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Abstract: Thalassiosira pseudonana is a transformable and biotechnologically promising model diatom
with an ability to synthesise nutraceuticals such as fucoxanthin and store a significant amount
of polyglucans and lipids including omega-3 fatty acids. While it was the first diatom to be
sequenced, a systems-level analysis of its metabolism has not been done yet. This work presents first
comprehensive, compartmentalized, and functional genome-scale metabolic model of the marine
diatom Thalassiosira pseudonana CCMP 1335, which we have termed iThaps987. The model includes
987 genes, 2477 reactions, and 2456 metabolites. Comparison with the model of another diatom
Phaeodactylum tricornutum revealed presence of 183 unique enzymes (belonging primarily to amino
acid, carbohydrate, and lipid metabolism) in iThaps987. Model simulations showed a typical C3-type
photosynthetic carbon fixation and suggested a preference of violaxanthin–diadinoxanthin pathway
over violaxanthin–neoxanthin pathway for the production of fucoxanthin. Linear electron flow
was found be active and cyclic electron flow was inactive under normal phototrophic conditions
(unlike green algae and plants), validating the model predictions with previous reports. Investigation
of the model for the potential of Thalassiosira pseudonana CCMP 1335 to produce other industrially
useful compounds suggest iso-butanol as a foreign compound that can be synthesized by a single-gene
addition. This work provides novel insights about the metabolism and potential of the organism and
will be helpful to further investigate its metabolism and devise metabolic engineering strategies for
the production of various compounds.
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1. Introduction

Diatoms are unique unicellular photosynthetic eukaryotic microbes that have silica incorporated
in their cell wall [1]. They play a significant role in global carbon and silicon recycling [1] and contribute
about half of aquatic primary production and a quarter of the total primary productivity [2]. They are
attractive organisms that can be exploited as cell factories to convert atmospheric CO2 into a wide
range of industrially and medically useful compounds [3–5]. Diatoms primarily store glucose in the
form chrysolaminarin [6], a polyglucan (primarily composed of β(1→3) linked glucose monomers)
which can be used as renewable feedstock for fermentation and subsequent production of platform
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chemicals. Furthermore, their ability to store a significant amount of lipids (20–30% and in some
species up to 45–60% of the dry cell weight) [7] and synthesize nutraceuticals such as omega-3 fatty
acids [7,8] and fucoxanthins [3,9] makes them attractive organisms.

Thalassiosira pseudonana is a model diatom. It was the first diatom chosen for genome sequencing
due to its utility in physiological and silica biomineralization [10] studies. It is also considered to
be a potential drug delivery vehicle for cancer treatment during chemotherapy [11]. The ability to
grow in marine water makes it an attractive organism for large-scale cultures needed for the bioenergy
applications, as it will not compete with freshwater and land. Unsurprisingly, various studies have
applied genetic engineering in T. pseudonana for enhanced production/accumulation of lipids, TAGs,
and omega-3 fatty acids [12–14].

Genome-scale metabolic models (GEMs) make it possible to simulate metabolic behavior of the
organism and predict internal metabolism under different conditions [15–17]. The GEMs contain
a majority of the metabolic reactions present in an organism based on its annotated genome
sequence [18,19]. A large number of GEMs of a variety of organisms ranging from prokaryotes [20,21]
to eukaryotes [15,22,23] have been reconstructed and utilized to analyze their metabolic behavior.
Moreover, the GEMs of photosynthetic organisms, e.g., microalgae (Chlamydomonas [24,25], Chlorella [26],
and Nannochloropsis [15,27]) and the diatom (Phaeodactylum tricornutum [28,29]) have been reconstructed
and used to analyze the process of photosynthesis and metabolism under light and dark conditions.
While there are two published GEMs available for P. tricornutum, a GEM for T. pseudonana is still
not available. P. tricornutum and T. pseudonana have been segregated under taxonomically distinct
subgroups (order and genus) [30,31]. They have been kept in two different groups, pennate, and centric
for P. tricornutum and T. pseudonana, respectively [32], based on arrangement of frustules on their cell
wall. Si+ was found to be an essential nutritional component for the growth of T. pseudonana [33]
while it was non-essential for the growth of P. tricornutum [34,35]. Moreover, under phosphorus
(P) stress, genes related to Calvin cycle, fatty acid biosynthesis, and PEPCK (phosphoenolpyruvate
carboxykinase) show differential regulation in T. pseudonana and P. tricornutum [33]. Thus, a GEM
of P. tricornutum cannot be used to investigate the metabolism and biotechnological potential of a
significantly different organism, T. pseudonana, as suggested by a recent work where eight different
strains of the same organism (E. coli) were found to be physiologically different [21]. Therefore, it is
imperative to work on the GEM of the same strain to perform systems level studies.

