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 86 

Abstract 87 

Rationale: Individuals homozygous for the Alpha-1 Antitrypsin (AAT) Z allele (Pi*ZZ) exhibit 88 

heterogeneity in COPD risk. COPD occurrence in non-smokers with AAT deficiency (AATD) 89 

suggests inflammatory processes may contribute to COPD risk independently of smoking. We 90 

hypothesized that inflammatory protein biomarkers in non-AATD COPD are associated with 91 

moderate-to-severe COPD in AATD individuals, after accounting for clinical factors. 92 

Methods: Participants from the COPDGene (Pi*MM) and AAT Genetic Modifier Study (Pi*ZZ) 93 

were included. Proteins associated with FEV1/FVC were identified, adjusting for confounders 94 

and familial relatedness. Lung-specific protein-protein interaction (PPI) networks were 95 

constructed. Proteins associated with AAT augmentation therapy were identified, and drug 96 

repurposing analyses performed. A protein risk score (protRS) was developed in COPDGene and 97 

validated in AAT GMS using AUC analysis. Machine learning ranked proteomic predictors, 98 

adjusting for age, sex, and smoking history. 99 

Results: Among 4,446 Pi*MM and 352 Pi*ZZ individuals, sixteen blood proteins were 100 

associated with airflow obstruction, fourteen of which were highly expressed in lung. PPI 101 

networks implicated regulation of immune system function, cytokine and interleukin signaling, 102 

and matrix metalloproteinases. Eleven proteins, including IL4R, were linked to augmentation 103 

therapy. Drug repurposing identified antibiotics, thyroid medications, hormone therapies, and 104 

antihistamines as potential AATD treatments. Adding protRS improved COPD prediction in 105 
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AAT GMS (AUC 0.86 vs. 0.80, p = 0.0001). AGER was the top-ranked protein predictor of 106 

COPD. 107 

Conclusions: Sixteen proteins are associated with COPD and inflammatory processes that 108 

predict airflow obstruction in AATD after accounting for age and smoking. Immune activation 109 

and inflammation are modulators of COPD risk in AATD.  110 

 111 

 112 

 113 

 114 

 115 

 116 

 117 

 118 

 119 

 120 

 121 

 122 

 123 

 124 

 125 

 126 

 127 

 128 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 13, 2025. ; https://doi.org/10.1101/2025.01.11.25320392doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.11.25320392
http://creativecommons.org/licenses/by-nc/4.0/


 5

Introduction 129 

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and 130 

mortality worldwide1. A monogenic cause of COPD is severe alpha-1 antitrypsin (AAT) 131 

deficiency (AATD). AAT is encoded by the SERPINA1 gene and is a potent inhibitor of 132 

neutrophil elastase2. Individuals homozygous for two Z alleles (Glu342Lys; denoted Pi*ZZ) in 133 

this gene have very low circulating serum AAT levels. AATD is associated with severe early-134 

onset emphysema, airflow limitation, hepatic disease, and other disorders2.   However, there is 135 

marked heterogeneity amongst individuals with Pi*ZZ with respect to the development of 136 

airflow obstruction and emphysema.  137 

To examine factors associated with severity of lung disease amongst individuals with 138 

Pi*ZZ, the AAT Genetic Modifier Study (AAT GMS), enrolled a large cohort of index and non-139 

index family members homozygous for the Z allele. From this cohort, cigarette smoking, male 140 

sex, asthma, pneumonia, and chronic bronchitis have previously been identified as risk factors 141 

for lower spirometry measures3. Serban and colleagues demonstrated that there are shared 142 

proteomic predictors of airflow obstruction and emphysema in individuals with and without 143 

Pi*ZZ, and that a protein risk score can predict emphysema4. However, in their analysis of 237 144 

Pi*ZZ subjects, a lung-specific protein-protein interaction analysis of overlapping proteomic 145 

predictors with airflow obstruction was not performed, and the protein risk score was not tested 146 

in the context of a clinical risk score. Further, the proteomic platforms in this prior study were 147 

not enriched for inflammatory markers, which may offer a more global view of proteomic 148 

alterations but may also limit identification of targetable inflammatory pathways. 149 

While smoking cessation is paramount for preventing airflow obstruction, some 150 

individuals with AATD will develop lung disease despite never smoking or quitting smoking. 151 
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Thus, there may be inflammatory processes associated with AATD leading to airflow obstruction 152 

that are independent of cigarette smoking, though this hypothesis has not been tested. Despite 153 

AATD being monogenic in etiology, the heterogeneity in disease severity and response to AAT 154 

protein replacement (hereafter, “augmentation”) therapy suggest that additional biological 155 

processes linked to AATD remain to be understood. As with other causes of COPD, 156 

inflammation could be an important driver of disease risk and severity, and leveraging a 157 

proteomic panel enriched for inflammatory protein biomarkers could identify pathogenic 158 

pathways associated with COPD and AATD.  159 

In this study, we utilize proteomic data from the Genetic Epidemiology of COPD 160 

