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Abstract

Purpose

Early detection and classification of bone tumors in the proximal femur is crucial for their

successful treatment. This study aimed to develop an artificial intelligence (AI) model to

classify bone tumors in the proximal femur on plain radiographs.

Methods

Standard anteroposterior hip radiographs were obtained from a single tertiary referral cen-

ter. A total of 538 femoral images were set for the AI model training, including 94 with malig-

nant, 120 with benign, and 324 without tumors. The image data were pre-processed to be

optimized for training of the deep learning model. The state-of-the-art convolutional neural

network (CNN) algorithms were applied to pre-processed images to perform three-label

classification (benign, malignant, or no tumor) on each femur. The performance of the CNN

model was verified using fivefold cross-validation and was compared against that of four

human doctors.

Results

The area under the receiver operating characteristic (AUROC) of the best performing CNN

model for the three-label classification was 0.953 (95% confidence interval, 0.926–0.980).

The diagnostic accuracy of the model (0.853) was significantly higher than that of the four

doctors (0.794) (P = 0.001) and also that of each doctor individually (0.811, 0.796, 0.757,

and 0.814, respectively) (P<0.05). The mean sensitivity, specificity, precision, and F1 score
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of the CNN models were 0.822, 0.912, 0.829, and 0.822, respectively, whereas the mean

values of four doctors were 0.751, 0.889, 0.762, and 0.797, respectively.

Conclusions

The AI-based model demonstrated high performance in classifying the presence of bone

tumors in the proximal femur on plain radiographs. Our findings suggest that AI-based tech-

nology can potentially reduce the misdiagnosis of doctors who are not specialists in muscu-

loskeletal oncology.

Introduction

The proximal part of the femur, i.e., the head, neck, and trochanteric areas, is one of the most

common anatomic locations for benign bone tumors and tumor-like conditions [1] and a

common location for bone metastasis of malignant tumors from other organs. Primary malig-

nancies, such as osteosarcoma, chondrosarcoma, and Ewing’s sarcoma can also develop at the

proximal femur [2–4]. As high mechanical stress is concentrated during weight-bearing activi-

ties, it is also the most common site of pathological fractures secondary to bone tumors [5, 6].

Therefore, special attention should be paid to tumors involving the proximal femur.

Early detection and classification should be performed to ensure successful treatment of

bone tumors. For primary malignancies, radical surgical resection is possible only when they

are detected in the early stages [2, 3]. Protected weight-bearing, surgical augmentation, or

radiotherapy may be needed to prevent fractures around osteolytic tumors [5, 6]. Although

plain radiographs are widely used for routine screening for bone tumors, a considerable rate of

misdiagnosis upon visual examination has been reported, as bone tumors show various mor-

phologies and common ambiguous features [4, 7, 8]. Computed tomography (CT), magnetic

resonance imaging (MRI), bone scan, and positron emission tomography (PET) are more sen-

sitive in detecting bone tumors; however, the routine use of advanced imaging modalities is

costly and time-consuming.

Advancements in artificial intelligence (AI) technologies are bringing innovations in medi-

cal data analysis [8, 9]. Deep learning, a high-level neural network resembling the human

brain, solves complex problems that low-level artificial intelligence cannot. Of these, convolu-

tional neural network (CNN) models have shown high performance in analysing medical

images with complex patterns. The ability of deep learning in interpreting two-dimensional

medical images has become similar to that of an average human expert in the field [10]. Vari-

ous studies have reported excellent results in diagnosing or classifying a disease using plain

radiography, ultrasound, CT, MRI, microscopy, and endoscopy [9, 11–13]. In this regard, AI

technology may potentially be used to detect bone tumors on plain radiographs. If the AI-

based classification system performs well in clinical practice, the time, cost, and human errors

can be dramatically reduced.