In this work, we present the first high-quality manually-curated GEM (iThaps987) of T. pseudonana,
to overcome this gap and perform its systems level investigation. The model iThaps987 includes
987 genes, 2477 reactions, and 2456 metabolites. The FBA analysis revealed the CO2 fixation by
C3/Calvin–Benson–Bassham (CBB) cycle. The different pathway routes for biosynthesis of fucoxanthin
were explored for their activity and the results indicate a preference for the violaxanthin–diadinoxanthin
pathway over the violaxanthin–neoxanthin pathway. The features of this model were compared to the
previously published P. tricornutum model (iLB1025) [28]. The work also focuses on the potential of T.
pseudonana to photosynthetically produce some industrially useful compounds.

2. Materials and Methods

2.1. Reconstruction of a Genome-Scale Metabolic Model

The genome-scale metabolic model of Thalassiosira pseudonana, iThaps987, was reconstructed and
analysed using established protocols and an approach described for a number other organisms such as
Geobacillus thermoglucosidasius [20], Salmonella typhimurium [17], and Arabidopsis thaliana [36]. The model
was reconstructed using the python-based metabolic modeling tool ‘ScrumPy’ [37]. The model
was reconstructed based on organism-specific data obtained from BioCyc [38] database and the
annotated genome sequence from the National Center for Biotechnology Information (NCBI) database.
The macromolecular composition of Thalassiosira pseudonana biomass was measured to construct
the biomass reaction which provides molar fractions of metabolites required to make a gram of
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biomass. Information from various biological database were used as per requirement. For example,
reaction directionalities were taken from BioCyc [38] and MetaCyc [39] database and the metabolite
formulae that were missing in Biocyc database were taken from KEGG [40] database or from previously
published models [15,20,41].

2.2. Draft Model

The Pathway Genome Database (PGDB) for Thalassiosira pseudonana (Thaps, v19.5) was
downloaded from BioCyc and extracted to obtain a flat-files database. The PGDB of Thalassiosira
pseudonana has information related to reactions, their genes and sequences. ScrumPy tool was used to
fetch these flat-file databases using the inbuilt module ‘PyoCyc’. Finally, a draft model was created by
obtaining all the reactions of the database.

The initial draft model included several non-specific metabolites, e.g., ‘Aldoses’, ‘Fatty aldehydes’,
and reactions—e.g., ‘DNA-LIGASE’—that would create uncertainties in the model. The draft model
was refined iteratively using literature, biological database(s), and previously published models until
a final, robust model is obtained. In the first round of refinement, the non-specific metabolites and
reactions were removed from the model. In the subsequent step, each reaction was checked and
corrected, wherever required, for mass balance in terms of carbon, nitrogen, phosphorus, and sulfur.
Further refinements were carried out as explained below.

2.3. Gap-Filling of the Model

The draft model obtained after the initial refining was unable to synthesise some essential biomass
precursors, indicating an absence of at least one key reaction that participates in the synthesis of the
corresponding precursor. The absence of such key reactions results in gaps in the network. These gaps
in the draft model were manually identified by performing optimisations for production of all the
biomass precursors one by one. Those precursors which were unable to be produced by the draft
model were termed as gapped metabolites. The presence of gapped metabolites in a model indicates
existence of some missing links (reactions/pathways), also known as gapped reactions/pathways,
in the network. These gaps were filled manually by searching for biosynthetic pathways and reactions
that will ensure biosynthesis of these biomass precursors, thereby filling those gaps in the network.
The gene sequences of these added reactions were subjected to BLAST searches against the Thalassiosira
pseudonana genome sequence.

2.4. Compartments in the Model

Thalassiosira pseudonana is a eukaryotic microbe and has different compartments for different functions.
All reactions of the model were localized into three different compartments: cytosol, chloroplast,
and mitochondrion. The sub-cellular localisation of reactions was obtained using ngLoc web-server [42].
A reaction was assigned to cytosol if no subcellular localization could be obtained.

2.5. Energy Requirements

A characteristic feature of all organisms is to grow and maintain their structural integrity.
They require energy to perform these two basic functions of life. This energy is required in the form of
the cellular currency ‘ATP’. The energy (ATP) required for growth is termed as growth-associated ATP
maintenance (GAM). The GAM accounts for energy required to synthesize precursors, polymerize
purine and pyrimidine bases and amino acids to form DNA and proteins, respectively, and polymerize
cell wall precursors, etc. The other type of energy (ATP) which accounts to maintain cellular structure
and integrity is termed Non growth-associated ATP maintenance (NGAM). As the values of GAM and
NGAM are not available for this strain, the values from the GEM of Phaeodactylum tricornutum [29]
were used. Similar assumptions are regularly employed in cases where the actual values are not
available. For example, the GEM of Synechococcus sp. BDU130192 had utilized ATP maintenance values
from previously published models of Synechococcus sp. PCC 7002 [41], while the GEMs of Thermus
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thermophilus HB27 [43], and tomato (Solanum lycopersicum L.) [44] have utilized ATP maintenance values
from previously published models of E.coli and Arabidopsis thaliana models, respectively. We have also
evaluated the effect of variation of NGAM on intracellular flux distributions.