(COPDGene) study to train a predictive model and AAT GMS individuals with proteomic data 161 

enriched for inflammatory markers to address these issues. We hypothesized that after 162 

accounting for clinical risk factors of disease severity, there are inflammatory protein biomarkers 163 

that can predict which individuals with severe AATD will develop moderate-to-severe COPD. 164 

We additionally examined inflammatory proteins associated with AAT augmentation therapy. 165 

 166 

 167 

Methods 168 

Study populations 169 

 170 

COPDGene 171 

The Genetic Epidemiology of COPD (COPDGene) study5 included 10,198 non-Hispanic 172 

white (NHW) and African American (AA) individuals, 45-80 years of age with 10 or more pack-173 
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years of cigarette smoking exposure. Baseline demographic, spirometry, chest computed 174 

tomography (CT) imaging data, and whole blood samples were collected.   175 

At the five-year follow up visit, blood samples on 5,670 individuals were collected and 176 

proteomic data was measured using SomaScan 5K (version 4.0). Further details regarding 177 

SomaScan data can be found in the Supplement.  In the current analysis, we included only 178 

individuals with inferred Pi*MM based on exclusion of other genotypes, as previously reported6, 179 

with SomaScan and spirometry data collected at the five-year follow up visit. 180 

 181 

AAT Genetic Modifiers Study 182 

The AAT Genetic Modifier Study (AAT GMS)3 is a multicenter cross-sectional study of 183 

378 European ancestry participants with severe AATD (all Pi*ZZ) in 167 families3. Eligible 184 

families included those with at least one sibling pair with Pi*ZZ in which both siblings were 30 185 

years of age or greater. Questionnaire, spirometry, and whole blood were collected. Proband 186 

status was defined as the first individual in the family diagnosed with AATD. 187 

Proteomic data were generated using the Olink Explore Inflammatory 384 panel by Olink 188 

(Waltham, MA) and preprocessed to remove outliers7. Data were transformed on a Log2 scale 189 

with the measurement unit on the relative NPX scale per Olink8,9. NPX (Normalized Protein 190 

eXpression) is a relative quantification metric used to represent protein levels detected in Olink 191 

assays. NPX is based on Proximity Extension Assay (PEA) technology, which enables sensitive, 192 

precise protein detection across a broad dynamic range. Biomarkers on this panel were chosen to 193 

represent proteins in biological pathways that most contribute to key research questions in 5 194 

main areas: secreted proteins, organ-specific proteins, inflammatory proteins, established and 195 

ongoing drug targets, and exploratory proteins. Additional details on preparation of Olink 196 
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proteomic data are in the Supplement. We included individuals with Olink proteomic and 197 

spirometry data. 198 

 199 

Statistical analysis 200 

Overview of study design 201 

A schematic of our study design is shown in Figure 1. The study included biological 202 

characterization of proteins associated with FEV1/FVC and development of a proteomic 203 

predictor of FEV1/FVC, as well as an examination of the top proteomic predictors of airflow 204 

obstruction after accounting for clinical risk factors. For the biological characterization portion, 205 

we identified which proteins were associated with FEV1/FVC in both COPDGene and AAT 206 

GMS and used the replicable set of proteins to perform pathway enrichment and protein-protein 207 

interaction network analyses to gain insight into the biological meaning of our findings. We 208 

mapped these proteins to lung cell types and performed drug repurposing analysis (see below). 209 

As secondary analyses, we also examined the proteomic markers associated with AAT 210 

augmentation therapy. 211 

 212 

Biological characterization of proteomic associations with phenotypes of interest 213 

Phenotypes/Outcomes of Interest 214 

The primary phenotype or outcome of interest was FEV1/FVC in both cohorts. In the 215 

AAT GMS cohort, we also tested a range of secondary associations of interest including with 216 

AAT augmentation therapy administration, C-Reactive Protein (CRP) (measured separately from 217 

Olink), bronchodilator responsiveness (BDR), immunoglobulin E (IgE), and FEV1 % predicted. 218 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 13, 2025. ; https://doi.org/10.1101/2025.01.11.25320392doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.11.25320392
http://creativecommons.org/licenses/by-nc/4.0/


 9

Given the right skew of FEV1/FVC, we used rank-normalized FEV1/FVC for all analyses. 219 

SomaScan and Olink proteins, CRP, and IgE were log2-transformed prior to analysis. 220 

 221 

Biological characterization of proteins associated with FEV1/FVC 222 

We performed differential protein expression analysis in COPDGene and AAT GMS for 223 

each phenotype of interest. We first limited to proteins present in both the COPDGene and AAT 224 

