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Abstract 

Background:  Keloid is a benign fibro-proliferative dermal tumor formed by an abnormal scarring response to injury 
and characterized by excessive collagen accumulation and invasive growth. The mechanism of keloid formation has 
not been fully elucidated, especially during abnormal scarring. Here, we investigated the regulatory genes, micro-
RNAs (miRNAs) and transcription factors (TFs) that influence keloid development by comparing keloid and normal 
scar as well as keloid and normal skin.

Methods:  Gene expression profiles (GSE7890, GSE92566, GSE44270 and GSE3189) of 5 normal scar samples, 10 
normal skin samples and 18 keloid samples from the Gene Expression Omnibus (GEO) database were interrogated. 
Differentially expressed genes (DEGs) were identified between keloid and normal skin samples as well as keloid and 
normal scar samples with R Project for Statistical Computing. Gene Ontology (GO) functional enrichment analysis 
was also performed with R software. DEG-associated protein–protein interaction (PPI) network was constructed by 
STRING, followed by module selection from the PPI network based on the MCODE analysis. Regulatory relationships 
between TF/miRNA and target genes were predicted with miRnet and cytoscape. Core regulatory genes were verified 
by RT-qPCR.

Results:  We identified 628 DEGs, of which 626 were up-regulated and 2 were down-regulated. Seven core genes 
[neuropeptide Y(NPY), 5-hydroxytryptamine receptor 1A(HTR1A), somatostatin (SST), adenylate cyclase 8 (ADCY8), 
neuromedin U receptor 1 (NMUR1), G protein subunit gamma 3 (GNG3), and G protein subunit gamma 13 (GNG13)] 
all belong to MCODE1 and were enriched in the “G protein coupled receptor signaling pathway” of the GO biological 
process category. Furthermore, nine core miRNAs (hsa-mir-124, hsa-let-7, hsa-mir-155, hsa-mir-26a, hsa-mir-941, hsa-
mir-10b, hsa-mir-20, hsa-mir-31 and hsa-mir-372), and two core TFs (SP1 and TERT) were identified to play important 
roles in keloid formation. In the TF/miRNA-target gene network, both hsa-mir-372 and hsa-mir-20 had a regulatory 
effect on GNG13, ADCY8 was predicted to be target by hsa-mir-10b, and HTR1A and NPY were potentially by SP1. Fur-
thermore, the expression of core regulatory genes (GNG13, ADCY8, HTR1A and NPY) was validated in clinical samples.

Conclusions:  GNG13, ADCY8, NPY and HTR1A may act as core genes in keloid formation and these core genes estab-
lish relationship with SP1 and miRNA (hsa-mir-372, hsa-mir-20, hsa-mir-10b), which may influence multiple signaling 
pathways in the pathogenesis of keloid.
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Background
Keloid is a morbid and unique fibro-proliferative dermal 
disorder formed by an abnormal scarring response to 
injury [1]. Different from normal scar, keloid possesses 
tumor analogous properties including invasive uncon-
trolled growth and frequent relapses [2]. The growth of 
keloid can last for months to years and often causes pain, 
itching, and even movement restrictions. Keloids are 
unaesthetic and often accompanied by a psychological 
burden that results in decreased quality of life [3].

Accumulating evidence indicates a genetic predisposi-
tion for keloid because its incidence is greater in twins, 
families, and Asian and African ethnicities [2]. Several 
studies have focused on genetic factors in the patho-
genesis of keloid formation; however, no single genetic 
cause has been identified. Gene expression profiles in 
keloids have also been determined [4–6] and have iden-
tified some important differentially expressed genes 
(DEGs). Target networks have also been generated to 
identify target microRNAs (miRNAs) and transcription 
factors (TFs). Studies on miRNAs of keloid have docu-
mented certain effects on angiogenesis, extracellular 
matrix, apoptosis and proliferation [7–9]. TFs including 
FOXM1, RUNX2, STAT3, YAP and SFRP1 have also been 
confirmed to be involved in the keloid [10–13]. However, 
most studies compared keloid with normal skin and not 
with normal scar tissue.