2.6. Measurement of Biomass Composition for Setting Up the Biomass Equation

The biomass equation was formulated by experimental measurement of important biomass
components like proteins, carbohydrates, lipids, DNA, and RNA while the minor components—e.g.,
pigments—were taken from previously published models [28]. Further details on the methods used to
measure the biomass composition are provided in Supplementary File S07.

2.7. Model Simulations

The genome scale metabolic model, iThaps987, representing the metabolic reactions of T. pseudonana
was reconstructed as a ScrumPy-readable text file (Supplementary file S01) as well as mat format
(Supplementary file S03) and is compatible with COBRA Toolbox and ScrumPy modeling packages.
An Excel file of the model is also provided (Supplementary file S02).

The model was analyzed using ‘Flux Balance Analysis’ (FBA), a constraint-based modeling (CBM)
approach based on linear programming technique using ScrumPy. FBA determines the internal flux
distribution which satisfies the steady state assumption besides some other constraints. According to the
steady state assumption, the concentrations of intracellular metabolites remain steady (i.e., they do not
vary with time). This implies that the compounds taken in by the cell should either go towards biomass
production or towards the formation some byproducts. Overall, the carbon, nitrogen, etc. should be
balanced in the determined flux distributions. The FBA approach optimizes any metabolic property,
e.g., biomass formation reaction, or other reaction(s) within the constraints provided. In this study,
minimization of total cellular fluxes was used as the cellular objective function [20]. For simulating
photoautotrophic conditions, biomass reaction (growth rate) was fixed at the experimentally measured
value of 0.024 h−1 (see supplementary file S07) while the import and export of nutrients including CO2

and photon intake were left free. The linear programming problem for minimization of total fluxes
was formulated as

Minimize
∑n

i=1 vi

subject to S.v = 0

vBiomass = t

vATP_Maintenance = ATP Maintenance

where S is the stoichiometry matrix, v is the reactions flux vector, n is number of reactions, vBiomass is
the flux through the biomass reaction, t is some positive value (measured growth rate) and i is iteration.

2.8. Simulations of Si+ Limited Conditions

In order to analyse the effect of silica limitation on chrysolaminarin production, a virtual transport
reaction was added to the model for transport of chrysolaminarin from cytosol to an ‘extracellular’
compartment. That is, the accumulation of chrysolaminarin is assumed as ‘export’. The CO2 intake
rate was fixed to 2.05 mmol/(gDCW.h) while the silica uptake rate was varied from 0 mmol/(gDCW.h)
to 0.05 mmol/(gDCW.h) and minimization of total flux was used as the objective function.

2.9. Reaction Essentiality Analysis

The FBA approach (with minimization of total fluxes as objective) was used to perform the
reaction essentiality analysis. The flux through each reaction was fixed to zero at a time while the flux
through biomass reaction (growth rate) was fixed to the experimentally observed value at the time of
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simulations. A reaction was defined as essential if fixing the flux through the reaction to zero results in
an infeasible optimization.

Minimize
∑n

i=1 vi

subject to S.v = 0

vBiomass = t

v j = 0

vATP_Maintenance = ATP Maintenance

where, S is the stoichiometry matrix, v is the reactions flux vector, v j is the reaction that is being
‘deleted’, n is number of reactions, vBiomass is the flux through the biomass reaction, t is some positive
value (measured growth rate) and vi is ith value in flux vector.

2.10. Maximum Theoretical Yields for Various Industrial Compounds

Diatoms can be exploited as cell factories [4]. Therefore, we explored the model for its potential to
produce various native and non-native compounds. The maximum theoretical yield for each product
was predicted by: (i) constraining the biomass reactions to 80% of its wild-type growth rate, (ii) setting
the exchange reaction of the corresponding product as the objective function. The transport and
exchange reactions were added wherever required to the model.

The maximum theoretical yields for the heterologous products were predicted by adding the
required external reactions and constraining the model as done for indigenous products. The MetaCyc
database contains pathways and their respective reactions as mini modules, e.g., pathway for ‘styrene’
biosynthesis contains specific reactions that synthesises ‘styrene’. Using an in-house script, the presence
of these specific reactions was checked in iThaps987, and the missing reactions were ‘temporarily’
added to the model.

The linear programming formulation to perform FBA for the production of the native and
heterologous products is

Maximise
∑n

i ci.vi

subject to S.v = 0

vBiomass = t

vATP_Maintenance = ATP Maintenance

Max Yield (x) =
vobj

vc

where S is the stoichiometry matrix, v is the reactions flux vector and c is the objective function. In this
case, the objective function is the exchange reaction(s) for product formation. vobj and vc are the fluxes
through the objective function and the carbon source, respectively and x is maximum theoretical yield
of the target product. Note that the biomass production flux vBiomass was kept as 80% of the measured
growth rate. The maximum yields (x) were obtained as a ratio of product formation to carbon intake
rates.