GMS datasets based on overlapping UniProt identifiers (272 proteins). In COPDGene, we 225 

performed analyses using multiple linear regressions, adjusting for potential confounders, 226 

including age, sex, self-identified race, current smoking status, pack-years of smoking, and study 227 

center. In AAT GMS, we applied linear mixed effects models utilizing the OlinkAnalyze R 228 

package (https://github.com/Olink-Proteomics/OlinkRPackage) olink_lmer function. We 229 

estimated effect sizes and confidence intervals with the lmerTest R package lmer or glmer 230 

functions for continuous and binary outcomes, respectively, considering family relatedness (i.e., 231 

identifiers) as random intercepts. We additionally adjusted models for age, sex, pack-years of 232 

smoking, pack-years of smoking squared, ever smoking status, and proband status as fixed 233 

effects. As a sensitivity analysis, we additionally adjusted models for augmentation therapy, 234 

which can alter proteomic associations4. In both cohorts, we considered Benjamini-Hochberg10 235 

p-values less than 0.05 to be significant. We applied this same approach to identify proteomic 236 

markers associated with augmentation therapy.  237 

We focused remaining biological characterization analyses on FEV1/FVC. We compared 238 

the effect sizes and directions of each protein associated with FEV1/FVC in each cohort to 239 

identify a list of replicable protein biomarkers. In AAT GMS, we used Pearson correlation 240 
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coefficients to examine the correlation of phenotypes and FEV1/FVC-associated proteins with 241 

each other and constructed correlation plots with ggcorrplot. 242 

We mapped the list of replicable proteins associated with FEV1/FVC to a human lung 243 

single cell atlas11 and used these proteins to build a protein-protein interaction (PPI) network 244 

(https://string-db.org/). The rationale for using the human cell atlas via Cell-X-Gene was to 245 

leverage its broader tissue-specific and cell-specific data coverage compared to other databases, 246 

such as GTEx, in providing sufficient cellular representation for the selected proteins. We then 247 

performed pathway enrichment and Enrichr12–14 drug repurposing analyses based on this 248 

network. Details regarding these analyses are in the Supplement.  249 

 250 

Prediction of spirometric severity in individuals with Pi*ZZ 251 

Details regarding the development of clinical and protein risk scores for FEV1/FVC are in the 252 

Supplement.  253 

 254 

Testing of the protein risk score 255 

We first tested the association of the protRS with multiple outcomes in COPDGene and 256 

AAT GMS using multivariable linear regression models. Outcomes tested are detailed in the 257 

Supplement. 258 

 After performing association analyses, we then performed area-under-the-receiver-259 

operating-characteristic-curve (AUC) analyses to evaluate the predictive performance of the 260 

clinical risk score (CRS), protRS, and both CRS and protRS together for COPD case-control 261 

status (Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2-4 versus normal 262 

spirometry). We compared AUCs considering DeLong p-values15 below 0.05 as indicating a 263 
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significant difference. We also split the protRS into tertiles and examined the odds of having 264 

moderate-to-severe COPD for individuals in the second and third compared to the first tertile.  265 

 To identify the relative importances of proteins that predict moderate-to-severe COPD in 266 

individuals with AATD after accounting for clinical risk factors, we obtained residuals for linear 267 

regression models of each protRS protein with clinical factors (protein ~ age + sex + pack-years 268 

of smoking). Using the residuals of these models as inputs, we developed a random forest model, 269 

which allows for modeling of non-linear relationships and provides variable importance 270 

measures. The random forest model was trained in the AAT GMS with FEV1/FVC as the 271 

outcome with 500 trees and 5 variables tested at each split. Variable importances were based on 272 

changes in mean squared error (MSE) – that is, when a protein is removed from the model, there 273 

is a resulting increase in the MSE; the greater the increase in MSE, the more important the 274 

variable. 275 

 276 

Results 277 

 278 

Characteristics of study participants 279 

Characteristics of study participants are shown in Table 1. We included 352 Pi*ZZ 280 

individuals from the Alpha-1 Genetic Modifiers Study (AAT GMS) and 4,446 Pi*MM subjects 281 

from the Genetic Epidemiology of COPD (COPDGene) study. Compared to COPDGene, AAT 282 

GMS participants were all non-Hispanic white and were more likely to be younger, female, have 283 

fewer pack-years of smoking history, and lower FEV1 and FEV1/FVC. Within AAT GMS, the 284 

correlation between spirometry phenotypes was strong, but limited between spirometry and other 285 

traits (Figure S1) 286 
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 287 

Proteins associated with FEV1/FVC and other phenotypes in individuals with Pi*MM and 288 

Pi*MZ 289 

 290 

Differential protein expression results for all phenotypes in the AAT GMS are shown in 291 

