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Evolutionary game theory for physical
and biological scientists. II. Population
dynamics equations can be associated
with interpretations

David Liao and Thea D. Tlsty

Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA

The use of mathematical equations to analyse population dynamics

measurements is being increasingly applied to elucidate complex dynamic

processes in biological systems, including cancer. Purely ‘empirical’

equations may provide sufficient accuracy to support predictions and

therapy design. Nevertheless, interpretation of fitting equations in terms of

physical and biological propositions can provide additional insights that

can be used both to refine models that prove inconsistent with data and to

understand the scope of applicability of models that validate. The purpose

of this tutorial is to assist readers in mathematically associating interpret-

ations with equations and to provide guidance in choosing interpretations

and experimental systems to investigate based on currently available biologi-

cal knowledge, techniques in mathematical and computational analysis and

methods for in vitro and in vivo experiments.
1. Introduction
In an accompanying manuscript [1], we present a method for using time-course

measurements to train and to validate a set of differential equations

dx

dt
¼ (Apx þ Bpy)x (1:1)

and
dy
dt
¼ (Cpx þDpy)y (1:2)

describing the dynamics of interacting populations. This procedure provides an

ability to reject equations that are inconsistent with data. Performing this skill

increases our confidence in predictions obtained from those equations that do

validate. Nevertheless, even when equations agree with data, model assump-

tions may yet prove false. In other words, models and equations are distinct.

A statistician might use the term ‘model’ to refer to a parametrized equation,

and, in this parlance, a set of validated differential equations might be con-

sidered a ‘model’. However, taken in isolation, such training and validation do
not constitute physical modelling. A physicist uses the term ‘model’ to refer to

a set of physical propositions (‘assumptions’). For a physicist, modelling is

more than writing down an equation that imitates a plot of data. As illustrated

in figure 1, which also organized the previous manuscript, physical modelling

is the development of a consistent set of physical propositions, mathematical

equations and data. The previous manuscript only addressed the process of

training and validating equations using data, as highlighted in figure 1d. In

this second tutorial, we provide examples of how differential equations can

be associated with models using mathematical derivations, as highlighted in

figure 1f. In other words, the focus of this manuscript is to demonstrate how

equations can be associated with interpretations.
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Figure 1. Overview of physical sciences modelling as also illustrated in [1]. In the preceding manuscript, we illustrated how fitting functions can be (d ) compared
with (e) experimental time-course population measurements. The focus of this manuscript is highlighted in grey. In this manuscript, we give examples of how (a)
physical models are used (b) to mathematically derive (c) fitting equations. We also discuss biological knowledge of experimental systems that can help ( f ) to
identify choices of candidate propositions. For example, if a provisional model relies on an assumption of thorough mixture and cell – cell contact, but the cellular
population under study is not motile and is cultured in an unstirred flask, direct observation at the microscopic scale and physical propositions disagree (alert
pictograms), initiating a search for alternative propositions (and, potentially, fitting equations). (Online version in colour.)
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1.1. Manuscript organization
We first describe in §2 a common way that evolutionary game

theory (EGT) models are misinterpreted. This confusion arises

from the fact that the phrase ‘game theory’ is used both in econ-

omics and in biology. In §3, we show how EGT models can be

properly associated with microscopic hypotheses using math-

ematical derivations. The value of performing a derivation is

not only to rationalize the use of a set of equations to describe

an experiment. Another benefit is to demonstrate that a set of

equations can be consistent with multiple sets of propositions.

This means that no particular set of propositions should be

accepted as ‘true’ merely because it is consistent with a set of

equations that is, itself, consistent with data. With so many

models possibly associated with a particular set of equations,

we seek strategies for narrowing down the list of candidate

interpretations on which to focus in experimental studies. In

§4, we outline how choices of models, equations (or simulations)

and experiments can be refined by considering biological knowl-

edge of cell–cell interaction processes, analysis and computer

simulation techniques from the physical sciences, and avail-

ability of cell culture, manipulation, and imaging techniques

from biology, physics and engineering. In the Discussion, we

describe opportunities for advancing the application of game

theory in biology, not only through experimental technology

development, but also by expanding our concept of biological

systems beyond the concept of ‘systems of cells’. We conclude

with the possibility that our understanding of the essential fea-

tures of biological populations might one day be informed by

a deeper understanding of dissipative structures.
2. Evolutionary game theory does not require
that cells display sophisticated intelligence

Shared use of game theoretic terminology in economic and

biological applications leads to misinterpretation of the
application of EGT to cellular population dynamics. In this

section, we clarify this confusion. In the previous manuscript,

we used the phrase ‘EGT’ to refer to models of cell inter-

actions in which net expansion rates depended on the

proportions at which different cell types are found in an over-

all population. This definition might be surprising for readers

previously introduced to applications of game theory in econ-

omics. It is important to be aware that economists, biologists,

computer scientists and physical scientists use game theoretic

terminology in a variety of ways. For the purposes of this

tutorial, game theory broadly encompasses the reasoning

and conclusions that follow (i) from investigating how the

outcome (e.g. ability to reproduce, paycheck, jail time, abstract

utility, etc.) of an individual agent (e.g. cell, businessperson,

criminal, snowplough driver, etc.) depends on the status of

other agents with which the individual interacts. Game

theory also includes the reasoning and conclusions that

follow (ii) from investigating how an agent’s actions can be

influenced by social context.

As illustrated using the two examples in table 1, these

concepts can be applied to systems composed of rational

decision makers and also to populations of robotically repli-

cating cells. In the first example, a businessperson can draw

a table (pay-off matrix) listing the profit anticipated in var-

ious scenarios that correspond to different combinations of

her possible business strategies and the possible strategies

of her competitors. By analysing her pay-off matrix, the busi-

nessperson then chooses a strategy expected, on average, to

maximize her return. If the pay-off matrix changes, the busi-

nessperson can study the new matrix to determine whether a

different strategy would now optimize her expected return.

