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Abstract: The current environmental situation requires taking actions regarding processes for energy
production, thus promoting renewable energies, which must be complemented with the development
of routes to reduce pollution, such as the capture and storage of CO2. Graphene materials have been
chosen for their unique properties to be used either as electrocatalyst or as catalyst support (mainly
for non-noble metals) that develop adequate efficiencies for this reaction. This review focuses on
comparing experimental and theoretical results of the electrochemical reduction reaction of carbon
dioxide (ECO2RR) described in the scientific literature to establish a correlation between them. This
work aims to establish the state of the art on the electrochemical reduction of carbon dioxide on
graphene-based catalysts.
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1. Introduction

Over the last few decades, the drastic increase of carbon dioxide into the atmosphere
has caused global warming and the acidification of the oceans, among other environmental
problems, thus leading to climate change. The accelerated consumption of fossil fuels
has been the priority factor in these problems, but it has not only caused a crisis in the
environmental field but also brought an energy crisis. This is a fact that also affects health
because air pollution is the sixth-leading cause of death, causing over two million prema-
ture deaths worldwide in addition to increasing asthma, respiratory diseases, diseases
cardiovascular disease, cancer, etc. [1]. To put an end to this environmental situation, the
Paris Agreement, which aims to keep the global temperature rise below 2 ◦C by 2100
and limit the temperature increase to 1.5 ◦C above pre-industrial levels, was drawn up in
2015 [2].

For this, complementary strategies are needed to the transition towards renewable
energies, including the capture and storage of CO2, which help, together with natural
processes (photosynthesis and underground mineralization), to balance the presence of CO2
in the atmosphere [3]. Carbon capture and use (CCU) has arisen to reduce carbon emissions
by using CO2 as a raw material. Some examples include the production of methanol,
dimethyl carbonate, and sodium carbonate; however, not all of these are sustainable. In
this regard, most of these processes require significant energy inputs that carry carbon
footprints themselves. Due to these problems related to economic viability, it is difficult to
analyze the sustainability of CCU technology [4].

Therefore, it is necessary to develop innovative strategies that are capable of con-
verting carbon dioxide into products of energy value (e.g., hydrocarbons and alcohol),
thus increasing its applications while reducing emissions. Among the possible conversion
products, formic acid has been proposed as a suitable material for the combination of
hydrogen storage and CO2 fixation. This compound is easy to store and transport, can be
used directly in direct formic acid fuel cells (DFAFCs), and releases H2 at room temperature
using suitable metal catalysts [5–7]. Other oxygenated products, such as methanol and
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ethanol, are promising due to their high energy density, safety, and easy storage; addition-
ally, like formic acid, they present the possibility of working directly in fuel cells. On the
other hand, ethylene has enormous added value [8,9]. Of the different ways of converting
CO2, chemical, photochemical, and electrochemical reductions stand out. Specifically, the
electrochemical reduction process has been extensively investigated in recent years [10].

CO2 is a very stable molecule under environmental conditions, and its electrochemical
reduction reaction (ECO2RR) is an endothermic process that requires the participation of
multiple electrons and protons. Furthermore, the reaction intermediates of the different
stages form various products in turn, depending on the material used as cathode and the
applied potential (reduction potential values for Equations (1)–(10) are given relative to a
reversible hydrogen electrode (RHE) at pH 7, 1.0 atm, and 25 ◦C in aqueous solution) [11,12].
Due to this, the selectivity for the desired products is not usually very high, and it is also
conditioned by the hydrogen evolution reaction (HER; E0 = 0.000 V), which competes with
the reaction under study. This currently raises the following challenges for the ECO2RR:
the need for an increased reaction efficiency, the need for a decreased overpotential to
overcome energy barriers and suppress the HER, and the need to obtain moderately high
current densities for commercial applications [13,14].

CO2(g) + 2H+ + 2e− → eHCOOH (l) E0 = −0.02 V (1)

CO2(g) + 2H+ + 2e− → eeq (g) + H2O (l) E0 = −0.10 V (2)

CO2(g) + 8H+ + 8e− → eCH4(g) + 2H2O (l) E0 = 0.17 V (3)

2CO2 + 12H+ + 12e− → 2C2H4(g) + 4H2O (l) E0 = 0.08 V (4)

CO2(g) + 6H+ + 6e− → eCH3OH(l) + H2O (l) E0 = 0.02 V (5)

2CO2(g) + 12H+ + 12e− → 2C2H5OH(l) + 3H2O (l) E0 = 0.09 V (6)

CO2(g) + 4H+ + 4e− → eeq Eq(l) + H2O (l) E0 = −0.07 V (7)