Table S1. We identified 78 proteins significantly associated with FEV1/FVC in COPDGene 292 

individuals with Pi*MM and 67 proteins significantly associated with FEV1/FVC in AAT GMS 293 

individuals with Pi*ZZ; AAT GMS effects were similar after adjusting for augmentation therapy 294 

(Table S2). We found 20 proteins associated with FEV1 that were not associated with FEV1/FVC 295 

(Table S3). Comparing results across cohorts, there were 16 overlapping significantly 296 

differentially expressed proteins based on UniProt IDs (Table 2). We observed concordant 297 

directions of effects for each protein except for ADCYAP1 (AAT GMS: ß = 0.156, COPDGene: 298 

ß = -0.0935). Given the different proteomic platforms, direct comparisons of effect sizes cannot 299 

be interpreted, only directions of effects. Examination of the heatmap in Figure S2 demonstrates 300 

that LY9 and CD48 are highly correlated (r ≥ 0.8), but the other 14 proteins are less highly 301 

correlated.  302 

We then mapped these 16 proteins to the Cell-X-Gene human lung single cell atlas to 303 

identify those with gene expression levels in the top quartile for each lung cell type (Figure 2, 304 

refer to Supplementary Methods). This analysis revealed that all but two proteins, IL12B and 305 

ADCYAP1, were likely to have high expression levels in lung tissue, and the other 14 proteins 306 

were thus selected for subsequent network analysis. Using these 14 proteins, we constructed a 307 

protein-protein interaction network (Figure 3, Table S4) and performed MCL clustering analysis, 308 

which defined three clusters (Table S5). Notably, the first cluster implicates processes related to 309 
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regulation of cytotoxicity and immunoregulatory interactions between lymphoid and non-310 

lymphoid cells, while the third cluster implicates activation of matrix metalloproteinases. 311 

STRING-based Reactome pathway enrichment analyses implicate alterations in immune system 312 

function, cytokine signaling, and interleukin signaling (Table S6).  313 

Using the full set of proteins in the STRING network (Table S4), we performed 314 

enrichment-based drug-repurposing analyses (Table 3). We identified 12 drug repurposing 315 

candidates of interest, though only methimazole was significant after adjusting for multiple 316 

statistical comparisons. Drug candidates of interest included antihistamines, antivirals, and 317 

thyroid medications. Steroids were identified, which are currently used for COPD. Several 318 

immunosuppressive medications (e.g. decitabine) and hormone-related therapies (e.g. flutamide) 319 

were also identified but may not have appropriate side effect profiles for use in AATD patients; 320 

these exploratory analyses point to potentially targetable pathways for further investigation. 321 

 322 

Proteomic alterations associated with augmentation therapy 323 

As AAT augmentation therapy may have anti-inflammatory effects and/or contribute 324 

additional proteins to plasma, we examined the proteomic associations with the use of 325 

augmentation therapy. We found 11 proteins significantly associated with augmentation therapy 326 

(Table S7) and only EPHA1 and AGER were present in the list of replicable proteins associated 327 

with FEV1/FVC (Table 2). Using these proteins in Enrichr drug repurposing analyses, we 328 

identified 5 candidates, including a macrolide antibiotic and fibrates (Table S8). 329 

 330 

A protein risk score for FEV1/FVC predicts spirometry severity in individuals Pi*ZZ 331 
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Having identified shared proteomic associations with FEV1/FVC in both COPDGene and 332 

the AAT GMS, we then constructed a protein risk score (protRS) that can predict moderate-to-333 

severe COPD status in COPDGene participants (Table S9 and S10); details of the protRS 334 

development, including hyperparameter tuning (Figure S3) and performance measures are in the 335 

Supplement. We calculated the protRS in AAT GMS and observed that it was associated with 336 

FEV1/FVC (Figure S4), COPD case-control status and augmentation therapy administration 337 

(Figure S5) in unadjusted analyses. In multivariable linear mixed effects analysis, the protRS 338 

was associated with FEV1 and FEV1/FVC, but not CRP or IgE levels (Table S11). A one 339 

standard deviation increase in the protRS was associated with an adjusted odds ratio of 2.8 (95% 340 

CI: 1.79 to 4.42, p = 0.000008) for moderate-to-severe COPD.  341 

 342 

We then assessed the predictive value of the protRS in the context of known clinical risk factors. 343 

First, we developed a clinical risk score to predict FEV1/FVC in COPDGene using age, sex, and 344 

pack-years of smoking. We tested the predictive performance of these models in the AAT GMS 345 

(Figure 4A). In AUC analyses, we found that a clinical risk score (AUC 0.8) and the protRS 346 

similarly predicted COPD case-control status (AUC 0.81). Combining the clinical risk score and 347 

the protRS improved the AUC to 0.86 (p [AUC Combined model vs. AUC Clinical model] = 1E-348 