This study aimed to develop and validate an AI classifier to diagnose bone tumors in the

proximal femur on plain hip radiographs. We pre-processed and optimized hip images so that

the deep learning model could achieve higher performance in recognizing lesions in the proxi-

mal femur. Various CNN algorithms have been used to detect and classify bone tumors, and

their performances have been evaluated against practicing orthopaedic surgeons with varying

experience levels.
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Materials and methods

Data collection and labelling

This study was conducted with the approval of the institutional review board. We collected

269 standard hip radiographs showing both proximal femurs in the format of digital imaging

and communications in medicine [14]. All radiographs were taken between January 2008 and

December 2019 at a single center. The presence of benign or malignant tumors in the proximal

femur was confirmed using MRI and tissue specimens. Of the 269 hip radiographs, 89 were

malignant, 120 were benign, and 60 had no tumors in the proximal femur. Images with any

fracture or surgical fixation were excluded from the study to avoid misunderstanding the deep

learning models.

Image pre-processing and augmentation

The hip radiographs were normalised using the min-max normalisation technique [15]. This

technique uses a number between 0 and 1 to map the minimum and maximum pixel values of

each image where the amount of radiation exposure and brightness slightly differ. As only five

hip radiographs had tumors on both sides of the femur, the amount of training data was insuf-

ficient to determine such cases. Therefore, we introduced an automatic technique that divides

the image vertically in half and flips the right-side image to the left. However, the pubic sym-

physis of most patients was not positioned at the exact center of the radiographic image. As

shown in Fig 1, this caused the image to be skewed to one side when the image was cut in half.

To find the proper center of division in asymmetrical images, we applied the following four

pre-processing stages.

First, the images were binarized by assigning a full pixel value (i.e., 1) to every non-zero

pixel (Fig 2) (stage 1). Subsequently, the erosion and dilation processes were introduced to

remove artifacts, such as the “R”-shaped marker (stage 2) [16]. The right and left end coordi-

nates of the remaining body area were identified (stage 3), and the center line was set between

these two coordinates. Finally, the images were divided in half by the center line, flipped (all

right images to the left), and saved in PNG format (stage 4). Through these four stages, a total

of 538 femoral images were aligned with the same (i.e., left) side, thereby making the shape of

the femurs more homogenous for the input data. The number of images for patients with

malignant tumors, benign tumors, and those without tumors increased from 89, 120, and 60

to 94, 120, and 324, respectively.

Fig 1. Example of an original hip radiograph presented asymmetrically on the horizontal axis. As the center of the

body was not positioned at the exact center of the radiographic image, this caused the image to be skewed to one side

when it was cut in half.

https://doi.org/10.1371/journal.pone.0264140.g001
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The cropping process was applied for data augmentation, as shown in Fig 3. Five specific

fields were selected to be located in the top right, bottom right, bottom left, top left, and center

of the images. Then, the images were cut in these fields to be 10% smaller and rescaled to their

Fig 2. Multiple pre-processing stages for a radiographic image. Stage 1: Binarization process giving a full pixel value

to every non-zero pixel. Stage 2: Erosion and dilation process to remove artifacts in the image. Stage 3: Calculation of

the center coordinate (red line) to divide and flip the image. Stage 4: Division and flipping process of femurs to be

aligned with the same (i.e., left) side.

https://doi.org/10.1371/journal.pone.0264140.g002

Fig 3. Illustrations showing the cropping process. Five specific fields were selected to be located in the top right,

bottom right, bottom left, top left, and center of the images. The images were cut in these fields to be 10% smaller than

their original size, and were rescaled to their original size.

https://doi.org/10.1371/journal.pone.0264140.g003
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original size. By this process, the total number of training images could be increased six times

[17]. The overall pre-processing was finally completed by performing equalization [18] and

image resizing. We applied equalization [18] to balance the overall image brightness and dark-

ness, and resized their height and width to 500 and 300, respectively, as the aspect ratio of the

original images was approximately 1.7:1.

Application of CNN models

Several CNN algorithms were applied to the classification system, including ResNet 50 [19];

GoogleNet Inception v3 [20]; and EfficientNet-b1, b2, and b3 [21], all of which performed well

in various real-world image classification tasks. For better optimization of these models, we

applied a transfer learning technique that used the weight of each model pre-trained with the

ImageNet dataset as an initial network parameter [22].