Keloids are pathological scars and comparison with 
normal scar tissue is necessary for a thorough under-
standing of keloid pathogenesis. In this study, to effec-
tively identify DEGs differentially expressed genes, we 
compared keloid with normal skin and normal scar. The 
intersecting DEGs from these two comparisons were 
used for subsequent analysis. In addition, we merged four 
datasets by integrated bioinformatics methods to expand 
our sample size. We established a regulatory network 
to predict miRNAs and TFs as up-stream regulators of 
the common DEGs. This provides a basis for improved 
understanding of molecular basis of keloid pathology and 
effective pharmaceutical targets.

Methods
Data resources
GSE7890, GSE92566, GSE44270 and GSE3189 mRNA 
expression profiles (Homo sapiens) were downloaded 
from the Gene Expression Omnibus (GEO) database. 
Ten samples (five keloid and five normal scars) from 
GSE7890, twelve samples (nine keloid and three nor-
mal skin) from GSE44270, four keloid samples from 
GSE92566, and seven normal skin samples were from 
GSE3189. The expression profiling had been conducted 
using various Affymetrix platforms as follows: GSE3189 
and GSE44270 belonged to GPL96 (Affymetrix Human 

Genome U133A) and GPL6244 (Affymetrix Human 
Gene 1.0 ST Array), respectively. GSE92566 and GSE7890 
belonged to GPL570 (Affymetrix Human Genome U133 
Plus 2.0 Array).

Data preparation and screening for DEGs
Downloaded platform files and series matrix were con-
verted into gene symbols usage of the limma package in 
R (V4.0.0) (https://​www.​bi-oconductor.org/packages/
release/bioc/html/limma.html)and the following pro-
cedures run: conversion of gene ID, merging datasets, 
analysis of potential batch effects, data normalization 
and calculation of gene expression. The average val-
ues of probes were taken as the final expression of the 
genes that multiple probes matching. Screening of DEGs 
was then performed using the R package-limma. Three 
groups of samples were assessed: normal scar samples 
from adults (n = 5), normal skin samples from individu-
als who underwent surgery (n = 10) and keloid samples 
from resection surgery (n = 18). To identify as many 
genes  related to the pathogenesis of keloids as possible, 
keloid samples were compared with normal scar and nor-
mal skin samples. The common DEGs were identified 
with online Venn diagram tools (http://​bioin​fogp.​cnb.
csic.es./tools/venny/index.html and http://​bioin​forma​
tics.​psb.​ugent.​be/webtools/Venn/). The DEGs depicted 
on the volcano plot were selected using filter conditions 
of p-value < 0.05 and |log2 fold change (log2FC)|> 1.

GO Functional enrichment analysis
A GO functional enrichment analysis of DEGs was per-
formed using the cluster Profiler package in R. Terms 
were assigned under three GO categories: biologi-
cal process(BP), molecular function(MF), and cellu-
lar component(CC) [11]. We used ClueGO (v2.5.5), a 
Cytoscape plug-in [12], to group the GO terms for fur-
ther analysis.

Protein–protein interaction (PPI) network analysis 
and subnet module analysis
Search Tool for the Retrieval of Interacting Genes/Pro-
teins (STRING; http://​string-​db.​org/) was used to con-
struct interaction networks among the DEGs-coded 
proteins(setting criteria: medium confidence ≥ 0.9) [13]. 
The most significant PPIs were plotted with the applica-
tion of Cytoscape (v3.7.2, http://​cytos​cape.​org/) [14] and 
the top module with the highest score (setting: k-core > 2) 
was identified. The proteins encoded by genes in the 
same module tended to have the same or analogous func-
tions, and these proteins were enriched for the same 
biological role [15]. The employment of MCODE algo-
rithm was used to evaluate the score of each module,  a 
high score indicated enrichments and closer interactions 
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[16]. To screen for the top hub genes, the PPI networks 
were analyzed by “cytohubba” plug-in in cytoscape soft-
ware with two algorithm methods, including Maximal 
Chique Centrality (MCC) and degree methods using the 
MCODE plug-in.

