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Abstract: The outcome of an encounter with Mycobacterium tuberculosis (Mtb) depends on the 
pathogen’s ability to adapt to the variable immune pressures exerted by the host. Understanding 
this interplay has proven difficult, largely because experimentally tractable animal models do not 
recapitulate the heterogeneity of tuberculosis disease. We leveraged the genetically diverse Collab-
orative Cross (CC) mouse panel in conjunction with a library of Mtb mutants to create a resource 
for associating bacterial genetic requirements with host genetics and immunity. We report that CC 
strains vary dramatically in their susceptibility to infection and produce qualitatively distinct immune 
states. Global analysis of Mtb transposon mutant fitness (TnSeq) across the CC panel revealed 
that many virulence pathways are only required in specific host microenvironments, identifying a 
large fraction of the pathogen’s genome that has been maintained to ensure fitness in a diverse 
population. Both immunological and bacterial traits can be associated with genetic variants distrib-
uted across the mouse genome, making the CC a unique population for identifying specific host-
pathogen genetic interactions that influence pathogenesis.

Editor's evaluation
This work takes advantage of the genetic diversity of a panel of mice, termed the collaborative 
cross, to identify those host factors that contribute to heterogeneous outcomes after tuberculosis 
infection. The authors infect this panel of mouse strains with pools of Mycobacterium tuberculosis 
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transposon mutants, allowing identification of specific host genotypes that confer fitness effects on 
certain bacterial mutants. The resulting analyses identify loci that affect quantitative immunological 
phenotypes or fitness of select bacterial mutants. The study is likely to be an important resource to 
microbiologists in general and those individuals studying the host immune response to tuberculosis 
infection

Introduction
Infection with Mycobacterium tuberculosis (Mtb) produces heterogeneous outcomes that are influ-
enced by genetic and phenotypic variation in both the host and the pathogen. Classic human genetic 
studies show that host variation influences immunity to tuberculosis (TB) (Abel et al., 2018; Comstock, 
1978). Likewise, the co-evolution of Mtb with different populations across the globe has produced 
genetically distinct lineages that demonstrate variable virulence traits (Gagneux et al., 2006; Hersh-
berg et al., 2008; Wirth et al., 2008). The role of genetic variation on each side of this interaction is 
established, yet the intimate evolutionary history of both genomes suggests that interactions between 
host and pathogen variants may represent an additional determinant of outcome (McHenry et al., 
2020). Evidence for genetic interactions between host and pathogen genomes have been identified 
in several infections (Ansari et al., 2017; Berthenet et al., 2018), including TB (Caws et al., 2008; 
Holt et al., 2018; Thuong et al., 2016). However, the combinatorial complexity involved in identifying 
these relationships in natural populations have left the mechanisms largely unclear.

Mouse models have proven to be a powerful tool to understand mechanisms of susceptibility to TB. 
Host requirements for protective immunity were discovered by engineering mutations in the genome 
of standard laboratory strains of mice, such as C57BL/6 (B6), revealing a critical role of Th1 immunity. 
Mice lacking factors necessary for the production of Th1 cells or the protective cytokine interferon 
gamma (IFNγ) are profoundly susceptible to Mtb infection (Caruso et al., 1999; Cooper et al., 1993; 
Cooper et al., 1997; Flynn et al., 1993; Saunders et al., 2002). Defects in this same immune axis 
cause the human syndrome Mendelian Susceptibility to Mycobacterial Disease (MSMD) (Altare et al., 
1998; Bogunovic et al., 2012; Bustamante et al., 2014; Filipe-Santos et al., 2006), demonstrating 
the value of knockout (KO) mice to characterize genetic variants of large effect. Similarly, the standard 
mouse model has been used to define Mtb genes that are specifically required for optimal bacterial 
fitness during infection (Bellerose et al., 2020; Sassetti and Rubin, 2003; Zhang et al., 2013).