This is an example of game theory applied to ‘comparative

statics’: optimal strategies are identified for different pay-off

matrices, but dynamic processes by which the pay-off

matrices or business strategies are changing over time are

not explicitly described. In a more biologically oriented

example, individual cells in an ecosystem might display net



Table 1. Game theoretic concepts in the analysis of comparative statics and evolutionary dynamics.

outcome for an agent depends
on its own strategy and
strategies of other agents

distribution of strategies that agents
display is influenced by strategies of
agents with which they interact solution condition

comparative

statics

a pay-off matrix is a table of pay-

offs (utilities) an agent is

anticipated to receive in

different scenarios

an agent can adopt a strategy that

maximizes pay-off by comparing numerical

entries in a pay-off matrix. Changing the

problem by changing the pay-off matrix

can change the ‘best’ strategies agents can

adopt

interacting agents adopt a set of

strategies so that no agent can

increase her pay-off by unilaterally

changing her strategy

evolutionary

dynamics

net cell population expansion rate

is a function of the

demographic composition of

the cells in the environment

in many models, individual agents lack the

intelligence needed to scrutinize entries in

a pay-off matrix. Less fit cells do not

‘know’ to quit. Nevertheless, a population

can become relatively pruned of less fit

cell types over generations of reproductive

competition

relative proportions of different cell

types in a population achieve a

stable (homeostatic, tends to self-

restore) steady state
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replication rates that vary with the relative proportions of

different cell types in the environment. While the individual

cells might lack the intelligence needed to write down and

scrutinize a pay-off matrix, the proportions of cells expressing

different phenotypes in the population as a whole can never-

theless be altered owing to natural selection operating over

generations of reproductive competition. The study of such

evolutionary dynamics is referred to as ‘EGT’. Typically,

the individual cells are called replicators, and the parameters

in ‘replicator dynamics’ equations are often formatted in

tables also called pay-off matrices.

Owing to the similar language associated with the econ-

omically oriented and biologically oriented examples we

have just described, it is common for the application of

EGT to be misunderstood as relying on an unrealistic and

restrictive assumption that cells rationally choose their beha-

viours [2,3]. Such misunderstanding can be exacerbated by

the fact that rational agents described by comparative statics

and cellular populations described by EGT are sometimes

said to share the same solutions. The way in which these

populations achieve ‘the same’ solutions is described in the

electronic supplementary material. The connection has the

flavour of an abstract mathematical relationship, rather

than of a profound philosophical conclusion that implies

sophisticated intelligence in cells.
3. Mathematical derivation of replicator
dynamics equations

In §2, we demonstrated that relying primarily on word

models and labels alone can lead to misinterpretation of bio-

logical applications of EGT. Even though the term ‘EGT’

includes the word ‘game’, using EGT does not suppose the

presence of ‘game players’ possessing humanly sophisticated

intelligence and will. Given that it is difficult to associate

interpretations with equations from EGT using word

models alone, it is helpful to understand how mathematical
derivations can be applied to accomplish this goal. In this sec-

tion, we provide five examples of how EGT population

dynamics equations can be obtained by quantitatively expres-

sing assumptions about microscopic cell–cell interaction

processes. The first three examples show how equations

(1.1) and (1.2) can be obtained by proposing that true-breed-

ing is triggered by cell–cell collisions, by proposing that cell-

type conversion is triggered by cell–cell collisions or by pro-

posing that cells modulate their proliferation rates by taking a

census of their environment. The final two examples show

how a more general version of equations (1.1) and (1.2) can

be obtained by assuming that more than two cells can collide

or, for example, by assuming that cell surface receptor inter-

actions display cooperativity. Together, these examples

illustrate that a variety of models can be associated with a

set of equations, so that empirical validity of a particular

set of equations cannot be regarded as proof of truth of any

particular model.
3.1. Cell replication triggered by pairwise cell – cell
collisions

While the concepts illustrated in this and the following

examples are applicable to systems with arbitrary numbers

of populations, we will continue to use two-population sys-

tems, as was the focus in the previous manuscript, to

simplify illustrations and equations. Our first example shows

how equations (1.1) and (1.2) can be obtained by proposing

that cells trigger each other to proliferate through pairwise col-

lisions. In figure 2, a (square, yellow) cell of type x follows the

trajectory in (a), while a (round, blue) cell of type y follows

the trajectory in (d ). The cell whose trajectory is tracked in

each diagram is called the ‘focal individual’. We will calculate

the number of progeny produced by each focal individual

using the following propositions.

We propose that the co-culture is thoroughly mixed to

ensure that each cell encounters a fixed number of other cells

per unit time. We label this rate r. In other words, over a
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Figure 2. Different physical propositions can lead to the same fitting equations.
(a) Trajectory of a focal individual of type x (square, yellow cell), showing a col-
lision (b) with another cell of type x and a collision (c) with another cell of type y
(round, blue cell). (d ) Trajectory of a focal individual of type y showing a collision
(e) with another cell of type x and a collision ( f ) with another cell of type y. Each
of these collisions triggers the focal individual to produce progeny. Two
additional possibilities are (g) that the square, yellow focal individual can collide
with a round, blue cell, causing that round, blue cell to convert to the square,
yellow state, and (h) that the round, blue focal individual can collide with a
square, yellow cell, causing that square, yellow cell to convert to the round,
blue state. (i) Alternative model consistent with the same dynamics equations
obtained from (a – h). Cells communicate through signalling factors that activate
the synthesis of both intracellular proliferation and anti-proliferation signalling
molecules. The molecular circuit topology in each cell is a pair of IFFLs that share
an inhibitory edge. (Online version in colour.)
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time interval Dt, each cell collides with rDt other cells. In a frac-

tion of these collisions, the focal individual encounters a cell of

type x. In the remaining fraction of collisions, the focal individ-

ual encounters a cell of type y. We propose that the cell culture

is mixed with such vigour that these fractions equal the popu-

lation fractions px and py, respectively. Finally, we propose that

each collision triggers the focal individual to replicate and,

thus, to contribute progeny to the overall population. To be

specific, a collision between the square, yellow focal individual

and a square, yellow cell at (b) triggers the focal individual to

produce A/r additional square, yellow cells. Here, A/r ¼ 3

cells. The collision at (c) is different because the focal individ-

ual collides with a round, blue cell, rather than with a square,

yellow cell. This collision triggers the focal individual to con-

tribute B/r square, yellow cells to the population. Here, B/

r ¼ 2 cells. The propositions we have listed describe (i) the

number of cells with which a focal individual collides
during an interval of time, (ii) the fraction of these collisions

that involve a cell of type x (as well as the fraction that involve

a cell of type y), and (iii) the number of progeny that the focal

individual produces as a result of each type of collision. Mul-

tiplying these factors for each type of collision and then adding

the resulting products gives the total number of progeny con-

tributed by the focal individual

Dxfrom focal individual ¼ (rDt) px
A
r
þ (rDt) py

B
r

, (3:1)

during the illustrated time interval. Note that factors of r
cancel. Because the focal individual in (a) is representative of

each cell of type x in the co-culture, we multiply the quantity

in equation (3.1) by the number of cells of type x to obtain the

total number of progeny of type x added to the population

during time interval Dt. Dividing out the time interval Dt

Dxfrom focal individual x
Dt

¼ (Apx þ Bpy)x, (3:2)

we obtain a rate of change consistent with equation (1.1).