Prediction of networks mutually regulated by miRNAs 
and TFs.
To detect target genes that may be regulated by both 
miRNAs and TFs, we used miRnet, a network-based vis-
ual analysis tool, and the data in miRTarBase, a database 
of miRNA-target interactions, and miRecords, a resource 
for miRNA-target interaction. The highest involvement 
of miRNAs and TFs in a network was determined using-
cytoHubba, a Cytoscape plug-in.

Reverse transcription‑quantitative ploymerase chain 
reaction (RT‑ qPCR)
We validated the expression pattern of hub genes by RT-
qPCR. We collected 10 keloid and 10 normal skin tissue 
samples from the Dermatology Department of Yanbian 
University Hospital. Ethical approval for the study was 
granted by the Yanbian University Hospital Committee 
(Approval ID: 2018209) and written informed consent 
was obtained from the participating patients. Total RNA 
was extracted using TRIzol reagent (Invitrogen, Carls-
bad, CA, USA) and complementary DNA was generated 
using a reverse transcription kit (Qiagen, Valencia, CA, 
USA) following the manufacturer’s instructions. RT-
qPCR was performed using a miScript SYBR Green PCR 
kit (Qiagen) on an ABI 7300 real-time quantitative PCR 
system to obtain the expression levels of target genes. 
The reactions were performed in triplicate and average 
transcription levels were determined and normalized to 
corresponding GAPDH expression levels as an internal 
control. Relative mRNA levels were calculated using the 
delta-delta Ct method. Statistically significant differences 
are indicated by *. **p < 0.01, ***p < 0.001.

Results
Selection of DEGs
Genes were defined as differentially expressed at 
|log2FC|> 1 and p < 0.05 (Fig.  1A, B). The total number 
of 3901 DEGs were identified in keloid. There were 3515 
DEGs in the comparison of keloid and normal scar and 
1014 DEGs in the comparison of keloid and normal skin, 
as presented in a volcano plot. The 628 DEGs that over-
lap between the two sets are presented in a Venn diagram 
(Fig. 1C).

GO functional enrichment analysis
GO function analysis(p-value < 0.05) (Fig.  2, Table  1) 
revealed the most significant three terms belong-
ing to BP, MF CC. For GO_BP, the DEGs were sig-
nificantly enriched in signaling receptor ligand activity 
(p-value = 2.75E−10, counts = 52), signaling receptor 
activator activity (p-value = 4.27E−10, counts = 52), cell–
cell signaling (p-value = 1.73E−09, counts = 121), recep-
tor regulator activity (p-value = 9.93E−09, counts = 52), 
and trans-synaptic signaling (p-value = 1.19E−08, 
counts = 63). For GO_MF, DEGs were significantly 
enriched in intrinsic component of plasma membrane 
(p-value = 1.69–10, counts = 113), integral component 
of plasma membrane (p-value = 1.43–09, counts = 107), 
extracellular space (p-value = 1.44E−06, counts = 171), 
synapse (p-value = 5.09E−06, counts = 87), and plasma 
membrane bounded cell projection (p-value = 9.54E−05, 
counts = 118). GO_CC was enriched in transmem-
brane signaling receptor activity (p-value = 8.35E−07, 
counts = 87), peptide receptor activity (p-value = 5.07E−06, 
counts = 22), neurotransmitter receptor activity 
(p-value = 3.5E−05, counts = 24), serotonin binding 
(p-value = 0.000406, counts = 6), and signaling receptor 
binding (p-value = 0.001698, counts = 92).