2CO2(g) + 2H+ + 2e− → eH2C2O4(l) E0 = −0.50 V (8)

2CO2 + 14H+ + 14e− → 4C2H6(g) + 4H2O (l) E0 = 0.14 V (9)

CO2(g) + e− → CO2
•− E0 = −1.900 V (10)

For these reasons, current research is focused on the development of electrocatalysts
that are chemically stable and inexpensive, have an appropriate shelf life, have an adequate
product selectivity to promote their formation, and (ultimately) have the ability to operate
at industry-acceptable current densities [13,15]. Various catalysts have been developed to
improve the energy efficiency of the electrochemical reduction of CO2 with metals from
the d-block (Cu, Co Pt, Fe, Au, Pd, Ag, Zn, Ni, etc.) and from the p-block (In, Sn, Pb, Bi,
etc.) [10,16–20]. Specifically, Cu is a unique metallic catalyst for this reaction because it can
efficiently reduce CO2 to hydrocarbons and oxygenates such as alcohols (either methanol
or ethanol), carbon monoxide, and formic acid/format [8,9,21].

However, in certain cases, excessive overpotentials are required and current densities
are not very high. Additionally, for other reasons such as toxicity and the cost of metals,
it is intended to develop catalysts without noble metals that can generate the products
with acceptable efficiency and conditions [7,22–24]. To achieve these catalysts, carbon-
based materials are being investigated with special interest due to their wide range of
possible nanostructures and because they may adsorb hydrogen and suppress the HER
at low overpotentials [25]. Among the wide variety of these materials, graphene (G) and
graphene materials (GMs) have become particularly important. In terms of electrochem-
ical activity, pristine graphene is not active for the CO2 electroreduction. However, the
electrocatalytic activity is enhanced after doping with oxygenated groups and other het-
eroatoms (Figure 1) [7,26]. Nitrogen was used with the first metal-free G-based catalyst for
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the ECO2RR, and it is the most widely used heteroatom [22,24,25], although there have
been studies with others such as B [23], P [15], S [7], F, Cl, Br, and I [11].
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Reaction Mechanism: Key Intermediates, Rate-Determining Steps and Products

The single electron reduction of CO2 to a CO2
•− radical occurs at E0 = −1.90 V vs.

RHE (Equation (10)) with a high energy contribution so that it accepts an electron, which
causes the molecule to lose its initial linear structure and generate a bent radical anion. The
lifetime of this radical is very short, thus making it difficult to clearly know its structure.
Despite this, it has been established that, for Cu—which is the most studied metal (although
it can be generalized for Ag and Au, given their similarity in terms of reaction kinetics
and electronic properties)—the bond angle and the distance change, giving rise to the
carboxylate intermediate η2 (C,O)-CO2

•− adsorbed on the metal surface [11,27–29].
Proton-coupled multi-electron steps for the ECO2RR are generally more favorable

than single electron reductions due to the more thermodynamically stable molecules that
are produced (Equations (1)–(9)). Furthermore, these reactions are influenced by the pH of
the electrolyte, and diverse species may therefore be promoted by a specific concentration
of protons in the solution [30]. The species produced depend on the catalyst surface nature,
e.g., if the CO2 adsorption occurs trough carbon, OCHO* is obtained, but if it is trough
oxygen, COOH* is formed (* represents an adsorbed species). Hydrogen adsorption and
the HER may also occur at the same potential range than the ECO2RR, and a competition
between both reactions may consequently happen. Then, it is possible to reach a whole
series of C1 compounds such as HCOOH, HCHO, CH3OH, and CH4 through both routes.
To produce C2+ (hydrocarbons and oxygenate species, e.g., C2H4, C2H6, and C2H5OH), the
coupling of C1 intermediates is required so that a C–C bond is formed [27,28,31].

Another important adsorbed intermediate is *CO, which is the common species for
most of the products that are subsequently generated because of its stability. Its protonation
can occur trough carbon in order to generate CHO* or trough oxygen to obtain COH*,
but the first option is more common. This protonation is one of the most important rate-
determining steps [28]. It should be noted that a strong CO* bonding poisons the catalyst,
and the HER is preferred. On the other hand, weak CO* adsorption can result in CO
desorption, and the reduction will therefore not continue towards other C1 products [13].

Figure 2 depicts two pathways to generate *CHO. One of them is through the following
species: COOH*, CO*, and CHO*. The other one is through the following species: OCHO*,
HCOOH* and CHO*. In this regard, thermodynamics dictate that OCHO* is more favorable
than COOH*, although the latter has been more reported in the literature [27].
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Another crucial anion that is formed as an intermediate is the dimer (CO)2
−, which

has a relevant role in the mechanisms for the formation of C2 species. Proton transfer only
occurs once the dimer has formed; consequently, dimer formation is the step that limits the
rate of the reaction for the formation of these species with two C atoms [30].