Despite the utility of standard mouse models, it has become increasingly clear that the immune 
response to Mtb in genetically diverse populations is more heterogeneous than any single small 
animal model (Smith and Sassetti, 2018). For example, while IFNγ-producing T cells are critical for 
protective immunity in standard inbred lines of mice, a significant fraction of humans exposed to Mtb 
control the infection without producing a durable IFNγ response (Lu et al., 2019). Similarly, IL-17 
producing T cells have been implicated in both protective responses and inflammatory tissue damage 
in TB, but IL-17 has little effect on disease progression in B6 mice, except in the context of vaccination 
or infection with particularly virulent Mtb (Gopal et al., 2012; Khader et al., 2007). The immunolog-
ical homogeneity of standard mouse models may also explain why only a small minority of the >4000 
genes that have been retained in the genome of Mtb during its natural history promote fitness in the 
mouse (Bellerose et al., 2020). Thus, homogenous mouse models of TB fail to capture the distinct 
disease states, mechanisms of protective immunity, and selective pressures on the bacterium that are 
observed in natural populations.

The Collaborative Cross (CC) and Diversity Outbred (DO) mouse populations are new mamma-
lian resources that more accurately represent the genetic and phenotypic heterogeneity observed 
in outbred populations (Churchill et al., 2004; Churchill et al., 2012). These mouse panels are both 
derived from the same eight diverse founder strains but have distinct population structures (Saul 
et al., 2019). DO mice are maintained as an outbred population and each animal represents a unique 
and largely heterozygous genome (Keller et al., 2018; Svenson et al., 2012). In contrast, each inbred 
CC strain’s genome is almost entirely homozygous, producing a genetically stable and reproducible 
population in which the phenotypic effect of recessive mutations is maximized (Shorter et al., 2019; 
Srivastava et al., 2017). Together, these resources have been leveraged to identify host loci under-
lying the immune response to infectious diseases (Noll et al., 2019). In the context of TB, DO mice 
have been used as individual, unique hosts to identify correlates of disease, which resemble those 
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observed in non-human primates and humans (Ahmed et al., 2020; Gopal et al., 2013; Koyuncu 
et al., 2021; Niazi et al., 2015). Small panels of the reproducible CC strains have been leveraged to 
identify host background as a determinant of the protective efficacy of BCG vaccination (Smith et al., 
2016) and a specific variant underlying protective immunity to tuberculosis (Smith et al., 2019). While 
these studies demonstrate the tractability of the DO and CC populations to model the influence of 
host diversity on infection, dissecting host-pathogen interactions requires the integration of pathogen 
genetic diversity.

We combined the natural but reproducible host variation of the CC panel with a comprehensive 
library of Mtb transposon mutants to determine whether the CC population could be used to charac-
terize the interactions between host and pathogen. Using over 60 diverse mouse strains, we report 
that the CC panel encompasses a broad spectrum of TB susceptibility and immune phenotypes. By 
leveraging high-resolution bacterial phenotyping known as ‘Transposon Sequencing’ (TnSeq), we 
quantified the relative fitness of a saturated library of Mtb mutants across the CC panel and specific 
immunological mouse knockout strains. We report that approximately three times more bacterial 
genes contribute to fitness in the diverse panel than in any single mouse strain, defining a large frac-
tion of the bacterial genome that is dedicated to adapting to distinct immune states. Association of 
both host immunological phenotypes and bacterial fitness traits with Quantitative Trait Loci (QTL) 
demonstrated the presence of discrete Host-Interacting-with Pathogen QTL (HipQTL) that represent 
inter-species genetic interactions that influence the pathogenesis of this infection. Together, these 
observations support the CC population as a tractable model of host diversity that greatly expands 
the spectrum of immunological and pathological states that can be modeled in the mouse.