Equation (1.2) can be derived by analysing figure 2d– f in the

same way as we have analysed panels (a–c). We have derived

equations (1.1) and (1.2) by proposing that cells breed true and

replicate upon collision. It is important to recognize that other

physical propositions can also lead to the same equations. In

§3.2, we show that equations (1.1) and (1.2) do not require

cells to breed true, and in §3.3, we show that equations (1.1)

and (1.2) do not even require cell–cell collisions.
3.2. Horizontal gene transfer triggered by cell – cell
collisions

Here, we show that equations (1.1) and (1.2) are consistent

with the dynamics of cells that do not breed true. In other

words, the progeny produced by a cell of type x could be

of type y and vice versa. We begin by re-expressing equations

(1.1) and (1.2) using slightly different parameter names

dx

dt
¼ (Apx þ bpy)x (3:3)

and
dy
dt
¼ (gpx þDpy)y: (3:4)

Without loss of generality, we introduce a constant w, we

let b ¼ b� wþ w and g ¼ gþ w� w, and we then define

B :¼ b� w and C :¼ gþ w to obtain

dx
dt
¼ (Apx þ Bpy)xþ w pyx (3:5)

and
dy
dt
¼ (Cpx þDpy)y� wpxy: (3:6)

Letting w ¼ þk1 � k2 and observing that px y ¼ py x, we

finally obtain

dx
dt
¼ (Apx þ Bpy)xþ k1pxy� k2pyx (3:7)

and
dy
dt
¼ (Cpx þDpy)y� k1pxyþ k2pyx (3:8)

differential equations in a format consistent with socially

induced cell-type conversion. The term k1pxy can be inter-

preted as a rate at which cells of type y become cells of

type x. This rate increases in proportion to the number of

cells of type y available to become cells of type x. The propor-

tionality coefficient includes a constant factor k1, as well as a

copy of px, indicating that the frequency of this process



rsfs.royalsocietypublishing.org
Interface

Focus
4:20140038

5
increases with increasing proportion of cells of type x in the

environment. This would be consistent with cell-type conver-

sion triggered by cell–cell contact. For example, if the

distinction between square, yellow and round, blue cells were

genetic, such an event might occur as illustrated in (g). Here,

the square, yellow focal individual collides with a round,

blue cell, momentarily triggering the square, yellow cell to

release an exosome containing genetic material that then inte-

grates into the genome of the round, blue cell. The term k2 pyx
could be interpreted in terms of the analogous conversion in

the opposite direction, as illustrated in (h). Here, the round,

blue focal individual collides with a square, yellow cell, causing

the square, yellow cell to convert to the round, blue state.

The mechanism we have described in this subsection is just

one example of a way that cell-type conversion could occur as a

result of cell–cell contact. In the illustrations in (g) and (h), two

cells having different cell types approach each other, and one

cell type is abandoned. Another possibility is that not just one

but both of the cell types initially present become lost. This

can happen when two cells fuse to become a third cell whose

genetic make-up is distinct from the genetic state of both

colliding cells, as observed in metastatic mammary cells [4].
3.3. Autocrine and paracrine signalling
A feature common to the models in §§3.1 and 3.2 is the prop-

osition that cell–cell collisions can trigger changes in the

numbers of cells of type x and y. However, interactions that

affect population dynamics (e.g. affecting drug sensitivity)

can also occur between physically separated cell populations

[5]. Here, we describe a third model that also leads to

equations (1.1) and (1.2), but without the assumption that

cells display the mobility that would be needed to sustain

ongoing cell–cell collisions.

In figure 2i, both square, yellow and round, blue cells emit

signalling molecules. If we suppose that the molecules are

well-mixed and short-lived, then the concentration of blue

circular molecules is proportional to the immediate number

of round, blue cells in the culture, and the concentration of

yellow square molecules is proportional to the immediate

number of square, yellow cells in the culture. The concen-

trations of signalling molecules correspond to the population

sizes right now because the short lifespan of each signalling

molecule ensures that molecules emitted by cells in the distant

past have already degraded. We propose that each cell con-

tains a molecular circuit consisting of a proliferation signal

(green flag) that is degraded by a stop signal (hexagonal

stop sign) in bimolecular collisions. As a gross simplification,

we assume that a cell’s propensity for proliferation is pro-

portional to the number of copies of the proliferation signal

it contains. We list additional assumptions as we develop an

expression for the level of the proliferation signal in cells of

type x. Suppose that, when cell surface receptors bind their

cognate ligands, they can catalyse synthesis of the stop

signal. If the stop signal is short-lived, its abundance in each

cell of type x

stop signal in cell of type x ¼ k(xþ y) (3:9)

can be proportional to the current number of cells in the cul-

ture. Suppose that the bound state of the cell surface

receptors also catalyses the synthesis of the proliferation

signal so that the synthesis rate depends linearly on popu-

lation x and linearly on population y, with proportionality
coefficients bkA and bkB, respectively. Assuming that the

abundance of the proliferation signal reaches steady state,

each cell of type x should contain

proliferation signal in cell of type x

¼ synthesis rate

per molecule degradation rate
¼ bkAxþ bkBy

bk(xþ y)
(3:10)

a level of proliferation signal in which x and y appear in both

the numerator and the denominator [6]. Here, the rate coeffi-

cient for the bimolecular reaction that degrades the

proliferation signal is b. This is equivalent to stating that the fit-

ness of cells of type x is fx ¼ Apx þ Bpy, which is, itself,

equivalent to equation (1.1). Likewise, equation (1.2) can be

obtained by applying to cells of type y the line of reasoning

that produced equations (3.9) and (3.10).