We trained each CNN model to perform three-label classifications (benign, malignant, or

no tumor) on each femur, as illustrated in Fig 4. We also set the number of input images differ-

ently according to the input requirements of each CNN model. In the case of ResNet50 and

Inception v3, target images were duplicated thrice, as these models require three input chan-

nels. Because EfficientNet models can be configured as one input channel, each image was

used as an input without such duplication. Except for the number of input channels, we used

the same number of epochs, input image size, learning optimizer, learning rate per each epoch,

and loss function when training and testing different models. The settings were finally adjusted

to produce the highest classification performance of the best performing model. Epoch was set

to 50, and the batch size was set to 8. Learning rates started from 0.1, divided by 10 every 10

epochs, and stochastic gradient descent was used as the optimizer. Cross entropy was used as

the loss function for model training and validation. We implemented the system on PyTorch

with a single graphic-processing unit of NVIDIA GeForce GTX 1080Ti.

Performance evaluation

The performance of each CNN model for three-label classification was evaluated using the fol-

lowing six measurements: the area under curve (AUC) for receiver operator characteristics

(ROC), accuracy, sensitivity, specificity, precision, and F1 score. Accuracy refers to the propor-

tion of the total number of test samples in which the CNN identifies the true labels. Precision

and sensitivity are defined as the class-wise averages of proportions correctly detected among

all samples detected by target class and all samples of the target class, respectively. The F1 score

denotes the harmonic mean of precision and sensitivity. As the task was three-label classifica-

tion, we calculated three groups, namely, true positive (TP), false positive (FP), and false nega-

tive (FN), by selecting a target label i 2 {1, 2, 3} as positive and other labels, excluding the

Fig 4. Deep learning framework for classification of bone tumors in the proximal femur. The convolutional neural

network model was trained to classify each image into one of the 3 classes (benign, malignant, and no tumor).

https://doi.org/10.1371/journal.pone.0264140.g004
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target label, as negative.
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where Ti is the number of testing samples with both label and estimate equal to i. Dtest is the

total number of testing samples, and TPi, FPi, and FNi indicate true positive, false positive, and

false negative, respectively. Precisioni, Sensitivityi, and F1 scorei indicate the precision, sensitiv-

ity, and F1 score, respectively, when a label i is selected as positive. The final values of precision

and sensitivity were calculated using class-wise averages of each value.

Examination by human doctors

In order to better understand the clinical efficacy of the deep learning models, their perfor-

mance was compared to those of the human doctors. Four orthopaedic surgeons participated

in the examination of the same hip radiographs as those used for training of the CNN models.

The doctors were composed of two general orthopaedic surgeons and two musculoskeletal

tumor specialists. To ensure the fairness of the test, doctors who had participated in the ground

truth labelling of the corresponding data were excluded. As human doctors usually find lesions

by comparing two femurs on a single radiograph, the original hip radiographs showing both

femurs were provided. All clinical information, including age, sex, name, patient number, and

date, was blinded before the examination. The doctors were asked to perform the three-label

classification on each of the left and right femurs.

Statistical analysis

The accuracy, sensitivity, specificity, precision, and F1 score for three-label classification of

each CNN model and human doctor were evaluated by fivefold cross-validation [23]. These

values were described as the mean and standard deviation. The AUC for each CNN model was

calculated according to the micro-average scale (i.e., the average AUC of each class), and 95%

confidence intervals (CIs) were described. The diagnostic accuracy for three-label classification

was compared between the best-performing CNN model and each of the human doctors using

the chi-squared test. All statistical analyses were performed using SPSS Statistics version 27.0

software (IBM Corp., Armonk, NY, USA). Statistical significance was set at P of<0.05.