04 (Figure 4A).   349 

 350 

To identify the most important inflammatory proteins predictive of airflow obstruction in 351 

individuals with AATD, we first adjusted the protein NPX values for age, sex, and pack-years of 352 

smoking. We then used the residuals of these protein regression models to train a random forest 353 

model in the AAT GMS. After removing the effects of the clinical factors, the random forest 354 
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model explained 6.53% of the variance in FEV1/FVC, and the top 20 most important variables 355 

are shown in Figure 4B, with the most important protein predictor being AGER. 356 

 357 

 358 

Discussion 359 

 360 

In this study of over 4,000 individuals with Pi*MM who smoked and 352 individuals 361 

with Pi*ZZ, we identified 16 proteins measured in plasma that were associated with airflow 362 

obstruction in both cohorts. Fourteen of these proteins were highly expressed in lung. Using 363 

protein-protein interaction network analyses, we found that these proteins are involved in 364 

regulating immune system function, cytokine signaling, interleukin signaling, and matrix 365 

metalloproteinases. We identified drug repurposing candidates that included antihistamines, 366 

antivirals, hormone therapies, and thyroid medications. We also identified 11 proteins associated 367 

with AAT augmentation therapy. We then developed a protein risk score (protRS) that predicts 368 

moderate-to-severe COPD within individuals with Pi*ZZ and was additive to clinical risk 369 

factors. Finally, we used machine learning to identify inflammatory proteins that predict airflow 370 

obstruction within individuals with Pi*ZZ, after accounting for clinical risk factors. These results 371 

lend insight into the inflammatory processes contributing to airflow obstruction in individuals 372 

with Pi*ZZ beyond age, sex, and cigarette smoking exposure, and identify potential therapeutic 373 

targets and drug repurposing candidates for future research. 374 

Our results extend the work of Serban and colleagues who previously demonstrated 375 

shared proteomic markers between individuals with Pi*MM and Pi*ZZ with respect to airflow 376 

obstruction and emphysema4. The authors also developed a protein risk score that predicted 377 
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emphysema in individuals with Pi*ZZ. Our study expands upon these findings in the following 378 

important ways: we (1) used an AATD cohort that was not examined in the Serban et al. study4, 379 

larger in size, and focused on inflammatory protein biomarkers, (2) performed a lung-specific 380 

PPI network analysis of the replicable proteins associated with FEV1/FVC, (3)  performed drug 381 

repurposing analyses, (4) directly examined proteins associated with AAT augmentation therapy, 382 

(5) tested the performance of the protRS in the context of a clinical risk score, (6) used machine 383 

learning to identify inflammatory drivers of airflow obstruction after accounting for clinical 384 

factors.  385 

Our findings suggest that individuals with AATD have ongoing inflammation that 386 

contributes to airflow obstruction regardless of cigarette smoking exposure. We observed that 387 

clinical risk factors, including but not limited to pack-years of smoking, and proteins in the 388 

protein risk score explained ~25% of the variance in FEV1/FVC, while proteins adjusted for 389 

clinical variables explained 6.5% of the variance.  In this analysis, AGER, a highly replicable 390 

COPD GWAS locus and biomarker for emphysema in non-AATD subjects, was ranked by 391 

random forest as the most important protein predictor. The rs2070600 variant encodes a missense 392 

polymorphism in the AGER gene and its association with COPD and emphysema have been 393 

replicated in multiple GWASs16,17. The protein product of AGER is soluble receptor for advanced 394 

glycation end-products (s-RAGE), a multi-ligand transmembrane receptor expressed in lung and 395 

other tissues that is implicated in several inflammatory diseases. Lower levels are associated with 396 

more emphysema and greater COPD risk18,19. Thus, understanding the role of AGER in both 397 

non-AATD and AATD emphysema and COPD as a mechanistic target and biomarker is an 398 

important area for additional investigation. 399 
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We identified 16 inflammatory proteins associated with FEV1/FVC in both COPDGene 400 

and the AAT GMS. All 16 of these proteins were reported to be associated with FEV1/FVC by 401 

Serban et al.4. Fourteen of these proteins (excluding IL12B and ADCYAP1) were highly 402 

expressed in lung, and a network-based enrichment analysis implicated alterations in 403 

immunoregulatory interactions between lymphoid and non-lymphoid cells, changes in cytokine 404 

and interleukin signaling, and regulation of matrix metalloproteinases.  These processes have 405 

been previously implicated in COPD pathogenesis. B-cells and lymphoid follicle density in the 406 

lung are associated with disease severity and emphysema20,21. AAT has been shown to attenuate 407 

cytokine and interleukin inflammatory responses22, including in the context of infections23. 408 

