.0218 UGT8 0.7899 0.0003 

HK3 1.5391 6.60E-06 VAMP1 1.609913351 1.23E-07 

 