Results
The spectrum of TB disease traits in the CC exceeds that observed in 
standard inbred mice
To characterize the diversity of disease states that are possible in a genetically diverse mouse popu-
lation, we infected a panel of 52 CC lines and the eight founder strains with Mtb. To enable bacterial 
transposon sequencing (TnSeq) studies downstream, the animals were infected via the intravenous (IV) 
route with a saturated library of Mtb transposon mutants (infectious dose of 105 CFU), which in sum 
produce an infection that is similar to the wild-type parental strain (Bellerose et al., 2020; Sassetti 
and Rubin, 2003). Groups of three to six male mice per genotype were infected and TB disease-
related traits were quantified at one-month post-infection. Data from all surviving animals that were 
phenotyped are provided in Figure 1—source data 1. The bacterial burden after 4 weeks of infection 
was assessed by plating (colony-forming units, CFU) and quantifying the number of bacterial chromo-
somes in the tissue (chromosome equivalents, CEQ). These two metrics were highly correlated (r = 
0.88) and revealed a wide variation in bacterial burden across the panel (Figure 1A and Figure 1—
figure supplement 1). The phenotypes of the inbred founder strains were largely consistent with 
previous studies employing an aerosol infection (Smith et al., 2016), where the WSB strain was more 
susceptible than the more standard B6, 129S1/SvlmJ (129), and NOD/ShiLtJ (NOD) strains. Across 
the entire CC panel, lung bacterial burden varied by more than 1000-fold, ranging from animals that 
are significantly more resistant than B6, to mice that harbored more than 109 bacteria in their lungs 
(Figure 1A). Bacterial burden in the spleen also varied several thousand-fold across the panel and was 
moderately correlated with lung burden (r = 0.43) (Figure 1—figure supplement 1). Thus, the CC 
panel encompasses a large quantitative range of susceptibility.

Comparing various measures of infection progression showed many expected correlations but also 
an unexpected decoupling of some phenotypes. As an initial assessment of the disease processes in 
these animals, we correlated bacterial burden and lung cytokine abundance with measures of systemic 
disease such as weight loss and sufficient morbidity to require euthanasia (‘earliness of death’). In 
general, correlations between these metrics indicated that systemic disease was associated with 
bacterial replication and inflammation (Figure 1B and Figure 1—figure supplement 1). Lung CFU 
was strongly correlated with weight loss, mediators that enhance neutrophil differentiation or migra-
tion (CXCL2 (MIP-2; r = 0.79), CCL3 (MIP-1a; r = 0.77), G-CSF (r = 0.78), and CXCL1 (KC; r = 0.76)), 
and more general proinflammatory cytokines (IL-6 (r = 0.80) and IL-1α (r = 0.76)) (Figure 1—figure 
supplement 1). These findings are consistent with previous work in the DO panel, that found both 
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Figure 1. he spectrum of M.tuberculosis disease-related traits across the collaborative cross. (A) Average lung CFU (log10) across the CC panel at 
4 weeks post-infection. Bars show mean ± SD for CFU per CC or parental strain; groups of three to six mice per genotype were infected via IV route 
(infectious dose of 104 in the lungs and 105 in the spleen as quantified by plating CFU 24 hr post-infection). To compare the field standard B6 mouse 
strain with the diverse CC mouse strains, bars noted with * indicate strains that were statistically different from B6 (p < 0.05; 1-factor ANOVA with 
Dunnett’s post-test). (B) Heatmap of the 32 disease-related traits (log10 transformed) measured including: lung and spleen colony forming units (CFU); 
lung and spleen chromosomal equivalents (CEQ); weight loss (% change); cytokines from lung; ‘earliness of death’ (EoD), reflecting the number of days 
prior to the end of experiment that moribund strains were euthanized. Mouse genotypes are ordered by lung CFU. Scaled trait values were clustered 
(hclust in R package heatmaply) and dendrogram nodes colored by 3 k-means. Blue node reflects correlation coefficient R > 0.7; green R = 0.3–0.6 and 
red R < 0.2. Source files of all measured phenotypes are available in Figure 1—source data 1. (C) Correlation of lung CFU and weight (% change) 
shaded by CXCL1 levels. Genotypes identified as statistical outliers for weight are noted by #; CXCL1 by † (CC030 is triangle with #†;CC040 is triangle 
with #; AJ is circle with #; CC056 is circle with †). (D) Correlation of lung CFU and IFNγ levels shaded by IL-17. Strains identified as outliers for IFNγ noted 
by # (CC055 is left circle with #, AJ is right circle with #, CC051 is triangle with #). Each point in (C) and (D) is the average value per genotype. Outlier 
genotypes were identified after linear regression using studentized residuals. (E–H) Disease traits measured in a validation cohort (B6 vs CC042, CC032, 
CC037, and CC027) at 4 weeks after post low-dose aerosol infection (E) lung CFU (log10); (F) Weight (percent change relative to uninfected); (G) CXCL1 
abundance in lung (log10 pg/mL homogenate); (H) IFNγ (log10 pg/mL homogenate). Bar plots show the mean ± SD. p-Values indicate strains that were 
statistically different from B6 (1-factor ANOVA with Dunnett’s post-test). Source files of all measured phenotypes in the aerosol validation cohort are 
available in Figure 1—source data 2. Groups consist of three to six mice per genotype. All mice in the initial CC screen and validation cohort were 
male.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. CC TB disease phenotypes.