We demonstrated that a 126-protein risk score improved predictive capacity for COPD 409 

affection status in individuals with Pi*ZZ above a clinical risk score. A protein panel of this size, 410 

enriched for inflammatory biomarkers, likely has high translatability across cohorts and 411 

proteomic assay platforms. Our results also confirm that the proteomic determinants of disease 412 

severity in non-AATD and AATD COPD are at least partially shared, as previously reported4, 413 

and suggest that blood-based biomarkers developed in individuals without AATD may be useful 414 

in individuals with AATD. 415 

We further identified 11 proteins associated with AAT augmentation therapy which 416 

implicate alterations in immune function with changes in IL-4, IL-17, and IL-24; whether these 417 

proteins can be leveraged as additional therapeutic targets and/or predict response to 418 

augmentation therapy requires further study. Two proteins overlapped with those proteins 419 

associated with FEV1/FVC (AGER, EPHA1), which suggests that augmentation therapy may 420 

alter airflow obstruction risk through these proteins.   421 
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As augmentation therapy is effective yet far from curative, we performed drug 422 

repurposing analyses which identified several drug repurposing candidates. Several antibiotics 423 

and antiviral agents were identified, which seems plausible given that most COPD exacerbations 424 

are related to bacterial and viral infections. Indeed, a successful drug repurposing agent for 425 

COPD exacerbations is the macrolide antibiotic azithromycin24 and roxithromycin was identified 426 

as a candidate based on augmentation-associated proteins. Currently, we do not prescribe 427 

antivirals for COPD exacerbations, but our results suggest this approach may be worth 428 

consideration. Some of the drug repurposing candidates may be targeting comorbid conditions 429 

such as allergic rhinitis (antihistamines). While thyroid medications were identified as potential 430 

drug candidates, there is limited literature to support this finding beyond a previously reported 431 

association between thyroid dysfunction and COPD25. Notably, methimazole is used to treat 432 

hyperthyroidism, raising questions about whether the direction of effect aligns with the intended 433 

therapeutic outcome. Drugs within the same class may have the same primary mechanism of 434 

action yet variable off-target effects, so our findings should not be interpreted solely at the drug 435 

class level. While our results are intriguing, to consider using these agents in AATD patients, 436 

careful pharmacoepidemiologic or randomized controlled trials need to be performed. 437 

Nonetheless, our results highlight the need to apply additional drug repurposing approaches to 438 

future datasets and consider the best way to test drug candidates beyond AAT protein 439 

replacement therapy. 440 

Strengths of this study include leveraging a proteomic platform enriched for 441 

inflammatory biomarkers and machine learning to identify biological processes related to airflow 442 

obstruction in a large cohort of individuals with Pi*ZZ after accounting for age and smoking, 443 

utilizing a network-based approach to understand these biological processes, examining 444 
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proteomic associations with additional outcomes (e.g., CRP, IgE, augmentation therapy), and 445 

performing drug repurposing analyses.  446 

Limitations include that we did not have lung proteomic data from individuals with 447 

AATD, and we cannot decipher whether protein associations are causing or caused by disease-448 

associated phenotypes. However, we did map our protein associations to a human lung single-449 

cell atlas to focus on proteins expressed in lung tissue. Prospective validation of the protRS 450 

would be necessary before clinical use and an additional replication of the protRS in another 451 

AATD population would lend support to a prospective trial of such a biomarker. While we found 452 

proteins associations with FEV1/FVC that replicated in terms of significance and direction of 453 

effect, effect sizes cannot be inferred due to the cross-platform (SomaScan and Olink) nature of 454 

this study. Further research into cross-platform proteomic analyses are needed. The drug 455 

repurposing results yielded many intriguing trends, but enrichment results did not pass multiple 456 

comparison testing at a strict statistical threshold for the primary analysis, though it did in the 457 

analysis of augmentation therapy-associated proteins; these results might be driven by the 458 

sparsity of our network. We also cannot infer directionality with respect the how drug 459 

repurposing candidates may alter disease risk, and this issue needs to be addressed before 460 

designing validation studies. Having concomitant single cell data with proteomic and drug 461 

repurposing analyses could help identify testable and targetable pathways within specific cell 462 

types.  463 

In conclusion, we identified 14 lung-expressed proteins associated with COPD severity 464 

and identified inflammatory proteins and pathways associated with airflow obstruction in 465 

individuals with AATD that persist after adjusting for the effects of age and smoking. Further, 466 

we identified drug repurposing candidates and proteins associated with AAT augmentation 467 
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therapy and developed a protein risk score that improves prediction of COPD affection status 468 

when added to clinical factors. Further validation and investigation of our findings can lead to an 469 

improved understanding of the pathogenesis of airflow obstruction and potential therapeutic 470 