2. Graphene-Based Catalysts
2.1. Metal-Free Graphene-Based Electrocatalysts

Most of the works reported in the literature have studied the ECO2RR with graphene
materials before preparing the composite with the metal, thus serving as a reference. In
general, the ECO2RR results of metal-free graphene materials are bad, and the efficiencies
are low. Thus, in the work of Huang et al., partially-oxidized, 5-nm cobalt nanoparticles
(PO-5 nm Co) dispersed on a single-layer nitrogen-doped graphene (SL-NG) (denoted as
PO-5 nm Co/SL-NG) were synthesized and employed for the ECO2RR [19]. SL-NG activity
is even worse than for PO-Co, and only PO-Co/SL-NG is interesting due to the synergistic
effect that occurs after its combination. Something similar was obtained in the work of
Ning et al. with cuprous oxide supported on reduced graphene oxide (Cu2O/rGO) and
cuprous oxide supported on nitrogen-doped reduced graphene oxide (Cu2O/N-rGO) [9].
The authors added additional information with data for rGO and N-rGO. The results were
not good either because for both GMs, the main product was H2. Because of these data, it
can be concluded that these GMs are not active materials for the ECO2RR, even after being
doped with N [9].

Other studies have confirmed this fact [33–35]. In the work of Xiong et al. [34], Cu-
Sn catalysts were supported on N-doped graphene (NG). For this material, the majority
product in the ECO2RR is H2, and the faradaic efficiency (FE) for this gas reaches 79% at
−1.0 V vs. RHE, while it decreases to 68% and 42%, respectively, for Cu/NG and Sn/NG
following the previous trend that proves the low activity of GMs for the reaction under
study [34]. Additionally, in the work of Hossain et al. [33], in which they deposited Cu
nanoparticles (NPs) on rGO, the researchers showed that the catalytic activity of rGO is
very similar to that of unsupported Cu NPs, both being very low (Figure 3).
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Chen et al. developed a 2D/0D composite catalyst formed from bismuth oxide
nanosheets and nitrogen-doped graphene quantum dots (Bi2O3-NGQDs) [35]. The electro-
chemical response of Bi2O3 and Bi2O3-NGQDs is shown in Figure 4 and is compared with
that of the graphene material, NGQDs. By comparing the current densities and the FEs for
formate production, it was found that the activity of the NGQDs is extremely low, with an
FE of around 15%, while the Bi2O3 and Bi2O3-NGQD present FEs close to 85% and 100%,
respectively, at a potential of −0.9 V (vs. RHE) [35].
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Despite the low activities shown in the works mentioned above, there are several
strategies to design efficient metal-free electrocatalysts for the ECO2RR. For instance, Wu
et al. prepared NGQDs that exhibit a high total carbon dioxide reduction efficiency of
up to 90%, with selectivity for conversions to ethylene and ethanol reaching 45% in 1 M
KOH [36]. Furthermore, the amounts of C2 and C3 species produced are comparable to
those of electrocatalysts based on Cu NPs. The great difference in the results employing
similar materials may be related to the synthetic method, the pH, and the counterion,
among other factors.

Other significant work is reported by Han and col. that prepared graphene (G),
nitrogen-doped graphene (NG), edge-rich graphene (EG), and defective graphene (DG).
DG was synthesized through the elimination of the nitrogen atoms from an NG structure,
which caused many topological defects that offered abundant catalytically active sites,
high electronic conductivity, and strong CO2 adsorption [7]. This work revealed the great
potential of DG as a metal-free GM for the ECO2RR. DG exhibited an excellent FE of
84% for CO production at −0.6 V (vs. RHE), with a smaller overpotential and a higher
electrocatalytic activity toward the ECO2RR in comparison with the rest of materials
(Figure 5).
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Furthermore, the DG electrocatalyst was relatively stable after 10 h of the continuous
ECO2RR at −0.6 V (vs. RHE) (Figure 6a). In addition, Figure 6b reveals the operating
mechanism and the best performance of the DG catalyst. Indeed, a Tafel slope value of
139 mV·dec−1 was obtained for DG, which indicates the initial electronic transfer to the
adsorbed CO2 molecule to form the intermediate CO2

•− as the rate-determining step (RDS).
The rest of the catalysts showed higher Tafel slope values that indicated the slower kinetics
for the RDS [7].
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2.2. Graphene-Supported Metal Nanoparticles