Figure 1 continued on next page
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proinflammatory chemokines and neutrophil accumulation to be predictors of disease (Ahmed et al., 
2020; Gopal et al., 2013; Koyuncu et al., 2021; Niazi et al., 2015).

The reproducibility of CC genotypes allowed us to quantitatively assess the heritability (h2) of these 
immunological and disease traits. The percent of the variation attributed to genotype ranged from 
56%–87% (mean = 73.4%; (Appendix 1—table 1)). The dominant role of genetic background in deter-
mining the observed phenotypic range allowed a more rigorous assessment of strains possessing 
outlier phenotypes than is possible in the DO population, based on linear regression using studen-
tized residuals that accounts for the intragenotype variation. For example, despite the correlation 
between lung CFU and weight loss (r = 0.57), several strains failed to conform to this relationship 
(Figure 1C). In particular, CC030/GeniUnc (p = 0.003), CC040/TauUnc (p = 0.027) and A/J (p = 0.03) 
lost more weight than their bacterial burdens would predict (Figure 1C; noted by #). Similarly, CXCL1 
abundance was higher in CC030/GeniUnc (p = 0.001) and lower in CC056/GeniUnc (p = 0.040), than 
the level predicted by their respective bacterial burden (Figure 1C; outlier genotypes noted by †). 
Thus, these related disease traits can be dissociated based on the genetic composition of the host.

The cluster of cytokines that was most notably unrelated to bacterial burden included IFNγ and 
the interferon-inducible chemokines CXCL10 (IP10), CXCL9 (MIG), and CCL5 (RANTES) (Red cluster 
in Figure 1B; Figure 1—figure supplement 1) (R < 0.3). Despite the clear protective role for IFNγ 
(Cooper et al., 1993; Flynn et al., 1993), high levels have been observed in susceptible mice, likely as 
a result of high antigen load (Barber et al., 2011; Lazar-Molnar et al., 2010). While high IFNγ levels 
in susceptible animals was therefore expected, it was more surprising to find a number of genotypes 
that were able to control bacterial replication yet had very low levels of this critically important cyto-
kine (Figure 1D). This observation is likely due the inclusion of two founder lines, CAST/EiJ (CAST) 
and PWK/PhJ (PWK) that we previously found to display this unusual phenotype (Smith et al., 2016).

To assess the reproducibility of these findings in an aerosol infection model, we tested four CC 
genotypes that were susceptible by IV infection, including CC027, CC032, CC037, and CC042. We 
infected groups of 4–6 mice per genotype with H37Rv strain via low-dose aerosol infection (~100 CFU), 
including B6 mice as resistant controls. At 4-weeks post infection, we quantified lung CFU, lung 
cytokine abundance and weight loss as measurements of TB disease. Compared to the resistant B6 
mice, the selected CC strains demonstrated higher bacterial burden in the lung (Figure  1E) and 

Table 1. Disease-related Tuberculosis ImmunoPhenotype QTL (TipQTL).
Multiple QTL within the same interval and clear allele effects are designated with the same TipQTL 
number. p-Values are determined by Churchill-Doerge permutations (Churchill and Doerge, 1994). 
Column headings: QTL, quantitative trait loci; Chr, chromosome; LOD, logarithm of the odds; CEQ, 
chromosomal equivalents.

QTL Trait Chr LOD p value Interval start (Mb) Peak (Mb)
Interval end 
(Mb)

Tip5 Spleen CEQ 2 9.14 2.38E-02 174.29 178.25 178.25

Tip5 Spleen CFU 2 7.04 2.19E-01 73.98 174.29 180.10

Tip6 IL-9 2 8.61 4.52E-02 33.43 41.4 41.48

Tip6 IL-9 2 7.85 1.26E-01 22.77 24.62 25.65

Tip7 IL-17 15 7.84 5.27E-02 67.98 74.14 82.11

Tip8 CXCL1 7 7.57 1.06E-01 30.43 45.22 46.72

Tip8 Lung CFU 7 7.47 1.17E-01 31.06 37.78 45.22

Tip9 IL-10 17 7.16 1.85E-01 80.98 82.47 83.55

Tip10 Lung CFU 15 7.13 1.86E-01 77.00 78.16 78.70

Source data 2. Aerosol validation phenotypes.