Ethical approval

This study was conducted under the approval of the institutional review board (IRB) of Sam-

sung Medical Center (IRB Number: 2020-11-143). All medical records at Samsung Medical

Center were accessed from November 2020 to August 2021. As this study was a non-
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interventional retrospective study and all data were fully anonymized prior to access, the IRB

waived the need for individual informed consent.

Results

Performance of CNN models

Table 1 lists the results of the three-label classification performed by each CNN model. Among

the CNN models, EfficientNet-b2 outperformed the other models in all performance metrics.

The mean accuracy, sensitivity, specificity, precision, and F1 score of the EfficientNet-b2

model were 0.853 ± 0.050, 0.822 ± 0.087, 0.912 ± 0.034, 0.829 ± 0.089, and 0.822 ± 0.065,

respectively. The micro-average AUC for each CNN model is shown in Fig 5. The Efficient-

Net-b2 model outperformed the other CNN models in terms of AUC. EfficientNet-b2 had an

AUC of 0.953 (95% CI, 0.926–0.980), whereas ResNet50 was 0.928 (95% CI, 0.893–0.963),

Inception v3 was 0.929 (95% CI, 0.907–0.951), EfficientNet-b1 was 0.927 (95% CI, 0.898–

0.956), and EfficientNet-b3 was 0.944 (95% CI, 0.911–0.977). As EfficientNet-b2 marked the

best performance indicators, we adopted it as the representative evaluation model.

Comparison with human doctors

The three-label classification performance was compared between the adopted CNN model

(EfficientNet-b2) and four human doctors (Table 2). The diagnostic accuracy of the model

(0.853) was significantly higher than the average value of four doctors (0.794) (P = 0.001) and

was significantly higher than that of each human doctor (0.811, 0.796, 0.757, and 0.814, respec-

tively) (P<0.05). The mean sensitivity, specificity, precision, and F1 score of the four doctors

were 0.751 ± 0.069, 0.889 ± 0.028, 0.762 ± 0.070, and 0.797 ± 0.049, respectively. In particular,

the adopted model outperformed the best scores from human doctors for all parameters,

except for the F1 score from one doctor. Over 5% improvement in the accuracy, sensitivity,

and precision was observed, when compared to the average of human doctors. In terms of

specificity, the adopted model recorded a smaller performance improvement of approximately

2% as compared to the human average.

Validity of image pre-processing

To verify the validity of image pre-processing procedures proposed in this study (Fig 2), the

performance of the CNN model with and without applying these procedures were compared.

In case of the model without the pre-processing procedures (i.e., basic scheme), the network

was trained to perform the three-label classification (benign, malignant, or no tumor) using

the original hip radiograph (i.e., the initial image in Fig 2). In such cases, all other procedures

(e.g., cropping [Fig 3] and equalization procedures) were set in the same manner, except for

Table 1. Comparison of diagnostic performance for each Convolutional Neural Network (CNN) model.

CNN model Accuracy Sensitivity Specificity Precision F1-Score

ResNet50 0.810 ± 0.046 0.764 ± 0.088 0.889 ± 0.046 0.780 ± 0.059 0.800 ± 0.045

Inception v3 0.821 ± 0.029 0.778 ± 0.087 0.892 ± 0.035 0.786 ± 0.054 0.778 ± 0.054

EfficientNet-b1 0.835 ± 0.054 0.784 ± 0.074 0.896 ± 0.033 0.809 ± 0.082 0.794 ± 0.067

EfficientNet-b2 0.853 ± 0.050 0.822 ± 0.087 0.912 ± 0.034 0.829 ± 0.089 0.822 ± 0.065

EfficientNet-b3 0.842 ± 0.040 0.787 ± 0.090 0.900 ± 0.036 0.818 ± 0.088 0.797 ± 0.068

The values are given as the mean and the standard deviation by 5-fold cross validation.

https://doi.org/10.1371/journal.pone.0264140.t001
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the four pre-processing stages described in Fig 2. The size of all input images was adjusted to

be 500×500. The best performing CNN algorithm (EfficientNet-b2) was used for comparison.