The results described in the bibliography show that each metal catalyst exhibits
differences in terms of efficiency and selectivity to reduce CO2 to different products.
However, when graphene materials are used as metal support, there is a reduction in the
free energy of the reaction in comparison with unsupported metal catalysts [16,18,27,37]. By
applying DFT (density functional theory) calculations, Lin et al. showed that the interaction
with graphene produces a strong influence on the formation of COOH* and CHO* species,
as well as the suppression of HCOOH (Figure 7) [18]. With a higher Fermi level than
CO2 molecules, the upper graphene layer injects electrons into the nonbonding orbitals of
COOH* and CHO*, resulting in charge redistribution and electrostatic interaction between
the molecules and graphene. The last reduces the free energies of the reaction and the
onset potentials of crucial reaction steps (Figure 7b). Figure 7a shows the decrease in
the free energy due to the incorporation of graphene; the reaction is consequently more
thermodynamically favorable for both pathways (COOH* and CHO*), with the effect on
the production of hydrocarbons being more significant in comparison with HCOOH [18].
Interestingly, these theoretical results have been confirmed with experimental studies [9,38].
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Hossain et al. designed an easy procedure to synthesize a nanostructured thin film
comprising NPs of Cu on rGO obtained by the direct electrochemical reduction of a mixture
of copper and GO precursors [33]. The Cu (NP)/rGO film exhibited excellent stability and
catalytic activity for the electrochemical reduction of CO2 in an aqueous solution, almost
tripling the current densities in comparison with unsupported Cu NPs (Figure 3). Carbon
monoxide and formate were found as the main products by chromatography, and the
achieved FE was close to 69% at −0.6 V (vs. RHE, reference hydrogen electrode) [33]. On
the other hand, nanocubes of cuprous oxide (Cu2O) incorporated into rGO and Cu2O (rGO)
revealed promising results [9]. Figure 8a,b compare the FEs achieved at glassy carbon-
supported Cu2O and Cu2O/rGO, respectively. The main outcomes indicated that the
incorporation of the graphene material raised the production of CO and H2 and increased
the stability of Cu2O nanocubes.

The incorporation of a second metal has been considered in theoretical calculations [31,39].
In order to modulate the interaction between the bimetallic catalyst and the graphene-based
support (and therefore modify the catalytic activity), Cu, Ni, Pd, Pt, Ag, and Au were combined
and compared with monometallic dimers by calculation [31]. It was found that Pt2, AgNi, Pd2,
and AgPt supported on defective graphene revealed the lowest overpotential values for the
ECO2RR [31]. On the other hand, transition metal dimers (Cu2, CuMn, and CuNi) introduced
into single graphene vacancies (called @ 2SV) were studied for the ECO2RR by DFT [39]. All
samples revealed a low overpotential, a high FE, and selectivity for species production during
the ECO2RR. In this regard, Cu2 @ 2SV, MnCu @ 2SV, and NiCu @ 2SV promoted the formation
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of CO, CH4, and CH3OH, respectively. Results were explained in terms of the oxophilicity of
Ni and Mn [39].
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Bimetallic catalysts have also been employed in experimental studies. For instance,
Pd-Cu/graphene catalysts with diverse Pd-Cu wt% ratios were synthesized from graphite
oxide suspensions and metal precursor salts by applying the sodium borohydride reduction
method [38]. Particle sizes ranging from 8 to 10 nm were acquired, and the best catalytic
performance toward the ECO2RR was achieved with 1 wt% Pd–2 wt% Cu/graphene
material [38].

In addition to copper-based catalysts, WC [13], Bi [17], In2O3 [37], and Pd-In [40]
materials were supported on GMs, and a good catalytic performance toward the ECO2RR
has been accomplished. For instance, three-dimensional Pd/graphene (Pd/3D-rGO),
In/3D-rGO, and Pd-In/3D-rGO catalysts were prepared by a mild method that combined
chemical and hydrothermal steps [40]. 3D-rGO materials are 3D structures with a high
density of interconnected pores and metal NPs anchored on the folds. Interestingly, Pd0.5-
In0.5/3D-rGO showed the smallest particle size, and its dispersion on rGO sheets was found
to be more homogeneous than monometallic catalysts of Pd and In. These characteristics
enhance the performance for the ECO2RR, decreasing the overpotential and increasing the
FE to 85.3% at −1.6 V (vs. Ag/AgCl) in 0.5 M KHCO3 for formate production [40].