3. Results

3.1. Gap Filling

The draft model was subjected to manual gap finding analysis, which identified only 62 orphan
enzymes additionally required (absent in the T. pseudonana genome) for biomass-precursor biosynthesis.
Out of these 62 enzymes, 21 were already present in the PGDB of T. pseudonana while the 14 enzymes
were found in P. tricornutum or Chlamydomonas reinhardtii genomes. Also, there are 19 orphan metabolic
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reactions present in the model that do not have any associated Enzyme Commission (EC) number. A
list of gap-filling reactions is summarised in Supplementary File S04.

3.2. General Properties of the Model

The final model, iThaps987, contains 987 genes, 2477 reactions, and 2456 metabolites. The
model comprises of 2389 metabolic, and 88 transport and exchange reactions. The model has three
compartments, namely cytosol, chloroplast, and mitochondrion. A total 1125 reactions operate in
cytosol while 887 are present in chloroplast and 377 reactions are located in mitochondrion (Table 1).
In terms of metabolites, 1024 metabolites are present in cytosol followed by 984 in chloroplast and 467
in mitochondrion (Table 1).

Table 1. Distribution of reactions and metabolites in different compartments of the model iThaps987.

Cytosol Chloroplast Mitochondrion Transport

Reactions 1125 887 377 88
Metabolites 1024 984 467 -

The model iThaps987 is the second largest in terms of the number of reactions compared to other
publicly available models of diatoms (Table 2).

Table 2. Comparison of the iThaps987 model with other published models of diatoms.

Microorganism P. tricornutum P. tricornutum T. pseudonana

Genome size (Mbp) 27.45 27.45 32.61
Genes in the model 1027 (10,392) - 987

Number of reactions/metabolites 2156 */2172 849/587 2477/2456
Compartments 6 4 3

Reference [28] [29] This study

* Levering et al. had given two models in the same publication; one is normal model with 2156 reactions and the
other model is lipid metabolism specific model having 4456 reactions.

3.3. Comparison of iThaps987 Model with P. tricornutum Model, iLB1025

The iThaps987 model was compared with iLB1025, the GEM of another diatom, P. tricornutum,
to investigate similarity and differences between the two models. The models were compared primarily
based on Enzyme Commission (EC) numbers. The comparison revealed 483 enzymes are common in
both models (see Figure S3) and 183 enzymes are unique in iThaps987 and 191 in iLB1025, respectively
(Figure 1a). Further analysis of the common enzymes revealed that enzymes related to amino acid
metabolism were the most common between the two models (128), followed by the enzymes related to
fatty acid (79) and carbohydrate (70) metabolism, respectively. The enzymes related to vitamins and
cofactor (59), nucleotide and carotenoid (34) metabolism also had a significant number of common
enzymes. There were other pathways which had slightly fewer enzymes common to both models—e.g.,
nitrogen metabolism, oxidative phosphorylation, and photosynthesis. Supplementary File S05 contains
comparison of enzymes of both models. Furthermore, the analysis of these 183 unique enzymes
present in iThaps987 revealed that most of the unique enzymes participate in carbohydrate and amino
acids metabolism (40 and 38 respectively), followed by lipid metabolism pathways with 29 enzymes.
Pathways related to vitamins and co-factor metabolism, pigments, and nucleotides have relatively
fewer unique enzymes (Figure 1b).
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Figure 1. Comparison of two diatom GEMs. (a) A Venn diagram showing common and unique
enzymes in iThaps987 and iLB1025 models. (b) Distribution of unique enzymes iThaps987 in various
main pathway categories. (c) Distribution of unique enzymes in sub-pathways of main pathway
categories. The color coding follows the colors used for the corresponding pathway in (b).
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Figure 1c shows the distribution of unique enzymes in sub-pathways of main pathway categories.
Among the 38 unique enzymes that participate in amino acid metabolism, most relate to arginine
and proline metabolism, followed by glycine, serine, and threonine metabolism and phenylalanine,
tyrosine, and tryptophan biosynthesis. Regarding the carbohydrate metabolism, pyruvate metabolism
has highest number of unique enzymes (9) followed by glycolysis (8), fructose-mannose
metabolism (5), and pentose phosphate pathways (4). The nine unique enzymes of pyruvate
metabolism are phosphoenolpyruvate synthase, lactoylglutathione lyase, pyruvate dehydrogenase
(quinone), propionate CoA-transferase, hydroxyacylglutathione hydrolase, pyruvate formate-lyase,
malate dehydrogenase (oxaloacetate-decarboxylating), L-lactate dehydrogenase (cytochrome),
and phosphoenolpyruvate carboxykinase (diphosphate). Sub-pathways of lipids metabolism-
glycerophospholipid (8) and fatty acid (8) metabolism have equal number of unique enzymes while
arachidonic acid (3) and glycerolipid (1) pathways have lesser number of enzymes. Among the vitamins
and co-factor metabolism pathways, almost all sub-pathways have approximately the same number of
unique enzymes. Porphyrin and chlorophyll (6) and carotenoids (3) metabolism pathways have more
unique enzymes than other sub-pathways of the pigment metabolism pathway. The Supplementary
File S05 has a list of all unique enzymes present in T. pseudonana.