strategies for people with severe Alpha-1 Antitrypsin deficiency. 471 

 472 
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Table and Figure Legends 557 
 558 
Table 1. Characteristics of study participants in the Alpha-1 Genetic Modifiers Study (AAT 559 
GMS; all Pi*ZZ) and Genetic Epidemiology of COPD study (COPDGene; limited to Pi*MM). 560 
FEV1 = forced expiratory volume in 1 second. FEV1/FVC = FEV1/forced vital capacity.  LAA 561 
= low attenuation area. HU = Hounsfield units. Perc15 = 15th percentile of lung density 562 
histogram on inspiratory CT scans. WA % = wall area percent. Pi10 = square root of wall area of 563 
a hypothetical internal perimeter of 10 mm. 564 
 565 
Table 2:  Proteins significantly associated with FEV1/FVC in both the Alpha-1 Genetic 566 
Modifiers Study and COPDGene. See Table 1 for abbreviations. In the Alpha-1 Genetic 567 
Modifiers Study (AAT GMS), models were adjusted for age, sex, pack-years of smoking, pack-568 
years of smoking squared, ever smoking status, and proband status. In COPDGene, models were 569 
adjusted for age, sex, race, height, current smoking status, pack-years of smoking, and study 570 
center. The table is arranged by the adjusted p-values for AAT GMS. *ADCYAP1 is another 571 
name for PACAP 572 
 573 
Table 3. Proteins in the top quartile of expression in lung cells were mapped to the human 574 
protein-protein interactome using STRING. The full set of proteins comprising the STRING 575 
network (Table S4) were used as inputs into Enrichr to query the Multi-marker Analysis of 576 
GenoMic Annotation (MAGMA) drugs and diseases database, which identified drugs that would 577 
target enriched pathways represented by the proteins associated with FEV1/FVC in both the 578 
Alpha-1 Genetic Modifiers Study and COPDGene. 579 
 580 
Figure 1: Schematic of study design. COPDGene = Genetic Epidemiology of COPD study. 581 
FEV1=forced expiratory volume in 1 second. FVC = forced vital capacity. LASSO = least 582 
absolute shrinkage and selection operator. Pi = alpha-1 antitrypsin protease inhibitor. AUC = 583 
area-under-the-receiver-operating-characteristic curve. STRING= search tool for the retrieval of 584 
interacting proteins. 585 

 586 
Figure 2. The top 16 proteins associated with FEV1/FVC in both Alpha-1 Genetic Modifiers 587 
Study and COPDGene were mapped to the human lung single cell atlas 588 
(https://cellxgene.cziscience.com/gene-expression). *ADCYAP1 is another name for PACAP. 589 
 590 
Figure 3. STRING network built from top 14 proteins associated with FEV1/FVC in both Alpha-591 

1 Genetic Modifiers Study and COPDGene with high expression in lung cells (top quartile of 592 
expression). Medium confidence interactions were included (>0.4). Edge thickness indicates 593 
level of confidence. Edges with 10 interactors in the first shell and 5 in the second shell were 594 
permitted. MCL clustering was performed with and inflation factor of 3 to define clusters, which 595 
are shown in different colors. 596 
 597 

Figure 4. A) Receiver-operating-characteristic curves and area-under-the-curve measures for 598 
models trained in COPDGene and tested in the Alpha-1 Genetic Modifiers Study. The clinical 599 
model included age, sex, and pack-years of smoking. ProtRS=protein risk score. ‘Combined’ 600 
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indicates the combination of clinical variables and the protRS. B) Random forest model-based 601 
variable importance measures for proteins in the protein risk score after adjusting for age, sex, 602 
and pack-years of smoking. 603 
 604 
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Table 1. Characteristics of study participants in the Alpha-1 Genetic Modifier Study (AAT GMS; 646 
all Pi*ZZ) and Genetic Epidemiology of COPD study (COPDGene; limited to Pi*MM). FEV1 = 647 
forced expiratory volume in 1 second. FEV1/FVC = FEV1/forced vital capacity.  LAA = low 648 
attenuation area. HU = Hounsfield units. Perc15 = 15th percentile of lung density histogram on 649 
inspiratory CT scans. WA % = wall area percent. Pi10 = square root of wall area of a 650 
hypothetical internal perimeter of 10 mm. 651 
 652 

Characteristic AAT GMS COPDGene 

N 352 4446 

age (mean (SD)) 51.42 (9.03) 65.53 (8.63) 

sex (No. (%), female) 195 (55.4) 2165 (48.7) 

race (No. (%), African American) 0 (0.0) 1380 (31.0) 

Pack-years of smoking (mean (SD)) 13.34 (15.93) 44.28 (24.28) 

Current smoking status (No. (%)) 12 (3.4) 1712 (38.5) 

Ever smoking status (No. (%)) 236 (67.0) 4446 (100.0) 

FEV1 (mean (SD)) 2.03 (1.18) 2.16 (0.87) 

FEV1/FVC (mean (SD)) 0.54 (0.21) 0.66 (0.15) 