2.3. Metal Nanoparticles Supported on Heteroatom-Doped Graphene Materials

The introduction of heteroatoms into the graphene structure may improve the catalytic
activity towards the ECO2RR. For example, Figure 8c shows that Cu2O supported on N-
doped rGO (Cu2O/N-rGO) enhances the FE up to 70%, raises the production of ethylene
at −1.4 V (vs. RHE), and increases the catalytic stability. Based on these results, the
authors concluded that pyridine nitrogen improves the catalytic stability of Cu2O due to N
(pyridine)–Cu interactions [9].

CuSn alloy nanoparticles supported on an NG material stand out due to their low
cost and unique catalytic activities towards the ECO2RR. Nitrogen doping into graphene



Molecules 2021, 26, 572 9 of 12

sheets results in the strong binding of CuSn NPs to the catalyst support. The strong
binding prevents alloy NP detachment and agglomeration, thereby improving the long-
term stability. Furthermore, electron transfer from NG to CuSn NPs appears to be beneficial
for the adsorption of CO2 and/or hydrogen, thus enhancing the CO2RR performance [34].

Figure 9 depicts the distribution of products generated during this reaction as a
function of the applied potential for different copper–tin ratios on NG, and an optimal
composition was obtained for Cu-Sn0.175. This alloy generated C1 products with an FE
close to 93% at −1.0 V (vs. RHE), which was the highest of all prepared materials. This led
to considerable improvements over Cu and Sn separately, which were found to develop
FEs of 32% and 58%, respectively [34]. To clarify the experimental results, DFT simulations
of the free energy for hydrogen adsorption and CO2 reduction were carried out (Figure 10).
The main results indicated that hydrogen can be easily adsorbed on Sn surfaces, but the
free energies become higher after Cu introduction, and the HER is accordingly suppressed.
After that, more H atoms can participate in the ECO2RR processes [34].
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On the other hand, Figure 11a illustrates the synergy between the catalyst and the
catalyst support as an important increment of the faradaic current discerned at PO-5 nm
Co/SL-NG catalyst. Additionally, the catalyst revealed remarkable stability, even after
10 h of CO2 electrolysis, both in current and in morphology, particle size, structure, and
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metal content, with an FE above 70% at −0.90 V (vs. SCE (saturated calomel electrode)) for
methanol production (Figure 11b) [19].
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Figure 11. (a) Linear sweep voltammograms of single-layer nitrogen-doped graphene (SL-NG), 5-nm
cobalt nanoparticles (PO-5 nm Co) and PO-5 nm Co/SL-NG in 0.1 M NaHCO3 at 20 mV s−1. (b) FE
of methanol and current density for PO-5 nm Co/SL-NG under various electrolysis potentials for
10 h. Reproduced with permission [19].

As stated above, Chen et al. developed a 2D/0D composite catalyst formed by Bi2O3-
NGQDs [34]. This material exhibits an FE of almost 100% for formate production with
a moderate potential of −1.0 V (vs. RHE) and good stability (Figure 4). Results were
attributed through DFT calculations to an increment of the adsorption energy of CO2 and
OCHO* after the combination of Bi2O3 with NGQDs (Figure 12b). Figure 12a illustrates
the free energy diagram for the HCOOH formation process on Bi2O3 and Bi2O3-NGQDs
materials, which reveals the highest energy barrier for the OCHO* formation that intensely
falls for Bi2O3-NGQDs. Furthermore, the energy barrier for the HER increases for MG,
thus explaining the preference of Bi2O3-NGQDs material to generate formate over H2 [35].
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3. Perspective

In this review, the general concept of the CO2 reduction reaction was discussed,
with special attention paid to low temperature electrolysis with graphene-based electrode
materials.

The conversion of CO2 to chemicals usable as fuels via room temperature electrolysis
with graphene-based catalysts is a very attractive technology for energy conversion and
storage. This technology has the potential to reduce the produced CO2 through its conver-
sion into valuable energy carriers (hydrocarbons, alcohols, or CO-rich feeds) that will help
to improve environmental contamination.

With the aim to solve the principal catalytic problem at the cathodes of low tempera-
ture electrolyzers, the fundamental study of carbon dioxide, as well as hydrogen evolution
on graphene-based materials in a wide pH range, was considered.
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In general, the results discussed in this manuscript confirm that graphene materials are
excellent supports, producing synergistic effects that cause improvements in the efficiency
and selectivity of the catalysts used for the electrochemical reduction of CO2. However,
in most cases, the activity of graphene not modified by metal species is very low. All the
new advances in the fundamental understanding of reactions occurring on graphene-based
catalysts presented here may help to improve the fabrication of novel electrodes in order to
enhance the performance and decrease the cost of this technology.
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