3.4. Model Simulations

For the photoautotrophic simulations, the growth rate was fixed to the experimentally determined
value of 0.024 h−1 (see Supplementary File S07 for the growth curve). The CO2 and photon uptake
rates were predicted to be 1.05 and 13.02 mmol/(gDCW.h), respectively. These uptake rates are within
the physiological ranges suggested by previous reports [15,28]. The nitrate uptake rate was found
to be 0.19 mmol/(gDCW.h). The model simulations predicted O2 evolution of 1.51 mmol/(gDCW.h).
Thus, the O2/CO2 ratio was predicted to be 1.43 which is very close to the value 1.37 obtained with the
Phaeodactylum tricornutum model iLB1025 [28] for the same growth rate.

3.5. Light-Driven Generation of ATP and NADPH: Light Reaction

The light-driven growth simulations (photoautotrophic growth) showed CO2 fixation by the C3
cycle by utilising ATP and NADPH produced during light reactions in chloroplast. The photon directs
the photolysis of water and electron flow from water to NADPH involving both photosystems PSII
and PSI.

During the electron flow, protons are pumped in thylakoid lumen which generates an
electrochemical gradient across the thylakoid membrane. This gradient provides the force
(proton motive force) for plastidial ATP synthesis by ATP synthase complex. The flux distribution
reveals that under normal photoautotrophic condition, the cyclic electron flow (CEF), which only
allows production of ATP, is inactive. Flux through the linear electron flow (LEF), that facilitates
simultaneous and coupled biosynthesis of ATP and NADPH, was found to be 3.4 mmol/(gDCW.h).

3.6. Carbon Fixation by the CBB Cycle (C3 Cycle): Dark Reaction

CO2 is fixed by the enzyme Rubisco that converts three molecules of CO2 and three molecules of
ribulose 1,5-bisphosphate (RUBP) into six molecules of 3-phosphoglycerate (3PGA) which is finally
reduced to glyceraldehyde-3-phosphate (GAP). The carbon flux is mainly distributed through GAP
to three different routes—i.e., the CBB cycle for the regeneration of RUBP—the pentose phosphate
pathway and the upper part of glycolysis in chloroplast. About 0.3% of the carbon goes to lower part
of glycolysis to form PEP, PYR, and acetyl CoA while 6.7% forms hydroxypyruvate. The rest 92.7%
of the carbon flux goes to form GAP (Figure 2). The carbon from GAP is further diverged into two
routes—firstly, towards fructose 1,6-DP formation that leads to synthesis of storage carbohydrate and
secondly towards the pentose phosphate pathway (PPP) which leads to recycling of RUBP formation
in C3 cycle.
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Figure 2. Flux-map showing flux distributions under Si-rich/Si-limited condition. Chloroplast are
shown in green color while mitochondria are shown in red. Photosynthesis, lipid, and fucoxanthin
synthesis occurs in chloroplast while the TCA cycle and part of the urea cycle occurs in mitochondria.
Other major pathways are located in cytosol. The flux through pathways was simulated by fixing the
measured growth rate and using the minimization of total flux as the objective function.

In chloroplast, the acetyl-CoA initiates fatty acid synthesis [28,33,45] using the ATP and NAD(P)H
generated during photosynthesis. The fluxes through fatty acid synthesis reactions were found to be
very low. The carotenoids biosynthesis also takes place in chloroplast [46]. Phosphoenol pyruvate
(PEP) and pyruvate form farnesyl pyrophosphate (FPP) through a series of reactions and finally the
FPP gets converted through a cascade of reactions into carotenoids like beta-carotenoids, astaxanthin,
etc. A very small amount of flux goes through these carotenoid biosynthesis reactions.

Interestingly, the model predicts that the pyruvate that takes part in TCA cycle in mitochondrion
comes from chloroplast via cytosol through inter-compartmental transporters. The pyruvate gets
converted into acetyl-CoA which participates in the TCA (tricarboxylic acid cycle). The flux through
pyruvate to alpha-ketoglutarate is 0.03 mmol/(gDCW.h) (Figure 2). Although a complete TCA cycle is
present in model, only a few initial and final reactions carry fluxes. The partial activity of the TCA
cycle in diatoms has also been reported in previous studies [29].
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Urea cycle was found to be partially active under normal growth conditions. The flux through
carbamoyl phosphate synthase, which converts ammonium and carbonate ions (inside mitochondrion)
to carbamoyl phosphate, was found to be 0.004 mmol/(gDCW.h). Carbamoyl-phosphate then reacts
with l-ornithine to form l-citrulline which is then transported to cytoplasm. In cytoplasm, l-citrulline
reacts with l-aspartate to form arginosuccinate which, in turn, dissociates into arginine and fumarate.
The flux through all above reactions is same (0.004 mmol/(gDCW.h)). The last reaction of the urea cycle,
which converts arginine to urea and l-ornithine, is not active under normal conditions. Only upon
increasing the nitrate uptake rate without increasing the growth rate is this reaction activated.