The accuracy of the model with proposed pre-processing procedures (0.853 ± 0.050) was

significantly higher than that of the basic scheme (0.747 ± 0.027) (Table 3). The average sensi-

tivity (0.822 ± 0.087), specificity (0.912 ± 0.034), precision (0.829 ± 0.089), and F1-score

(0.822 ± 0.065) of the model with pre-processing procedures were significantly higher than

those of the basic scheme (0.738 ± 0.124, 0.878 ± 0.057, 0.735 ± 0.071, and 0.725 ± 0.070,

respectively). The new pre-processing approach improved the mean sensitivity, specificity,

Fig 5. Micro ROC curves for each CNN model in the classification task. EfficientNet-b2 (0.953 AUC) outperformed

the other networks. The mean and the standard deviation were given through 5-fold cross validation. ROC, receiver

operating characteristic; CNN, convolutional neural network; AUC, area under the curve.

https://doi.org/10.1371/journal.pone.0264140.g005

PLOS ONE AI-Based Classification of bone tumors in the proximal femur on plain radiographs

PLOS ONE | https://doi.org/10.1371/journal.pone.0264140 February 24, 2022 8 / 14

https://doi.org/10.1371/journal.pone.0264140.g005
https://doi.org/10.1371/journal.pone.0264140


precision, and F1-score by 0.084, 0.034, 0.094, and 0.104, respectively. ROC curves were plot-

ted with the calculation of AUC (Fig 6). The AUC of the model with pre-processing (0.953;

95% CI, 0.926–0.980) was also higher than that of the basic scheme (0.897; 95% CI, 0.852–

0.942).

Inference time for each model

The mean running time for each CNN model to diagnose bone tumors on both proximal

femurs using individual hip radiograph is described in Table 4. All backbone CNN models

produced a mean inference time of less than 0.1 seconds, supporting that the AI models can be

effective for decision-making in the clinical setting.

Visualization of decision task

To identify which part of the input image led to the final decision of the adopted CNN model,

a technique called gradient-weighted class activation mapping (Grad-CAM) was used [11, 24].

Fig 7 shows the visualization results of Grad-CAM, which highlights the area between the head

and trochanteric regions of each femur. In all images with benign and malignant tumors,

Grad-CAM revealed that the model recognized tumors in the proximal femur.

Discussion

In this study, we developed and validated an AI-based model to classify the presence of bone

tumors in the proximal femur. We used five CNN algorithms to take 538 femoral images as

training input to classify normal femurs and those with benign and malignant tumors. Among

the five CNN models, EfficientNet-b2 model showed the best accuracy, sensitivity, specificity,

precision, F1 score, and AUC. The diagnostic accuracy of EfficientNet-b2 model was signifi-

cantly higher than that of the four human doctors Deep learning models with small parameters

are known to be effective for learning small datasets [25]. Since EfficientNet-b2 requires fewer

learning parameters than -b3, the learning data size in the current study was considered more

Table 2. Comparison of between the best performing Convolutional Neural Network (CNN) model and the human doctors.

Accuracy P-Value Sensitivity Specificity Precision F1 Score

EfficientNet-b2 0.853 ± 0.050 0.822 ± 0.087 0.912 ± 0.034 0.829 ± 0.098 0.822 ± 0.065

Doctor 1 0.811 ± 0.030 0.047 0.740 ± 0.079 0.887 ± 0.038 0.764 ± 0.074 0.791 ± 0.051

Doctor 2 0.796 ± 0.063 0.018 0.709 ± 0.105 0.888 ± 0.032 0.742 ± 0.107 0.768 ± 0.082

Doctor 3 0.757 ± 0.015 <0.001 0.819 ± 0.035 0.897 ± 0.019 0.768 ± 0.044 0.844 ± 0.025

Doctor 4 0.814 ± 0.032 0.004 0.736 ± 0.057 0.885 ± 0.022 0.775 ± 0.056 0.786 ± 0.039

Mean Doctors 0.794 ± 0.035 0.001 0.751 ± 0.069 0.889 ± 0.028 0.762 ± 0.070 0.797 ± 0.049

The values are given as the mean and the standard deviation. P-values were described to compare the diagnostic accuracy of the adopted CNN model (EfficientNet-b2)

and that of the human doctors.

https://doi.org/10.1371/journal.pone.0264140.t002

Table 3. Comparison of diagnostic performance between using and not using the proposed pre-processing procedures.