Interestingly, the circuit architecture illustrated in (i)
involves incoherent feed-forward loops (IFFLs). An IFFL con-

sists of a node that activates two downstream nodes, one of

which inhibits the other. For example, each cell surface receptor

activates both the proliferation signal and the stop signal, and

the stop signal inhibits the proliferation signal. Each cell in

this cartoon contains a pair of IFFLs that share an edge. IFFL

motifs are considered as possible tools for creating transient

responses to step changes in external stimuli [7]. Based on the

derivation in this subsection, it is possible that another biologi-

cal function of IFFL motifs is to provide ongoing measurements

of population fractions. To pursue this possibility, it could be

profitable to investigate how often IFFLs are found to share

common edges in molecular network diagrams.

We have just provided three examples of physical models

that lead to equations (1.1) and (1.2). These derivations would

be relevant if equations (1.1) and (1.2) were validated for a par-

ticular biological system using the methods described in §3 of

the previous manuscript [1]. However, if equations (1.1) and

(1.2) failed to validate in a particular system, for example if

the oscillatory trajectory originating from figure 3h of the pre-

vious manuscript [1] were observed, it would be necessary to

develop another set of population dynamics equations. One of

the reasons that equations (1.1) and (1.2) can fail is that they

contain fitnesses, fx ¼ Apx þ Bpy and fy ¼ Cpx þ Dpy, that are

necessarily linear functions of population composition. In

§§3.4 and 3.5, we describe two physical models that can be

used to obtain population dynamics equations in which the fit-

nesses are, instead, more complicated polynomial functions of

population composition. For brevity, we will present these

two examples using only conceptual outlines, rather than

detailed mathematical derivations.

3.4. N-way cell – cell collision dynamics
In figure 2a–h, we assumed that cells encountered each other

only through pairwise collisions. In figure 3a, we relax this

assumption by allowing for collisions between more than

two cells at a time (examples involving 2, 3 and 4 cells illus-

trated). As a result, equation (1.1) is modified

dx
dt
¼ (A px þ B py þ Cp2

x þD px py þ Ep2
y þ Fp3

x

þ Gp2
x py þH pxp2

y þ Ip3
y þ � � � )x (3:11)

to include higher powers of the population fractions px and

py. The fitness of cells of type y in equation (1.2) becomes a

power series as well. It is beyond the scope of this tutorial

to explain how such an equation can be trained and



N-way collisions between replicators cooperative binding of signalling factors(b)(a)

Figure 3. Additional examples of models that can be used to derive population dynamics equations. (a) Cell replication could be triggered by collisions involving
more than two cells. (b) Cooperative binding of signal factors to cell surface receptors can lead to a sigmoidal relationship between cellular fitness (net replication
rate) and the population fraction of cell type x. (Online version in colour.)
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validated. However, we must emphasize to the novice in

modelling that equation (3.11) and other equations that con-

tain many fitting parameters are dangerous. They have a

tendency to accommodate data even when the underlying

physical models used for their derivation are inaccurate. As

an example, consider the possibility that the dynamics of

population x in a two-population system is well fitted by

equation (3.11), specifically with the form

dx

dt
¼ (� 0:9375 px þ 0:0625 py þ 10:75p2

x � 24p3
x

þ 27p4
x � 16p5

x þ 4p6
x)x: (3:12)

While this equation is consistent with an interpretation that

proposes collisions involving pairs, triplets, quartets, quin-

tets, sextets and septets of cells, it also has a suspicious

property that the power series expression for the fitness can

be approximated by a simple sigmoid

dx
dt
� p2

x

p2
x þ (0:5)2

x (3:13)

of Hill coefficient 2. Equation (3.13) can actually be derived

using a simple cell-signalling circuit architecture described

in §3.5, which does not assume any cellular collisions.

3.5. Cooperative binding of signal factors
In figure 3b, square, yellow cells (type x) and round, blue

cells (type y) both present cell surface receptors that bind

to a signalling factor released by cells of type x. Again,

assuming short-lived signalling molecules, the concen-

tration of square molecules is proportional to the current

size of population x. Suppose that the total density of cells

of type x and type y relative to the surrounding medium

is constant (e.g. a biofilm in which the proteinaceous film

and cellular mass expand in proportion). The concentration

of square molecules is then also proportional to the popu-

lation fraction of cell type x. Suppose that two cell surface

receptors, at the same moment becoming bound, each to a

copy of the cognate ligand, can dimerize and thereby trig-

ger the synthesis of a proliferation signal. Finally, suppose

that the dimer can break apart in a reaction that ejects the

ligands from the binding pockets of both involved recep-

tors. Taken together, this model is consistent with a

fitness function that is a second-order Hill function, as in

equation (3.13).

One danger in using equation (3.11) as a fitting function

is that a ‘successful’, but difficult to interpret, fit, like

equation (3.12), could result. The approximate equivalence

of equation (3.12) to equation (3.13) might not be noted,

leading to favouring a cell–cell collision interpretation

when the possibility of receptor dimerization should also
be considered. It should be noted that the mechanism of

dimerization in this model was specific, and so not every

receptor known to dimerize would satisfy the assumptions

of this particular model. For example, while the TGF-b

superfamily of ligands induce dimerization of type-II recep-

tors (technically, tetramerization of two type-II receptors

with two type-I receptors), the binding events might not

proceed in the way described in this subsection. The final

assembly consists of one TGF-b superfamily ligand, which

suggests that the assembly of the dimer might not require

simultaneous ligand activation of two individual type-II

receptors [8]. As a second example, EGFR family receptors

are also known to dimerize, and crystal structures of

doubly ligated EGFR dimers have been obtained. Neverthe-

less, it has been reported that dimers can be activated with a

single ligand [9].

The five examples in this section provide only a sample of

ways to derive fitting functions to describe cellular inter-

actions. For an additional example in yeast that takes into

account molecular details of metabolic public goods

production and consumption, we refer the reader to a phe-

nomenological study by Wang & Goldenfeld [10]. Taken

together, the examples from this section show that fitting

equations can be derived from diverse physical propositions.

This illustrates a trade-off between generalizability and

specificity. On the one hand, a particular set of fitting

equations might accurately describe population dynamics

for a variety of biological systems with different molecular

details, but, on the other hand, agreement between the fitting

equations and any particular system does not uniquely

implicate a particular physical model. Thus, consistency

between data and equations and between equations and a

physical model should only be regarded as confirming that

a model has not yet been rejected, not as ‘confirming’

that a model is true.
4. Designing studies of population interactions
Now that we have demonstrated that a variety of interpret-

ations can be associated with a particular set of equations

(and thus, data), we seek strategies for narrowing down

lists of candidate models to focus on in experimental studies.