3.7. Simulation of Si+ Limited Condition

According to previous reports, T. pseudonana accumulates a significant (20–25%) amount of
chrysolaminarin [47]. In order to analyze the effect of silica limitation on chrysolaminarin production,
Si+ transport was varied and the effect on the flux through chrysolaminarin production was calculated
(see Section 2.8 for more details) [48]. The simulation results show that at very low flux of silica transport,
chrysolaminarin production is the highest and biomass production is the lowest (Figure 3). It can be
observed that with an increase in silica transport, biomass formation flux increases, and chrysolaminarin
production decreases.
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Figure 3. Effect Si+ transport variation on biomass and chrysolaminarin production. For these
simulations, the Si+-transport was varied from zero to the value obtained under Si+ replete condition
(0.05 mmol/(gDCW.h) and the fluxes through biomass and chrysolaminarin biosynthesis reactions
are presented.

A comparison of the flux distribution under Si-replete and Si-limiting conditions revealed reduced
photon intake and O2 released for the same CO2 intake rate (Figure 2). The reduced O2 production
under Si+ limited conditions is in agreement with a previous study in Thalassiosira weissflogii [49].
That study has shown a reduced activity of PSII, the site of O2 production, under Si+-limiting condition.
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Similarly, the reduced photon intake under Si+ limitation is also in agreement with a previous report [49].
Flux through all pathways was reduced upon Si-limitation, while carbohydrate-synthesis flux was
significantly increased.

3.8. Effect of Maintenance Energy on Flux Predictions

We evaluated the effect of varying ATP maintenance values on metabolism. The range of ATPM
chosen for the scanning analysis was 0–8 mmol/(gDCW.h). This range was chosen because the lowest
ATPM value of 0.36 mmol/(gDCW.h) has been reported for Lactobacillus planetarium [28] while the
highest, 7.6 mmol/(gDCW.h) [28], has been reported for E. coli. At ATPM value of zero, the ATP is
synthesized primarily in chloroplast while a very small fraction of ATP is synthesized in mitochondrion.
As the ATPM demand increases, both mitochondria as well as chloroplast contribute to ATP production.
However, the increase in the mitochondrial ATP synthesis was simulated to be more in comparison to
the increase in plastidial ATP synthesis (Figure 4a) and finally, the ratio of plastidial ATP synthesis to
mitochondrial ATP synthesis reaches to about 0.8 (Figure 4a).

The effect of ATPM values on various reactions reveal that as ATPM increases, more photons
are absorbed and the flux through linear electron flow via the PSII and PSI increases. The cyclic
electron flow (CEF) remains inactive. The flux through oxaloacetate–malate valve was also increased
(Figure 4b). Simulations performed while knocking out (fixing the flux to zero) the oxaloacetate–malate
valve resulted in shifting the ATP production from mitochondria to chloroplast by activating the CEF
(Figure 4c).

The results also show that as ATPM increases, more photons are absorbed, more O2 is consumed
in mitochondria and more O2 is produced in the chloroplast. The O2 production increases with O2

consumption linearly (Figure S2). This trend of O2 production vs. O2 consumption is in agreement
with previous reports [28,50].
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Figure 4. Simulated effect of variation of maintenance ATP (ATPM) values on metabolism. (a) Effect of
ATPM values on the ratio of mitochondrial and plastidial ATP synthesis. The flux through ATPM reaction
was varied and the effect on plastidial and mitochondrial ATP synthesis reactions was simulated. (b) Effect
of ATPM values on flux through different reactions of the model, iThaps987. PSI: Photosystem-I, PSII:
photosystem-II, Photon_tx: Photon transport, Plastidial_ATP_Synthase: Plastdial ATP synthesis reaction,
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Mitochondrial_ATP_Synthase: Mitochondrial ATP synthesis reaction, OAA_MAL_Chlo_tx:
Malate–oxaloacetate shuttle_chloroplast_transport, OAA_MAL_Mito_tx: Malate–oxaloacetate
shuttle_ mitochondria_transport. (c): The figure shows the fluxes under low (1.5 mmol/(gDW.h)) and
high (7.5 mmol/(gDW.h)) ATP maintenance values. The values written in green were obtained from
simulations performed under normal wild-type conditions while the values written in red were obtained
from simulations performed by knocking out the transporter for mitochondrial malate–oxaloacetate
shuttle. LEF: Linear Electron Flow, CEF: Cyclic Electron Flow, PSI: Photo-system I, PSII: Photo-system
II, PQ: Plastoquinone, PC: Plastocyanin, Fdxn: Ferredoxin.