Accuracy Sensitivity Specificity Precision F1-Score

Proposed scheme 0.853 ± 0.050 0.822 ± 0.087 0.912 ± 0.034 0.829 ± 0.089 0.822 ± 0.065

Basic scheme 0.747 ± 0.027 0.738 ± 0.124 0.878 ± 0.057 0.735 ± 0.071 0.725 ± 0.070

The values are given as the mean and the standard deviation by 5-fold cross validation. The best performing CNN model (EfficientNet-b2) was used for comparison.

https://doi.org/10.1371/journal.pone.0264140.t003
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suitable for -b2. Beyond the superiority of the AI model over human doctors shown in this

study, future studies with more training data and larger networks would further advance the

diagnostic performance of AI models in this subject.

Diagnosing bone tumors on plain radiographs is challenging, even for orthopaedic sur-

geons with considerable clinical experience or musculoskeletal radiologists. In general, human

doctors diagnose bone tumors with “pattern recognition” using the location, shape, size, den-

sity, and margin of the tumor [8]. Among them, the most important clue is the margin, that is,

the zone of transition [26]. A bone tumor with a narrow zone of transition, usually a benign

tumor, is more apparent on radiographs. However, a malignant bone tumor is often not

detected by human vision unless an obvious radiolucency or cortical destruction is observed.

Although malignant bone tumors with osteoblastic or sclerotic characteristics can be more eas-

ily detected as they have a narrow zone of transition, they are often misdiagnosed as benign

tumors [27]. Moreover, as the border of osteolytic tumors is unclear in patients with severe

osteoporosis, the possibility of misdiagnosing them is high.

Significant progress has been made for AI-based analysis of plain radiographs [12, 13].

Characteristics used to diagnose bone tumors in radiographs, including the shape, matrix,

density, and zone of transition, are considered suitable for application in the deep learning

algorithm [8]. However, for musculoskeletal tumors, the application of machine learning tech-

nology has been sparsely reported. We found two reports that applied deep learning algo-

rithms to detect bone tumors on plain radiographs. He et al. [8] applied a deep learning model

to classify bone tumors on various radiographs from 1,356 patients. They obtained an AUC of

0.894 to distinguish between benign and non-benign tumors and an AUC of 0.907 to distin-

guish between malignant and non-malignant tumors. When the diagnostic accuracy of the

Fig 6. Micro ROC curves for EfficientNet-b2 model using the basic scheme and the proposed pre-processing method. The proposed

method improved the AUC by more than 5%. The mean and the standard deviation were given through 5-fold cross validation. ROC,

receiver operating characteristic; AUC, area under the curve.

https://doi.org/10.1371/journal.pone.0264140.g006

Table 4. Inference time for each Convolutional Neural Network (CNN) model.

Resnet50 Inception V3 EffcientNet-b1 EffcientNet-b2 EffcientNet-b3

Inference time (seconds) 0.034 ± 0.014 0.049 ± 0.013 0.050 ± 0.014 0.048 ± 0.013 0.058 ± 0.015

The values are given as the mean and standard deviation through validation of whole samples.

https://doi.org/10.1371/journal.pone.0264140.t004
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model was compared with that of clinicians, it was higher than that of junior radiologists and

similar to that of subspecialists. Do et al. [28] also developed a model to detect and classify

bone tumors of the distal femur and proximal tibia and reported high diagnostic accuracy of

99%.