This is part of a broader question. In figure 1, we list candi-

date propositions, candidate equations and candidate

experiments which can then be investigated to see which

propositions, equations and experiments are consistent and

informative. How can we obtain these candidate lists? In

this section, we outline potentially helpful considerations.

These include biological knowledge of processes that con-

tribute to cell–cell interactions, physical sciences expertise
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in mathematical analysis and computer simulation, and

technical limitations of cell-culture and imaging systems.
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4.1. Biological knowledge
When choosing a shortlist of models, it can be helpful to

include models based on existing biological knowledge. If a

set of equations is validated by data, the biologically motiv-

ated propositions underlying models under consideration

can point to additional experiments to probe the limits of

the domain of validity of the equations. If the equations are

rejected by data, the biological propositions can point to pre-

vious experiments that might need to be re-interpreted.

We describe a few examples of how biological knowledge

can improve our ability to build on the cartoon models in §3.

Cells communicate through a variety of cytokines [11]. Thus,

even when population dynamics data are accommodated by

assuming that a single molecule mediates an interaction, it

might be important to target a variety of soluble factors or

receptors in order to change the dynamics of a tissue

system. This insight might not be evident from a mathemat-

ically correct, but biologically uninformed, fit of equations

(1.1) and (1.2). To explore a second example, we note that

the cells in the models in §3 interact either through cell–cell

collisions or through the dispersion of soluble factors. How-

ever, the mechanisms most relevant for a particular

biological tissue system could also involve a combination,

or neither, of these processes. For example, stromal cells

can increase drug resistance in cancer cells via both cell-

adhesion-mediated and soluble-factor-mediated pathways

[12]. Communication modalities other than cell–cell contact

and soluble factors are also possible. Mammary carcinoma-

associated fibroblasts (CAFs) deposit extracellular matrix

(ECM) with altered orientational order, and exposure to

this altered ECM promotes a mesenchymal phenotype in

mammary epithelial cells even in the absence of CAFs [13].

In this example, the signalling factor is not soluble, but,

instead, deposited in place. Direct contact is not required

for the observed communication between CAFs and epi-

thelial cells. Other chemical and physical properties of the

ECM that can influence cell behaviour include stiffness and

cross-linking [14].

Detailed specification of the factors involved in cell–cell

communication is not ‘just stamp collecting’ for the sake of

adding unnecessary realism to models. In §4.2.1, we will dis-

cuss how spatially localized communication can influence

the diversity that emerges in an ecology consisting of interact-

ing subpopulations. Knowledge of the forms in which signals

are delivered from cell to cell is helpful for understanding

whether cell–cell interactions are localized or long-range.

Exosomes provide an example. These microvesicles carry var-

ious cellular contents, including proteins, RNAs and miRNAs

[15]. One difference between secreting proteins directly into

the microenvironment and transporting proteins using exo-

somes is that exosomes have a hydrodynamic radius of

approximately 40–100 nm, rather than a couple of nano-

metres [16]. The Stokes–Einstein relationship thus suggests

that the mean-squared displacement through which a protein

diffuses in a given time interval could be 20–50 times greater

than the mean-squared displacement of the same protein

encapsulated in an exosome. Figure 4 summarizes additional

features of tissue architecture, cell motility and the physical

properties of signalling molecules that can serve as clues to
the spatial extent of cell–cell communication in a biological

system. As an example of how these features can be com-

bined, we describe a mechanism for tissue-wide cell–cell

communication that requires neither cell–cell contact nor

long-range diffusion of soluble factors. Mammary epithelial

cells that have bypassed the p16 arrest barrier (vHMEC)

induce protumorigenic phenotypes in human mammary

fibroblasts (HMFs) through activin A signalling [20]. In

turn, secretions from HMFs promote the motility of the

vHMECs. These observations suggest that even soluble fac-

tors with degradation times too short to survive diffusion

throughout a tissue can still contribute to tissue-wide cell–

cell communication if carried by motile cells before secretion.
4.2. Techniques in mathematical and computational
modelling

To understand what models can be practically analysed

through mathematical data analysis, it is helpful to be

familiar with the kinds of derivations, equations and simu-

lations that are currently applied to study population

dynamics. Current techniques in theoretical analysis and

computer simulation allow for more sophistication than dis-

played by the basic propositions and derivations presented

in §3. We highlight a few examples. Readers who wish to

review introductory material on EGT before investigating

these refinements are referred to [21,22].
4.2.1. Structured populations
In all of the models in §3, there is an assumption of thorough

mixture. Even in those models where the cells are sessile,

every cell is effectively in communication with every other

cell because the signalling factors that disperse throughout

the surrounding medium are themselves well-mixed. In

structured populations, on the other hand, a particular cell

does not interact in the same way with every other cell in

the system. For example, consider a sessile cell that commu-

nicates with other cells by secreting chemical factors. Its

communication with nearby cells might differ from its com-

munication with distant cells if some of the signalling factors

it secretes degrade quickly and can only reach nearby cells.

Adding structure to a population can qualitatively change

the population’s dynamics. For example, Escherichia coli
cells can secrete toxins that antagonize other cells, and the

outcome of competition depends on whether strains are co-

cultured in a well-mixed environment or on soft agar plates

[23,24]. As shown using computer simulations [25], spatial

structure can promote coexistence. Additionally, spatiality

can make some transitions between steady-state popula-

tion compositions more realizable. A well-mixed population

might exhibit bistability; for example, being stable when

purely composed of cell type x, and also being stable when

purely composed of cell type y. A large population initially

composed of cells of type x will restore itself even after sto-

chastic contamination by a small number of cells of type y.

However, in a population broken up into partially isolated

niches, even the appearance of a handful of cells of type y
may move the local population composition into the basin

of attraction of the steady state consisting purely of cells

of type y. After establishing a foothold, subpopulation y
can then expand to take over the entire population [26].