Figure supplement 1. Phenotypic relationships between TB disease-related traits in the CC IV screen.

Figure supplement 2. Phenotypic relationships between TB disease-related traits in the aerosol validation cohort.

Figure 1 continued

https://doi.org/10.7554/eLife.74419
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significant weight loss (Figure 1F), thus validating disease traits as consistent across both route and 
dose. Likewise, cytokines that were highly correlated with lung burden in the CC screen (Figure 1B, 
Figure 1—figure supplement 1) were consistent in the aerosol validation study (Figure 1—figure 
supplement 2). Notably, CXCL1 was consistently high in the susceptible genotypes, as compared to 
B6 (Figure 1G), and was highly correlated with lung burden by both IV (R = 0.76) and aerosol (R = 
0.92) routes. IFNγ levels were variable across the strains (Figure 1H) and did not correlate with lung 
CFU (R = −0.22), concordant with findings from the CC screen (R = −0.21). Altogether, this survey 
of TB-related traits demonstrated a broad range of susceptibility and the presence of qualitatively 
distinct and genetically determined disease states.

TipQTL define genetic variants that control TB immunophenotypes
Tuberculosis ImmunoPhenotype Quantitative Trait Loci (TipQTL), which were associated with TB 
disease or cytokine traits, were identified and numbered in accordance with previously reported 
TipQTL (Smith et al., 2019). Of the 32 TB-disease traits, we identified nine individual metrics that 
were associated with a chromosomal locus. Of these, three were associated with high confidence (p 
≤ 0.053), and six other QTL met a suggestive threshold as determined by permutation analysis (p < 
0.2; Table 1). Several individual trait QTL occupied the same chromosomal locations. For example, 
spleen CFU and spleen CEQ, which are both measures of bacterial burden and highly correlated, 
were associated with the same interval on distal chromosome 2 (Table 1, Tip5; Figure 2A and C). 
IL-10 abundance was associated with two distinct QTL (Table 1). While IL-10 was only moderately 

Figure 2. Host loci underlying TB disease-related traits. (A–B) Whole genome QTL scans of (A) spleen CEQ, spleen CFU and IL-10 (B) lung CFU and 
CXCL1. (C) Zoom of chromosome two loci. (D) Zoom of chromosome seven loci. Thresholds were determined by permutation analysis; solid line, middle 
dashed line, and lowest dotted lines represent p = 0.05, p = 0.1, and p = 0.2. (E–F) Scaled phenotype value per haplotype at the QTL peak marker. Each 
dot represents the mean value for a genotype.

https://doi.org/10.7554/eLife.74419


 Tools and resources﻿﻿﻿﻿﻿﻿ Genetics and Genomics | Microbiology and Infectious Disease

Smith et al. eLife 2022;11:e74419. DOI: https://doi.org/10.7554/eLife.74419 � 7 of 31

correlated with spleen CFU (R = 0.48), one of its QTL fell within the Tip5 bacterial burden interval on 
chromosome 2 (Figure 2A and C). At this QTL, the NOD haplotype was associated with high values 
for all three traits (Figure 2E). Similarly, the strongly correlated traits, CXCL1 abundance and lung 
CFU, were individually associated to the same region on chromosome 7 (Table 1, Tip8; Figure 2B and 
D). In this interval, the CAST haplotype was associated with both low bacterial burden and CXCL1 
(Figure 2F). At both Tip5 and Tip8, we found no statistical evidence that the positions of the associ-
ated QTL were different (Tip5 p = 0.55; Tip8 p = 0.27; 400 bootstrap samples) (Boehm et al., 2019). 
These observations support the role of a single causal variant at each locus that is responsible for a 
pleiotropic trait. Coincident mapping can provide both additional statistical support for QTL (p values 
by Fisher’s combined probability test: Chr 7, p = 0.067; Chr 2, p = 0.041) and suggests potential 
mechanisms of disease progression.