Analysis of hub genes and modules in the PPI network
The PPI network of the DEGs was established using 
the STRING database and visualized with R. The net-
work had 217 nodes and 1586 edges (Fig.  3A). To 
further screen for hub genes, we combined Maxi-
mal Chique Centrality (MCC) and degree method, to 
re-screen DEGs (Additional files  1, 2). The top seven 
genes with degree > 25 and the highest MCC affili-
ated to PPI were identified and included, neuropep-
tide Y (NPY) (degree = 27), 5-hydroxytryptamine 
receptor 1A (HTR1A) (degree = 26), somatostatin 
(SST) (degree = 28), adenylate cyclase 8 (ADCY8) 
(degree = 33), neuromedin U receptor 1 (NMUR1) 
(degree = 39), G protein subunit gamma 13 (GNG13) 
(degree = 51), G protein subunit gamma 3 (GNG3) 
(degree = 52) (Fig.  3D). We also screened functional 
subset-modules MCODE1 to MCODE2 for the PPI net-
work (setting criteria: K-core > 2, MCODE SCORE ≥ 3 
and network nodes > 4). We found that both MCODE1 
and MCODE2 comprised up-regulated genes (Fig.  3B, 
C).Thirteen nodes (ADCY8, CNR2, GALR3, GRM4, 
HTR1A, HTR1B, HTR1D, HTR1F, HTR5A, MTNR1A, 
NPY, OPRK1, and SSTR5) of MCODE1 were enriched 
in the “G protein-coupled receptor signaling path-
way” (GO:0007187). Eight nodes (AVPR1B, CYSLTR2, 
F2RL3, HCRTR1, HCRTR2, LTB4R2, NPFFR1, and 
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NTSR1) of MCODE2 were enriched in the “G protein-
coupled receptor signaling pathway, coupled to cyclic 
nucleotide second messenger” (GO:0008528) and “pep-
tide receptor activity” (GO:0001653).

Identification of miRNA‑targets and TF‑targets interaction 
network
To understand the possible correlations between miR-
NAs and TFs using miRnet tool for DEGs. The miRNA-
DEGs network contained 349 nodes and 648 edges 

Fig. 1  Identification of DEGs (P < 0.05, |log2FC|> 1). A A volcano plot of DEGs between keloid samples and normal scar samples. B A volcano plot of 
DEGs between keloid samples and normal skin samples. C Venn diagrams of overlapping DEGs. DEGs: Differentially Expressed Genes
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Fig. 2  GO analysis of the common DEGs. GO, gene ontology

Table 1  The top five results of GO analysis of the common DEGs ranked by p value