Reviews of mathematical techniques for modelling spatial
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Figure 4. Factors that can contribute to localization versus homogeneous mixture in biological systems. Signalling factors might be relatively localized when
(a) fixed on ECM or (b) encapsulated in bulky vesicles. (c) Smaller soluble factors or (d ) factors carried by hydrodynamic flow could, in contrast, effect long-
range cell – cell communication. Both (e) mammalian cell populations and ( f ) biofilm cellular communities display tissue architecture [17]. Transitions at the
single-cell level (g) between amoeboid and mesenchymal phenotypes described in [18] might allow cells to move through spatially heterogeneous tissues. Socially
coordinated phenotypic specialization can also contribute to spatial dispersal, as (i) when a cell population forms a stalk that supports a subpopulation of spore cells
[19]. (Online version in colour.)
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populations include the previous studies [26,27]. Finally, it is

important to be aware that dynamics equations derived from

non-spatial models can sometimes accommodate population

dynamics from spatially structured systems [28,29]. Thus,

discovering agreement between equations from a non-spatial

model and data does not imply that the data come from a

non-spatial system. Non-spatial analysis can serve as a first

step in analysing coarse features of a biological system

before spatial effects are explicitly taken into account.
4.2.2. Agent-based (individual-based) models
Another limitation of the derivations in §3 is that they gen-

erate differential equations that track only aggregate
population dynamics without providing time-course infor-

mation about the events (e.g. cell division, death,

signalling, etc.) in which any particular cell participates.

Agent-based models (ABMs) address this limitation by

simulating the behaviour of each individual cell (or cluster

of cells). These models have been applied in the study of

cancer [30], for example to describe the expansion of glio-

blastoma multiforme [31] and ductal carcinoma in situ
[32]. In addition to domain-specific applications, ABMs

can also be used to develop general principles of social evol-

ution. For example, Aktipis [33] used an ABM to study

contingent movement. In her model, agents that measured

insufficient production of public goods from their neigh-

bours would ‘walk away’ to find other neighbours. This
helped to protect ‘cooperators’ from being exploited by free-

loaders. Unlike in a corresponding well-mixed system, the

cooperators could avoid being driven to extinction. Pacheco

et al. [34] later used the phrase ‘active linking’ to describe the

ability for agents to choose with which other agents to inter-

act. They found analytic expressions for conditions for the

promotion of cooperation among agents that perform

active linking [34].
4.2.3. Stochasticity
A third limitation in using the replicator equations in

equations (1.1) and (1.2) is that they are deterministic. In

finite populations, stochastic fluctuations are not necessarily

‘averaged out’. Abrupt, irregular jumps in population

number can occur when a particular cell happens to die, or

when two cells happen to collide at a particular time,

rather than immediately before or after. While stochastic

effects might be most familiar to biologists investigating fluc-

tuating chemical reaction kinetics and gene-expression noise

[35], stochasticity is also anticipated to contribute to the

dynamics of multicellular tissue systems [36]. Stochastic

extensions to traditionally deterministic EGT dynamics can

be expressed and analysed using stochastic differential

equations [37], numerically simulated using the Gillespie

algorithm (kinetic Monte Carlo) [38,39] and interpreted in

terms of a selection ‘temperature’ analogous to statistical

mechanical temperature [40].



Table 2. Comparison of experimental population technologies for investigating cellular populations (SPIO, superparamagnetic iron oxide labelling; RH, ionizing
radiation hazard limits frequency of imaging; DOSI, diffuse optical spectroscopic imaging; MRI, magnetic resonance imaging; PET, positron emission tomography;
CT, computed tomography; CTC, circulating tumour cell; asterisk (*) denotes capability might be limited or not yet widely demonstrated to provide quantitative
accuracy; dagger (†) denotes resolution at depth in tissue—see [49] for discussion of dependence of spatial resolution on depth). Order-of-magnitude resolution
estimates are based on assuming densely packed cells with a cell diameter of �10 microns.

technique
time-course
measurements

track bulk
population

track
subpopulations

image niche
structure

resolution
(cells)

in vitro

tissue culture yes yes yes yes ,1

scratch assay [43] yes yes yes yes ,1

invasion assay [43] yes yes yes yes ,1

3D culture [44,45] yes yes yes yes ,1

microecologies [46,47] yes yes yes yes ,1

nanobiopsy [48] yes compatible yes subcellular �1

preclinical

fluorescence imaging [49] yes yes yes yes �108†

window chamber [50] yes yes yes yes �1

SPIO-enhanced MRI [51] yes yes yes �1

clinical

DOSI [52,53] yes yes * yes �108

MRI [54] yes yes yes �106

PET [55,56] RH yes yes �108

CT [55,57] RH yes yes �108

serum markers [58,59] yes * * *

CTCs [60 – 63] yes yes* * ,1

histology no yes yes yes ,1
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4.2.4. Dynamic parameters
As another limitation, we point out that the models in §3 were

used to obtain dynamics equations with constant parameter

coefficients. In these models, the fitness of a cell type can vary

with population composition, but the way in which the fitness

varies with population composition is constant in time. For

example, a population of two cell types might start out with a

composition of px ¼ 0.3, py ¼ 0.7 and a fitness for cells of type

x of fx ¼ 2 d21. This value might change to fx ¼ 3 d21 as the

population composition changes to px ¼ 0.6, py ¼ 0.4. None-

theless, the dependence of fitness on composition is constant

in the sense that fx will always be 2 d21 at each time the popu-

lation has the composition px ¼ 0.3, py ¼ 0.7 and 3 d21 at each

time the population has the composition px ¼ 0.6, py ¼ 0.4.

This constraint seems artificial given that a population of cells

evolving in total number and composition might alter its

environment, including the mechanical features that influence

cell motility and the frequency of cell–cell encounters, as well

as the chemical properties of the medium that carries molecular

signals. In a more general approach, not only could cell num-

bers and cell fitnesses be dynamic, but intercellular signals

and their meanings [41] and consequences for fitness [42]

could also evolve over time. This means that the parameters

A, B, C and D in equations (1.1) and (1.2) might vary.

4.3. Experimental systems
In addition to ensuring that a set of propositions can be theor-

etically analysed, it is necessary to ensure that a biological
system can be experimentally manipulated and observed.

Table 2 lists examples of techniques that can be used to observe

the dynamics of interacting populations in vitro and in vivo. In

addition to traditional tissue culture techniques [43], more

recently developed 3D techniques can be used to investi-

gate aspects of heterotypic tissue structure in vitro [45].