A number of factors can limit the statistical significance of QTL identified in the CC population, 
including small effect sizes, limited genotype availability, and the genetic complexity of the trait. We 
took an F2 intercross approach to independently assess the importance of the lung CFU QTL on chro-
mosomes 7 and 15 (Tip8 and Tip10, Table 1). Given that the associations at both QTL were driven by 
the CAST haplotype (Figure 2F), we generated an F2 population based on two CC strains, CC029/
Unc and CC030/GeniUnc, that contained CAST sequence at Tip8 and Tip10, respectively (Figure 3A 

Figure 3. An F2 intercross approach to validate QTL underlying lung CFU. (A) Haplotypes of CC030 and CC029 CC strains at Chr7 (Tip 8) and (B) at 
Chr15 (Tip10). The F2 population (n = 251) based on these founders were genotyped, infected with Mtb (105 infectious dose by IV route, as per the 
original CC screen), and lung CFU was quantified at 1 month post-infection. (C) QTL mapping identified genome-wide significant (p < 0.05) loci on Chr7 
(LOD = 6.81; peak position on Chr7 at 28.6 Mb) overlapping with Tip8 and a new locus on Chr8 (LOD = 4.08; peak position Ch8:116.1 Mb). Thresholds 
were determined by permutation analysis; solid line, middle dashed line, and lowest dotted lines represent p = 0.05, p = 0.1, and p = 0.2. Source files of 
F2 genotypes are available in Figure 3—source data 1; phenotypes are available in Figure 3—source data 1.

The online version of this article includes the following source data for figure 3:

Source data 1. F2 Intercross genotype data.

Source data 2. F2 Intercross phenotype data.

https://doi.org/10.7554/eLife.74419
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and B). The F2 validation cohort (n = 251 mice) were genotyped (Sigmon et al., 2020) and infected 
with the Mtb strain H37Rv (IV route with infectious dose of 105 CFU, as per the original CC screen). At 
1 month post infection, lung CFU was quantified, and we conducted QTL mapping in R/qtl2 (Broman 
et al., 2019) to identify host loci underlying bacterial burden in the lung. We identified a QTL signifi-
cantly associated with lung CFU (LOD = 6.81; p < 0.05; 10,000 permutations) on chromosome seven 
that overlapped with Tip8 (peak position Chr7:28.6 Mb), thus validating this locus as a main driver 
of bacterial burden. In this reduced complexity cross, we did not observe a QTL on chromosome 15 
(Tip10). This may be due to the B6 haplotype at this locus in CC030, which did not represent the stron-
gest phenotypic contrast to CAST. Additionally in the mapping validation study, we identified a new 
resistance (low lung CFU) locus on chromosome 8 (LOD = 4.08; peak position Ch8:116.1 Mb), driven 
by the CC029 cross partner with the CAST haplotype. This QTL was not present in the original CC 
screen, probably due to the low representation of the CAST haplotype at that marker in the CC cohort 
tested. Altogether, this intercross strategy validated Tip8 as a strong predictor of lung CFU, though 
rigorous validation of Tip10 may require a more optimal pairing of parental strains.

Mtb adapts to diverse hosts by utilizing distinct gene repertoires
This survey of disease-associated traits demonstrated that the CC panel encompasses a number of 
qualitatively distinct immune phenotypes. To determine if different bacterial functions were neces-
sary to adapt to these conditions, we leveraged transposon sequencing (TnSeq) as a high-resolution 
phenotyping approach to estimate the relative abundance of individual Mtb mutants after selection in 
each CC host genotype. To serve as benchmarks of known immunological lesions, we also performed 
TnSeq in B6 mice that were lacking the mediators of Th1 immunity, lymphocytes (Rag2-/-) and IFNγ 
(Ifng-/-), or were lacking the immunoregulatory mediators that control disease by inhibiting inflamma-
tion, nitric oxide synthase (Nos2-/-) (Mishra et al., 2013) or the NADPH phagocyte oxidase (Cybb-/-) 
(Olive et al., 2018). The relative representation of each Mtb mutant in the input library versus the 
output library recovered from each mouse spleen after one-month of infection was quantified by 
TnSeq (Long et al., 2015). A total of 123 saturated Mtb transposon libraries (representing >50,000 
independent insertion events) were sequenced, capturing 60 distinct mouse genotypes (Figure 4—
source data 1).