3.9. Photoautotrophic Production of Industrially-Relevant Compounds

Diatoms are potential organisms for photoautotrophic production of various medically and industrially
useful products [3–5,10]. They contain various valuable natural compounds like lipids, fucoxanthin
pigments, etc. We investigated the potential of this organism to produce some native and non-native
metabolites. The compound malate is used as a precursor for the production of biodegradable polymers,
and in pharmaceutical, food, and beverages industries. Succinate is used as growth regulator in
agriculture as well as precursor for many useful industrial compounds like 1,4-butanediol, tetrahydrofuran,
and polybutylene succinate. Citrate is mainly used in food and pharmaceutical industries. Among the
non-native compounds, 2-methyl succinate, styrene, and isobutanol are used as pharmaceutical, biopolyester,
and biofuel, respectively.

The model iThaps987 was used to investigate the potential of T. pseudonana metabolic network
to produce various native and non-native compounds (Table 3). The theoretical yields (mol product
produced/mol CO2 consumed) of these products were predicted by the model using the FBA approach
by fixing the growth rate to 80% of the wild type growth rate and maximizing for product formation.
Among the native metabolites, malate, and succinate have same yield of 0.22 while citrate has a
yield of 0.14. Among non-native compounds, isobutanol and PHB (polyhydroxybutyrate), have a
maximum yield of 0.22 followed by 2-methylsuccinate with 0.17 and styrene with 0.17. Additionally,
isobutanol production should require the least metabolic engineering, i.e., introduction of only a single
heterologous gene.

Table 3. Simulated maximum theoretical yields of various native and non-native products under
photoautotrophic conditions.

S.N Product Yield Photoautotrophic
(mol/mol carbon) No. of Added Reactions Added Genes

Native iThaps987
1 Malate 0.22 0 −

2 Succinate 0.22 0 −

3 Citrate 0.14 0 −

Non-Native
4 2-MethylSuccinate 0.17 4 cimA, leuC, leuD, ER
5 Styrene 0.11 2 (PAL, PAL1, encP), FDC1
6 iso-butanol 0.22 1 kivD
7 Valencene 0.06 2 Valcs, Vals, Tps1
8 Farnesyl-PP 0.06 afs

9 Naringenin 0.06 3 PAL, (CHI1 and
CHI2),CHS-A

10 5-Amino-Levulinate 0.17 1 hemA or HemT

11 Isoprene 0.17 4 Isps, IspG, IspH *
(* catalyses 2 reactions)

12 PHB 0.22 2 phbB, phbC
14 Citramalate 0.17 1 cimA

3.10. Reaction Deletion Analysis to Identify Essential Reactions

The reaction-deletion analysis revealed a total of 327 essential reactions under photoautotrophic
condition. Figure 5 shows the distributions of total and essential reactions across different pathways.
The fatty acid metabolism pathway has the highest numbers of essential reactions followed by the
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nucleotide and pigment metabolism pathways. The low percent of essential reactions in T. pseudonana
across the metabolic pathways suggests the presence of alternative pathways/routes for the biosynthesis
of biomass precursors.
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4. Discussion

Diatoms are a major constituent of phytoplanktons and play a central role in marine primary
productivity. They can also be exploited as potential feedstock for biotechnological processes. Although a
considerable progress has been made in understanding their basic and molecular biology, much remains
to be done in the domain of systems biology. In this report, a first genome-scale metabolic model of T.
pseudonana was used to interrogate different aspects of metabolism and biotechnological potential of the
T. pseudonana in a systems approach. The model iThaps987 is mass balanced and does not contain any
thermodynamically infeasible cycles.

During the course of model reconstruction, we identified a number of previously unannotated genes
in T. pseudonana. Therefore, the model can be used for improvement of genome annotation. The draft model
lacked the “PHOSACETYLTRANS-RXN” reaction but BLAST search revealed that locus “XP_002287976.1”
codes for the same enzyme. The reactions “ISOCITRATE-DEHYDROGENASE-NAD+-RXN” is coded
by the gene locus “XP_002290637.1”, “MALATE-DEHYDROGENASE-NADP+-RXN” by the gene locus
“XP_002296311.1” and “MALATE–COA-LIGASE-RXN” by the gene locus “XP_002286405.1”. All of these
gene loci were labelled as “hypothetical protein” or “predicted protein”.

Comparison with the metabolic model (iLB1025) of another diatom P. tricornutum revealed
common and unique features of the model, iThaps987 (see Section 3.3 and Figure S3 for more details).
It was interesting to note that a large number of unique enzymes in the T. pseudonana metabolic model
are involved in pyruvate metabolism.

The simulations results predicted a typical C3 type carbon fixation (Figure 3) in spite of the
presence of C4-type carbon-fixing enzyme genes. A previous study, using 14CO2 labelling, has shown
that indeed C3 type carbon fixation is active under normal photoautotrophic condition [51]. The model
prediction was very well in agreement with the previous study.
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The ATP in the chloroplast can be generated either by the linear electron flow (LEF) or by the cyclic
electron flow (CEF). The ATP synthesized by LEF is tightly coupled with NADPH production whereas
the ATP synthesized by the CEF does not generate any NADPH. The model simulation indicates that
the plastidial ATP was synthesized exclusively by LEF. This prediction is also in agreement with the
experimental observation by [50] that the CEF around PSI is negligible in diatoms. Also, we performed
the simulations by changing the photon uptake ratio between PSII/PSI to 2:1 and 4:1 to explore the effect
of PSII/PSI ratio on flux distribution and specially on the flux through CEF. There was no significant
change in the flux distributions under both conditions except that the flux through PSII was increased
to 3.5 (mmol/(gDCW.h)) from 1.7 (mmol/(gDCW.h)) (almost doubled). CEF was still inactive.