Recently, microfabrication techniques from engineering have

been applied to develop silicon microecologies that allow

cells to explore designed spatial habitat structures and chemi-

cal gradients [46,47], and nanofabrication techniques have

been applied to develop nanopipettes that can probe and

manipulate the molecular state of individual cells and individ-

ual organelles in a non-destructive fashion [48]. Owing to the

relative difficulty and expense associated with in vivo exper-

iments in preclinical and clinical settings, models are often

validated in mechanistic detail in vitro, with a subset of predic-

tions validated in vivo using time-course imaging, fluid biopsy

and histology.
5. Discussion
In the previous manuscript [1], we presented a method for

associating fitting equations with time-course measurements

of dynamic populations. We followed up in this manuscript

by demonstrating how interpretations could be associated

with fitting equations. Taken together, these two manuscripts

show how connections can be established between models

and equations and between equations and data. These steps
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together, not just the establishment of connections between

equations and data alone, constitute an idealized form of

physical modelling.

A single set of differential equations can be derived from

a variety of sets of starting assumptions. We outlined some

considerations that can be used to choose interpretations,

mathematical and computational techniques, and experimen-

tal systems to include in an investigation. In this section, we

describe opportunities for advancing the application of

game theory in biology. In §5.1, we propose that in vivo ima-

ging methods need to be engineered to resolve cell-type

differences. In §5.2, we argue for expanding our concept of

biological systems beyond the concept of ‘systems of cells’.

We conclude in §5.3 by describing the possibility that a

deeper understanding of dissipative structures might even-

tually allow us to identify and to understand the essential

features of biological population systems.

5.1. Engineering clinical and in vivo monitoring
We mentioned that one reason for combining in vitro and in vivo
studies is the relative difficulty and expense of performing pre-

clinical and clinical trials. Table 2 illustrates another reason that

necessitates in vitro experiments. A variety of in vitro techniques

can be used to perform repeated time-course measurements

of the dynamics of individual subpopulations and to image

multicellular spatial arrangements with single-cell, or even sub-

cellular, resolution. However, in vivo methods tend to lack at

least one of these features. Window chamber experiments pro-

vide an exception. Unfortunately, this technique cannot be

applied in clinical trials for ethical reasons. Ethical concerns

also limit the clinical use of fluorescent reporters that allow

different cell types to be distinguished using whole-animal

fluorescence imaging and window chamber methods.

A capability important for validating game theoretical

models is the ability to distinguish between cellular subpopu-

lations in repeated, non-destructive time-course measurements

in vivo. Possibilities for addressing this need without the use of

genetic constructs include multiplexing contrast agents based

on uptake, exclusion, surface binding and periplasmic binding.

For example, if two contrast agents could be attached to two

different antibodies, MRI could then be used to measure the

spatial distributions of different targeted cell surface receptors.

To further distinguish between cell types, one might multiplex

different imaging methods. For example, the spatial distribution

of surface markers could be supplemented by knowledge of the

spatial distribution of haemoglobin and water content in a tissue,

which can be obtained using diffuse optical spectroscopic

imaging [52,53].

5.2. Beyond a focus on the cell
In §4, we gave examples of refinements to traditional EGT

models that might be necessary for modelling the dynamics

of cell numbers with accuracy and detail. In this subsection,

we argue that, even if every change in cell number could

be accurately described, we might still lack a comprehensive

understanding of cancer systems because there is more to

cancer biology than cell number and the cell.
In EGT, a model is typically applied to determine how the

net replication rate of a particular cell type changes in response

to changes in the demographic composition of the overall

population. However, net replication rates are only one pheno-

type of biological interest. For example, it has been recognized
that the consequences of epithelial–stromal interactions

include alteration not just of proliferation and death rates,

but also of cellular arrangement, genomic instability, vascular-

ization and invasiveness [64,65]. Focusing on cell number alone

can, in principle, lead to clinical strategies that conflict with

strategies obtained from a broader perspective. Suppose that a

subpopulation of cells were included as an explicit cell type in

an EGT model. This could be because they were relatively

‘aggressive’. It might not suffice merely to decrease the

number and population fraction of these cells. If these goals

were achieved, but, at the same time, these cells increased

their aggregate output of, say, cachexia-associated cytokines,

then overall outcome might nonetheless be disease progression.

For a more complete understanding of a tissue system’s biology,

it is important to supplement knowledge of the time variation of

population fractions with a model that describes the conse-

quences of these changes for the phenotypes that cells display.

When we apply such models, we might discover that we can

target phenotypes associated with disease without needing to

completely eradicate ‘abnormal’ cell populations.

In applications of EGT to cancer, models are often applied

by identifying the ‘agents’ or ‘replicators’ with cells. The analy-

sis techniques in this tutorial are not specific to the time and

length scales of cells. The mathematical methods in this tutor-

ial are actually often first introduced in undergraduate

chemistry courses as tools for analysing the kinetics of sub-

microscopic chemical reactions [66]. Even though the cell is

sometimes regarded as the fundamental unit of life (on the

Earth), it would probably be valuable to study interactions

between tissues, organs, organisms and organism populations.

One emerging perspective regards cancer metastasis as a dia-

spora of cells migrating in search of high-quality habitats [67].

Pienta et al. [67] have proposed the use of ‘attracticides’, which

are low-quality habitats disguised using cues typically associ-

ated with high-quality habitats. These cues could be

mechanical and chemical. Thus, the interactions that would

be useful to incorporate explicitly in a mathematical model

would not be exclusively limited to interactions between

cells, but would also include interactions between cells and

the spatially heterogeneous chemical and mechanical proper-

ties of their environments. Macklin et al. [32] recently

incorporated the mechanical properties of dying cells into a

patient-calibrated model to understand the relationship

between tumour size and time and the relationship between

calcified tumour size and time in ductal carcinoma in situ.

They found that necrotic cells provided a mechanical stress

relief throughout the bulk of the tumour so that only the pro-

liferation of cells near the leading edge would contribute to

increasing the tumour’s volume. The linear relationships

between tumour size (and calcified tumour size) and time,

as well as the ‘error’ between the two tumour sizes in their

ABM, might someday assist the planning of surgical margins

for lumpectomies. The agents in a game theoretic analysis

need not be confined to a single tissue or organism. Orlando

et al. [68] modelled the combined evolution of tumour cell

number and treatment choices that an oncologist could

make. In this example, one of the interacting agents (the oncol-

ogist) is an organism entirely separate from the patient.
5.3. Developing a fundamental physics of living systems
While adding detail to the assumptions of a model can yield

more realistic simulation results, combining the refinements in



Table 3. Comparison between modern development of the physics of living systems and other far-from-equilibrium systems with previous developments in
Newtonian mechanics, quantum mechanics and equilibrium statistical physics.