From this TnSeq screen, we identified 214 Mtb genes that are required for growth or survival of 
Mtb in B6 mice, based on significant underrepresentation of the corresponding mutant after four 
weeks of in vivo selection. Eighty-seven percent of these genes overlapped with a similar previous 
analysis in BALB/c mice (Bellerose et al., 2020) highlighting the specificity of the analysis. All but 
one of the genes found to be important in B6, were also required in the larger mouse panel, further 
increasing confidence in this Mtb gene set (Figure 4A and B). While the total number of genes found 
to be necessary in each genotype across the diversity panel was largely similar, the composition of 
these Mtb gene sets varied considerably. As more CC strains, and presumably more distinct immune 
states, were included in the analysis, the cumulative number of bacterial genes necessary for growth 
in these animals also increased. This cumulative gene set plateaued at ~750, after the inclusion of 
approximately 20–25 mouse genotypes (Figure 4A). Simply sampling additional libraries of B6 does 
not appreciably increase the number of genes identified as necessary for growth in that genotype 
(Figure  4—figure supplement 1), supporting the presence of alternative selective environments 
across the CC mice. The number of genes important for fitness in the CC panel far outnumbered the 
380 genes identified in the B6 and immunodeficient KO strains combined (Figure 4B and Figure 4—
source data 1).

To verify that our TnSeq study accurately assessed the effect of the corresponding loss-of-function 
alleles, we assessed the phenotypes of selected bacterial deletion mutants in a small set of mouse 
genotypes that were predicted to produce differential selection. Individual Mtb mutants lacking 
genes necessary for ESX-1 Type VII secretion (eccB1), siderophore-mediated iron acquisition (mbtA), 
phosphate transport (pstC2), glycerol catabolism (glpK), and RNA processing (rnaseJ) were generated 
and tagged with a unique molecular barcode. These mutants were combined with a barcoded wild-
type parental strain, and the resulting ‘mini-pool’ was subjected to in vivo selection after IV infection 
of a sub-panel of mouse strains, as in the original screen. The relative abundance of each mutant was 
determined by sequencing the amplified barcodes and data from all reliably detected strains is shown 
in (Figure 4; Figure 4—source data 2). In each case, the difference in relative abundance predicted 

https://doi.org/10.7554/eLife.74419
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Figure 4. Mtb genetic requirements vary across diverse hosts. (A) The number of Mtb genes required for growth or survival in each diverse mouse strain 
across the panel (Qval ≤0.05). Orange indicates the mutants required for each strain; turquoise shows the cumulative requirement as each new host 
strain is added. (B) Venn diagram showing the composition of Mtb gene sets required in each category of host (white, largest circle), only required in 
the CC panel (gray), required in specific immunological KO mice (blue) and genes required in B6 mice (red). Note, 1* is required in B6 and KO. In order 

Figure 4 continued on next page
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by TnSeq was reproduced with deletion mutants. In this simplified system, we were able to accurately 
quantify the expansion of the bacterial population and calculate the ‘fitness’ of each mutant relative 
to the wild-type strain. Fitness reflects the inferred doubling time of the mutant, where a fitness of 1 
is defined as wild-type, and 0 represents a complete lack of growth. Even by this metric, the deletion 
mutants displayed the differences in fitness between mouse strains that was predicted by TnSeq 
(Figure 4C). The statistical significance of these differences in abundance or fitness were similar for 
each mutant (between p = 0.009 and p = 0.06), except for mbtA where the variation was higher, and 
confidence was modestly lower (p = 0.07 and p = 0.12). This study also allowed us to estimate the 
sensitivity of the TnSeq method, which could detect even the 30% fitness defect of the ∆glpK strain 
between the B6 and CC018 animals (Figure 4C), a defect that was not observed in previous studies in 
BALB/c mice (Bellerose et al., 2019; Pethe et al., 2010).