We found that the diagnostic performance of the CNN model was excellent in terms of

accuracy, sensitivity, specificity, precision, and F1-score. One of the reasons for the high diag-

nostic accuracy was the use of standardized hip radiographs. Since anteroposterior hip radio-

graphs can visualize lesions in the pelvic bone and both proximal femurs with low cost and

effort, they are frequently used as the initial imaging test for patients complaining of hip and

thigh discomfort. In addition, several image pre-processing stages have been adopted for hip

radiographs to be better recognized by the AI model [15–18, 29]. The images were normalised

Fig 7. Gradient-weighted Class Activation Mapping (Grad-CAM) to show which part of the input image led to the

classification decision of the deep learning model. The Grad-CAM revealed that the model classified the images

based on the presence of tumors in the proximal part of each proximal femur. (a) Grad-CAM highlights the location of

malignant tumor confirmed by magnetic resonance imaging (MRI). (b) Grad-CAM highlights the location of benign

tumor confirmed by MRI.

https://doi.org/10.1371/journal.pone.0264140.g007
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using the min-max technique to reduce deviations between images due to variations in radia-

tion exposure [15, 29]. Using the binarization process, the noise in the image was removed,

and the boundary of the radiopaque area was clarified to identify the exact center of the body.

Unnecessary black areas, letters, and markers in the image were removed through erosion and

dilation [16].

The most important feature in the development of the current model is the division and

flipping process to align the femoral images in one direction. Anteroposterior hip radiograph

is one of the rare human radiographs that can be symmetrically divided into left and right. The

flipping process, which converts all the right femur images to left femur images, not only helps

the deep learning algorithm to focus more on a specific femoral lesion but also increases the

number of normal femurs. The division process for radiographs with tumors on one side of

the femur generates one femur with and one without the tumor, thereby increasing the normal

data by approximately five times. This increase in the amount of normal data can further

improve the classification performance of the model. As the division provides more informa-

tion on normal data, the deep learning model can more clearly understand the difference

between normal and abnormal cases.

An artificial neural network in deep learning algorithms is considered a black box. Recogniz-

ing what exact characteristics of the input data determine the decision of the algorithm is diffi-

cult. In practice, deep learning algorithms often find answers by learning from parts other than

human interests. Grad-CAM is being used as a method to evaluate whether the AI is aware of

the lesion of interest on the image [11, 12, 24]. We were able to confirm that the deep learning

algorithm accurately recognizes the lesion of the proximal femur through Grad-CAM. Notably,

we trained the CNN models without providing any information about the tumor location. From

this point of view, the Grad-CAM also indicated that the CNN model learned the tumor location

by itself, thereby verifying the validity of the high diagnostic performance of our model.

To our knowledge, the current study is the first to develop an AI model to classify bone

tumors in proximal femurs on simple hip radiographs. One of the strengths of this classifier is

that it is not a binary system that distinguishes normal femur and bone tumors, rather it is a

tertiary output system that distinguishes normal tissues, benign tumors, and malignant

tumors. We achieved high diagnostic performance owing to the pre-processing, which

removed unnecessary information on images and increased the number of training images.

This classifier is expected to have a high clinical utility because it uses a single radiograph com-

monly used in clinical practice.

This study has several limitations. First, the total number of hip radiographs used in this

study was not sufficiently large. However, 214 femurs with bone tumors is not a small sample,

considering the incidence of tumors occurring in the proximal femur. Second, patient infor-

mation, such as age, sex, and clinical symptoms, was not used as an input for the deep learning

algorithm. Higher diagnostic performance can be expected when additional information is

used in future models. Lastly, if the AI model can provide information on the risk of pathologi-

cal fractures in the proximal femur through the following study, the clinical utility of the

model will be further increased.

Conclusions

The AI-based model demonstrated excellent performance in classifying bone tumors in the

proximal femur on plain hip radiographs and revealed a significantly higher diagnostic accu-

racy than that of practicing orthopaedic surgeons. Given the high accuracy and sensitivity of

the diagnostic model developed in this study, AI-based technologies can potentially reduce the

rate of misdiagnosis by doctors who are not specialists in musculoskeletal oncology.
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