The model was further utilized to explore the effect of different ATPM values on metabolism
(Figure 4b). The increase in ATP demand at higher ATPM values causes plastidial ATP synthase to
produce more ATP by absorbing more photons. The simulation reveals that even at higher ATPM value,
only LEF is responsible for plastidial ATP synthesis (as shown by [50]) along-with NADPH production.
This deviates the ATP/NADPH ratio. Mitochondrion plays an important role to optimize the disturbed
ATP/NADPH ratio in chloroplast. The chloroplastic enzyme malate dehyrogenase converts oxaloacetate
to malate by converting NADPH to NADP. The malate was then transported to mitochondrion via
the malate–oxaloacetate valve (while oxaloacetate is shuttled to chloroplast). The mitochondrial
enzyme malate dehydrogenase converts the malate back to oxaloacetate by converting NAD to
NADH. This NADH is then utilized by mitochondrial ATP synthase to produce more ATP. The ratio of
mitochondrial ATP to plastidial ATP production was close to zero at low ATPM (Figure 4a) but as ATPM
increases, the ratio also increases. Therefore, the ATP/NADPH ratio was optimized by mitochondrial
ATP synthesis. This is in agreement with [50] which found that a part of the photosynthate is channelled
to mitochondrion in order to regulate the ATP/NADPH ratio in chloroplast. Only when we block the
malate valve in mitochondrion, the CEF is activated. Further analysis revealed that blocking malate
valve leads to a higher photon uptake and if we fix photon uptake to the previous value then solution
becomes infeasible. This result indicates the important role played by the mitochondrion and the
malate valve in optimizing photosynthesis (Figure 4c). The GEM, iThaps987 has ‘2-oxoglutarate-malate
shuttle’ besides ‘malate–oxaloacetate shuttle’ for exchange of metabolites between mitochondrion and
chloroplast. Amongst these, the ‘malate–oxaloacetate shuttle’ plays a major role in translocation of
photosynthate from chloroplast to mitochondrion. ‘Malate–aspartate shuttle’ was found to be absent
in the iThaps987 model as it was in iLB1025.

Unlike other unicellular organisms such as bacteria, cyanobacteria, yeast, and green algae,
diatoms have a complete urea cycle [52]. However, model simulations suggest that under normal
photoautotrophic conditions, urea cycle is only partially active. Only upon excessive nitrogen (NO3

−)
intake does the last reaction of urea cycle get activated to flush out the excess nitrogen in the form
of urea.

The simulations for Si-limited condition revealed a trade-off between formation of storage product
and biomass production under nutrient-limiting condition. The carbon was partitioning between
biomass and chrysolaminarin at various levels of silica. Under stressed conditions (very low silica),
most of the carbon goes to chrysolaminarin while at higher silica intake flux, the carbon flux shifts
towards biomass formation.

The systems analyses of iThaps987 with respect to its biotechnological potential revealed
iso-butanol as the non-native product that can be produced with the introduction of only a single foreign
gene “kivD’. On the contrary, two genes ‘kivD and ADH2′ are required in the P. tricornutum model.

The reconstructed GEM can also be utilized to reveal new systems-level insights about the
organism. For example, integration of expression data to the available GEM could provide novel
insights into metabolic regulation under different conditions. The model is provided in ScrumPy as
well as in mat format that can be used for further studies. Some studies have performed transcriptomic
and proteomic analysis of T. pesudonana under different conditions [53–55]. The model can be integrated
with omics data (such as transcriptomics or proteomics), which would provide further constraints
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to the fluxes, thus narrowing the FBA solution space and improving the prediction of the simulated
flux distribution. Finally, 13C-MFA can be performed in different conditions to validate the predicted
FBA solutions.

5. Conclusions

This report presents the first publicly available, comprehensive, and manually curated genome
scale metabolic model of Thalassiosira pseudonana. Several results obtained by the model were found to
be in agreement with previous reports. The model was used to probe the metabolic engineering needed
to produce various native and heterologous industrially relevant compounds that can be produced by
the organism. The model will be a useful tool for systems-level investigation of Thalassiosira pseudonana.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/9/1396/s1,
S1: GEM in ScrumPy format; S2: GEM in Excel format; S3: GEM in MATLAB mat file format; S4: List of gap-filling
reactions; S5: List of common and unique enzymes in iThaps987; S6: Biomass reaction calculation; S7: Methods
and growth curve.
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