Newtonian
mechanics

quantum
mechanics

equilibrium statistical
physics far-from-equilibrium statistical physics

Kepler’s laws Bohr atom Carnot cycle

classical thermodynamics

Belousov – Zhabotinsky reaction

Jarzynski equality

FNET ¼ ma

FGRAV ¼ �
GMm

r2
r̂

ih� d
dt
jcl ¼ Ĥjcl microstates

equal probability postulate

s ¼ ln W

F ¼ �t ln Z

principal properties of emergent relationships in

dissipative systems?

ab initio relationships involving modularity, scales,

topologies?

Neptune transistor Bose – Einstein condensate ?
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§4 potentially renders models more complicated to interpret

and use. It would be helpful to command a fundamental under-

standing of biology that allowed us to pinpoint minimal

propositions sufficient for describing the essential features of

interacting population systems. The physics of dissipative struc-

tures might eventually provide such understanding. In this final

subsection, we summarize this perspective, which relates to

ideas discussed by Goldenfeld & Woese [42], and then comment

on the possibility of proceeding with physical biological

research while a physics of living systems continues to develop.

Physicists sometimes regard living systems as examples of

‘dissipative structures’. To define this phrase, we first describe

the concept of a ‘heat death’. Consider an isolated collection of

dynamic objects (e.g. protons, neutrons, electrons, photons,

etc. in a perfectly sealed and isolated box), which we call a uni-

verse. Over time, the contents of the universe manifest an

equilibrium mixture. Fluctuations can still locally increase or

decrease the concentration of matter and energy, but these

fluctuations then dissipate into the background of homogen-

eity. This inevitable condition is called a heat death.

The contents of the universe might initially be arranged in

a configuration that qualitatively differs from a heat death, for

example with all particles initially concentrated near one

corner of the box. As the contents of the universe redistribute

themselves over time, a subset of the particles might tempor-

arily be arranged in a pattern that exchanges energy and

matter with its surroundings. Specifically, this pattern might

maintain a structure that is temporarily stable or cyclic and

locally distinct not only from the state of heat death, but also

from a state of approaching heat death. This is a dissipative

structure. A dissipative structure can itself be composed of

smaller, interacting dissipative structures.

In principle, dissipative structures include living organ-

isms. Thus, it has been hypothesized that improved

understanding of dissipative systems will suggest relationships

involving the dynamics of the substructures of biological sys-

tems. Based on this perspective, we might study dissipative

structures in hopes of, as an extreme example, developing
intuition about the minimum number of cell types that must

interact to perform a particular function. Such knowledge

might assist in the narrowing down of choices of models and

experimental co-culture systems to investigate.

Table 3 compares models and principles that have con-

tributed to breakthroughs in Newtonian mechanics,

quantum mechanics and equilibrium statistical physics. The

column describing non-equilibrium statistical physics depicts

a field that is not yet fully developed. An empirical approach

remains worthwhile to pursue. In introductory physics, the

quantum mechanical descriptions of rigid objects, strings

and surfaces, as well as the forces between them, are not

usually presented. Nevertheless, Newtonian mechanics is

widely applied to describe the motion of, for example,

masses straddled across pulleys, because the origins of ten-

sion, static friction, kinetic friction, normal force, gravity

and fluid drag need not be understood to complete FNET ¼

ma calculations. A physics of living systems might one day

mature from the physics of dissipative structures, but even

now we are optimistic that interdisciplinary collaboration,

with physical scientists and biologists modelling mechanisms

of cell–cell interaction, with biologists and clinicians identify-

ing tissue systems with relevance to disease, with physicists

and engineers improving methods to image cellular sub-

populations in vivo, and with biologists, clinicians and

patient advocates developing treatment plans, will realize

game theory’s potential to improve our understanding of

cancer and its control.

Acknowledgements. We thank the organizers and participants of the
Princeton Physical Sciences-Oncology Center Workshop on Game
Theory and Cancer, Baltimore, MD, USA, 12–13 August 2013, mem-
bers of the Austin Lab, including Amy Wu, members of the Tlsty
Lab, and Prashant Dogra for valuable discussions.

Funding statement. The work described here was supported by award
U54CA143803 from the US National Cancer Institute. The content
is solely the responsibility of the authors and does not necessarily
represent the official views of the US National Cancer Institute or
the US National Institutes of Health.
References
1. Liao D, Tlsty TD. 2014 Evolutionary game theory for
physical and biological scientists. I. Training and
validating population dynamics equations. Interface
Focus 4, 20140037. (doi:10.1098/rsfs.2014.0037)
2. McEvoy JW. 2009 Evolutionary game theory:
lessons and limitations, a cancer perspective.
Br. J. Cancer 101, 2060 – 2061. (doi:10.1038/sj.bjc.
6605444)
3. Dingli D, Chalub FACC, Santos FC, Segbroeck SV,
Pacheco JM. 2009 Reply: Evolutionary game theory:
lessons and limitations, a cancer perspective. Br. J.
Cancer 101, 2062– 2063. (doi:10.1038/sj.bjc.6605445)

http://dx.doi.org/10.1098/rsfs.2014.0037
http://dx.doi.org/10.1038/sj.bjc.6605444
http://dx.doi.org/10.1038/sj.bjc.6605444
http://dx.doi.org/10.1038/sj.bjc.6605445


rsfs.royalsocietypublishing.org
Interface

Focus
4:20140038

12
4. Miller FR, McInerney D, Rogers C, Miller BE. 1988
Spontaneous fusion between metastatic mammary
tumor subpopulations. J. Cell. Biochem. 36,
129 – 136. (doi:10.1002/jcb.240360204)

5. Miller BE, Miller FR, Heppner GH. 1981 Interactions
between tumor subpopulations affecting their
sensitivity to the antineoplastic agents
cyclophosphamide and methotrexate. Cancer Res.
41, 4378 – 4381.

6. Alon U. 2007 An introduction to systems biology:
design principles of biological circuits. Boca Raton,
FL: Chapman and Hall.

7. Ma W, Trusina A, El-Samad H, Lim WA, Tang C.
2009 Defining network topologies that can achieve
biochemical adaptation. Cell 138, 760 – 773.
(doi:10.1016/j.cell.2009.06.013)
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