% LAA < -950 HU (mean (SD)) NA 5.78 (9.13) 

Perc15 (mean (SD)) NA 82.06 (28.72) 

WA% (mean (SD)) NA 49.83 (8.39) 

Pi10 (mean (SD)) NA 2.26 (0.58) 

augmentation therapy (No. (%)) 161 (45.7) NA 
 653 
 654 
 655 
 656 
 657 
 658 
 659 
 660 
 661 
 662 
 663 
 664 
 665 
 666 
 667 
 668 
 669 
 670 
 671 
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Table 2:  Proteins significantly associated with FEV1/FVC in both the Alpha-1 Genetic Modifier 675 
Study and COPDGene. See Table 1 for abbreviations. In the Alpha-1 Genetic Modifier Study 676 
(AAT GMS), models were adjusted for age, sex, pack-years of smoking, pack-years of smoking 677 
squared, ever smoking status, and proband status. In COPDGene, models were adjusted for age, 678 
sex, race, height, current smoking status, pack-years of smoking, and study center. The table is 679 
arranged by the adjusted p-values for AAT GMS. *ADCYAP1 is another name for PACAP 680 
 681 

UniProt ID HGNC 
AAT GMS COPDGene 

beta (95% CI) adj. p-value beta (95% CI) adj. p-value 

P12544 GZMA 0.167 (0.105 to 0.228) 1.60E-05 0.118 (0.0255 to 0.21) 0.044 

Q15109 AGER 0.379 (0.225 to 0.534) 2.20E-05 0.123 (0.0757 to 0.17) 8.20E-06 

P21709 EPHA1 0.38 (0.21 to 0.55) 2.00E-04 0.196 (0.129 to 0.262) 5.00E-07 

P29460 IL12B 0.217 (0.107 to 0.328) 0.00036 0.14 (0.0622 to 0.218) 0.0039 

Q9HBG7 LY9 0.444 (0.245 to 0.644) 0.00036 0.199 (0.118 to 0.28) 2.70E-05 

P09326 CD48 0.422 (0.212 to 0.631) 0.00066 0.211 (0.127 to 0.296) 2.10E-05 

Q99983 OMD 0.225 (0.113 to 0.337) 0.0027 0.13 (0.0549 to 0.206) 0.0056 

Q15661 TPSAB1 0.221 (0.0963 to 0.346) 0.0031 0.186 (0.117 to 0.255) 3.50E-06 

P43489 TNFRSF4 0.256 (0.0867 to 0.425) 0.0099 0.166 (0.0339 to 0.297) 0.049 

P48023 FASLG 0.278 (0.107 to 0.45) 0.01 0.0918 (0.0238 to 0.16) 0.031 

Q99435 NELL2 0.337 (0.142 to 0.532) 0.01 0.273 (0.0995 to 0.446) 0.012 

Q9Y6N7 ROBO1 0.323 (0.126 to 0.519) 0.012 0.253 (0.149 to 0.357) 3.00E-05 

O00241 SIRPB1 0.178 (0.0366 to 0.319) 0.026 0.0678 (0.0162 to 0.119) 0.037 

Q14005 IL16 0.112 (0.0237 to 0.201) 0.036 0.286 (0.184 to 0.388) 1.30E-06 

Q8WU39 ADCYAP1 0.156 (0.0377 to 0.274) 0.036 -0.0935 (-0.161 to -0.0257) 0.028 

P15260 IFNGR1 0.397 (0.0982 to 0.696) 0.037 0.159 (0.0565 to 0.262) 0.013 
 682 
 683 
 684 
 685 
 686 
 687 
 688 
 689 
 690 
 691 
 692 
 693 
 694 
 695 
 696 
 697 
 698 
 699 
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Table 3. Proteins in the top quartile of expression in lung cells were mapped to the human 700 
protein-protein interactome using STRING. The full set of proteins comprising the STRING 701 
network (Table S4) were used as inputs into Enrichr to query the Multi-marker Analysis of 702 
GenoMic Annotation (MAGMA) drugs and diseases database, which identified drugs that would 703 
target enriched pathways represented by the proteins associated with FEV1/FVC in both the 704 
Alpha-1 Genetic Modifiers Study and COPDGene. 705 
 706 
term p-value q-value 

Methimazole 0.0004 0.0189 

Sirolimus 0.0035 0.0633 

Progesterone 0.0059 0.0787 

Cetirizine 0.0077 0.0787 

Nafamostat 0.0169 0.0787 

Decitabine 0.0184 0.0787 

Didanosine 0.0200 0.0787 

Methylprednisolone 0.0245 0.0787 

Propylthiouracil 0.0260 0.0787 

Flutamide 0.0306 0.0787 

Cladribine 0.0321 0.0787 

Prednisolone 0.0396 0.0821 

 707 
 708 
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