GO/ID Term p value Count

GO/BP

GO:0048018 Receptor ligand activity 2.75303E−10 52

GO:0030546 Signaling receptor activator activity 4.27219E−10 52

GO:0007267 Cell–cell signaling 1.73456E−09 121

GO:0030545 Receptor regulator activity 9.92932E−09 52

GO:0099537 Trans-synaptic signaling 1.19345E−08 63

GO/CC

GO:0031226 Intirnsic component of plasma membrane 1.68629E−10 113

GO:0005887 Integral component of plasma membrane 1.43371E−09 107

GO:0005615 Extracellular space 1.44488E−06 171

GO:0045202 Synapse 5.0892E−06 87

GO:0120025 Plasma membrane bounded cell projection 9.53943E−05 118

GO/MF

GO:0004888 Transmembrane signaling receptor activity 8.35E−07 87

GO:0001653 Peptide receptor activity 5.07E−06 22

GO:0030594 Neurotransmitter receptor activity 3.5E−05 24

GO:00051378 Serotonin binding 0.000406 6

GO:0005102 Signaling receptor binding 0.001698 92
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Fig. 3  Identification of hub genes and analysis of the significant modules from PPI network. A The PPI network of DEGs was constructed using 
Cytoscape. B, C The significant module was obtained from PPI network. D The seven hub genes in the PPI network. PPI: Protein–Protein Interaction; 
DEGs: Differentially expressed genes
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(Additional file  3), and was analyzed further using 
MCC and degree methods. Hsa-mir-124, hsa-let-7, hsa-
mir-155, hsa-mir-26a, hsa-mir-941, hsa-mir-10b, hsa-
mir-20, hsa-mir-31  and hsa-mir-372 were all at least 25 
degrees (Fig.  4A). Interestingly, the same results were 
obtained using the MCC method. Meanwhile, the TF-
DEGs network (378 nodes and 622 edges) (Additional 
file 4) was also analyzed using the same algorithm and the 
two hub TFs, SP1 and TERT (Fig. 4B). We found a con-
nection between the main up-regulators and hub genes. 
GNG13 was a possible down-stream of hsa-mir-372 and 
hsa-mir-20, while ADCY8 was predicted to be regulated 
by hsa-mir-10b (Fig. 5A). HTR1A and NPY were possibly 
regulated by SP1 (Fig. 5B). We observed no other signifi-
cant up-stream regulators connected with remaining hub 
genes, including SST, ADCY8 and GNG3.

RT‑qPCR
We narrowed down the number of hub genes by seek-
ing connection between the main up-regulators and hub 
genes and validating by RT-qPCR. The mRNA levels of 
NPY, ADCY8, GNG13 and HTR1A were significantly 
augmented in keloid compared with normal skin samples 
***p < 0.001 (Fig. 5C).

Discussion
We identified 628 DEGs (2 down-regulated and 626 up-
regulated) by comparing keloid samples with normal 
scar andnormal skin samples. The top seven important 
genes (NPY, HTR1A, SST, ADCY8, NMUR1, GNG3 and 
GNG13), all belong to MCODE1 and were enriched in 
the “G protein coupled receptor signaling pathway” GO_
BP process. Furthermore, the most significant nine miR-
NAs (hsa-mir-124, hsa-let-7, hsa-mir-155, hsa-mir-26a, 
hsa-mir-941, hsa-mir-10b, hsa-mir-20, hsa-mir-31 and 
hsa-mir-372), and the top two TFs (SP1 and TERT) that 
play an important role in keloid formation were identi-
fied. In the TF/miRNA target gene network, GNG13 was 
predicted to be targeted by hsa-mir-372 and hsa-mir-20, 
hsa-mir-10b had regulatory relationship with the ADCY8, 
and both HTR1A and NPY were potentially by SP1. Fur-
thermore, the expression of core regulatory genes (i.e., 
GNG13, ADCY8, HTR1A and NPY) was validated in the 
clinical samples.

Keloids are benign fibrotic tumors that arise from a 
delayed wound healing process. Among the central hub 
genes found in our study, we detected two carcinogen-
esisrelated genes. One of them, HTR1A, is a member 
of the 5-HT receptor superfamily that comprises six 
G-protein coupled receptor families and one ion chan-
nel family. HTR1A is widely involved in many human 
tumor types, including bladder, prostate, small cell lung, 

colorectal, and cholangiocarcinoma [17]. Highly selective 
blockers of 5-HT receptors have been used to determine 
the essential roles of HTR1A. It is implicated in cell pro-
liferation in various types of cancer, such as bladder and 
prostate [18]. The pathway analysis in this study showed 
the involvement of serotonin signaling, which indicates 
that a 5-HT receptor blocker may be a therapeutic agent 
for the treatment of keloids. The other carcinogenesis-
related gene, GNG13, is a transduction factor for the G 
protein-coupled seven transmembrane helix receptors, 
which are associated with cancer development. The dys-
regulation of GNG13 was implicated in the pathology 
of breast cancer [19] and an association between high 
GNG13 expression and a malignant phenotype of gastro-
intestinal stromal tumor has been reported [20]. GNG13 
also was identified as a hub gene in PTEN-mutated 
prostate cancer [21]. The identification of GNG13 and 
HTR1A as hub genes is consistent with keloids sharing 
some characteristics with cancer.

Misbalance between anti-angiogenic and proangio-
genic growth factors, which, upon tumor cells transi-
tion to an angiongenic phenotype, leads to tumor growth 
beyond a defined size. Endostatin, periostin and vascular 
endothelial growth factor (VEGF) are associated with 
new vessel formation in the keloid lesions [22]. One of the 
over-expressed gene in the keloid samples, NPY, encodes 
a direct angiogenic stimulator that is known to stimulate 
cell proliferation. NPY-stimulated VEGF secretion and 
production contribute strongly to angiogenesis activity 
in human breast cancer [23], and it is also a promoter of 
prostate and breast cancers, influencing the proliferation 
and migration of cells [24]. In addition, NPY involves in 
the activation of hepatic stellate cells that contributes to 
hepatic cancer development [25].

Calcium influx has a vital role in keloid formation and 
dysregulation of Ca2+ ions in keloids has been docu-
mented [26]. Ca2+ channel blockers, such as Verapamil, 
have been administered to patients to reduce excessive 
extracellular matrix deposition. ADCY8, identified in our 
study, is an adenylate cyclase gene that encodes a mem-
brane-bound enzyme that participates in cAMP forma-
tion [27]. Moreover, cAMP production is stimulated by 
calcium, which means that calcium catalyzes cAMP pro-
duction through activation of ADCY8. Hence, ADCY8 
might mediate the effect of calcium ions on keloid 
fibroblasts.

Among the 349 predicted miRNAs and 378 TFs, hsa-
mir-372, hsa-mir-20 and hsa-mir-10b had the high-
est degree in the constructed interaction with real 
hub genes, such as GNG13, HTR1A and ADCY8. Hsa-
miR-372 has been identified as both a tumor promoter 
and a tumor suppressor, depending on the type of cancer 
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Fig. 4  Network of miRNAs, TFs and target genes associated in keloid. A miRNAs-target regulatory networks. The red circle represents core miRNAs, 
and the blue circle represents the common DEGs. B TFs-target regulatory networks. The red circle represents core TFs, and the green circle 
represents the common DEGs. TFs: Transcription Factors; DEGs: Differentially Expressed Genes
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[28]. One pro-tumorigenic mechanism of hsa-miR-372 is 
through de-repression of the tumor suppressor LATS2, 
while repression of IGF2BP1 by hsa-miR-372 is a tumor-
suppressive mechanism [29, 30]. Hsa-mir-20 is involved 
in chronic wound healing, mainly through anti-angio-
genic activity by targeting VEGF to inhibit the migration 
and proliferation of cells and tube formation [31]. Hsa-
mir-10b is also involved in carcinogenesis via a negative 
feedback loop with TGF-β1, which indicates a possible 
role in keloid development [32]. SP1 as a potent inducer 
of extracellular matrix expression by fibroblasts  [33], is 
a well-known TF involvement of keloid pathogenesis 
mainly by regulation of the extracellular matrix. How-
ever, a further investigation is still required to better 
comprehension of the underlying mechanisms in greater 
detail. In this study, we found that Sp1 interacted with 
NPY in the TF-DEG network.

Our results require experimental verification, which 
is demanding because of limited tissue samples. Small 

sample numbers can skew integrated bioinformatic anal-
yses and important information might be ignored during 
the analysis. Because of the important effect of ethnicity 
on gene expression, the lack of sample classification dur-
ing data processing and the ethnicity of the samples used 
in validation might also create bias in the results.

Conclusion
GNG13, ADCY8, NPY and HTR1A may act as core genes 
in keloid formation and these core genes establish rela-
tionship with SP1 and miRNA (hsa-mir-372, hsa-mir-20, 
hsa-mir-10b), which may influence multiple signaling 
pathways in the pathogenesis of keloid.
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