To also validate TnSeq predictions in a single-strain aerosol infection model, we used a biotin 
biosynthetic mutant. bioA is necessary for biotin production and is essential for growth in B6 mice 
(Woong Park et al., 2011). Our TnSeq study (Figure 4—source data 1) predicted this mutant was 
less attenuated in the CAST background (ratio of input/selected = 12.1) than in the B6 strain (ratio 
of input/selected = 42.2). Two weeks after aerosol infection, we found that the ∆bioA mutant was 
cleared from the lungs and spleen of B6 mice but displayed similar growth to wild-type in the lungs 
of CAST mice (Figure 4D). By 6 weeks post-infection the ∆bioA mutant had also been largely cleared 
from the lungs of CAST (Figure 4D). Thus, while TnSeq was unable predict long-term outcome, it 
provided an accurate assessment of relative growth attenuation in these host backgrounds.

The immunological diversity of CC mice is reflected in the pathogen’s 
genetic requirements
The distribution of Mtb’s requirements across the mouse panel suggested the presence of two broad 
categories of genes. A set of 136 ‘core’ virulence functions were required in the majority of mouse 
genotypes, and a second larger set of 607 ‘adaptive’ virulence genes were required in only a subset 
of lines (Figure 4—source data 1). The core functions included a number of genes previously found 
to be important in B6 mice, including those necessary for the synthesis of essential cofactors, such as 
pyridoxine (pdx1) (Dick et al., 2010); for the acquisition of nutrients, such as siderophore-bound iron 
(irtAB) (Ryndak et al., 2010), cholesterol (mce4) (Pandey and Sassetti, 2008), glutamine (glnQ and 
rv2563) (Bellerose et al., 2020) and for Type VII secretion (ESX1 genes) (Stanley et al., 2003). Despite 
the importance of these core functions, a large range in the relative abundance of these mutants 
was observed across the panel, and in some cases specific immunological requirements could be 
discerned. Mutants lacking the major structural components of the ESX1 system were attenuated for 
growth in B6 mice, as expected. This requirement was enhanced in mice lacking Rag2, Ifng, or Nos2 
(Figure 4E), consistent with the preferential role of ESX1 during the initial stage of infection before the 
initiation of adaptive immunity (Stanley et al., 2003), which is prolonged in these immunodeficient 

to be called ‘essential’ in each mouse strain, Mtb genes had to be significantly over or underrepresented in at least two genotypes. (C) Each box shows 
log2 fold change (LFC) of individual mutants from the TnSeq screen relative to the input pool in indicated mouse strains (top); log2 fold change of the 
indicated deletion mutants relative to WT from a pooled mutant validation infection (middle panel); relative fitness calculated from (middle panel) to 
account for generation differences in each host due to differential growth rate. Bars are the average of 3–6 mice per mutant/genotype ± SD. Statistical 
differences between mini-pool validation groups was assessed by Welch’s t-test. (D) Lung CFU and spleen CFU from single strain low-dose aerosol 
infections of ∆bioA mutant or WT H37Rv strain in B6 and CAST mice at 2- or 5 weeks post-infection. Dashed line indicates the limit of detection. Each 
point indicates the average CFU ± SD of 4–5 mice per group. Statistical differences between groups were assessed by mixed effects models (Tukey’s 
test). (E) Log2 fold change of selected mutants from the TnSeq screen across the CC panel and immunological KO mice. Each dot represents the 
average LFC per mouse genotype; KO mouse strains (on a B6 background) dots are shown larger for clarity. All mice in the large CC TnSeq screen were 
male; mice in the ∆bioA aerosol validation were female; mice in the mini-pool validation studies were male and female with no significant differences 
detected. Source file of the TnSeq screen is available in Figure 4—source data 1; source count data of the TnSeq validation experiment is available in 
Figure 4—source data 2.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. TnSeq summary table.

Source data 2. Validation counts table.

Figure supplement 1. Sampling additional B6 libraries does not appreciably increase the estimate of genes necessary for growth.

Figure 4 continued
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Figure 5. Mtb virulence pathways associate with distinct host immune pressures. (A) Weighted gene correlation 
network analysis (WGCNA) of the 679 Mtb genes that significantly vary across the diverse mouse panel. The most 
representative genes of each module (intramodular connectivity >0.6) are shown. (B) Mouse genotypes were 
clustered based on the relative abundance of the 679 variable Mtb mutants. The six major clusters (Cluster A-F) 

Figure 5 continued on next page
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strains. In contrast, the attenuation of mutants lacking the glnQ encoded glutamine uptake system 
was relieved in all four immunodeficient mouse lines (Figure 4E). In both cases, the differential mutant 
abundance observed in these KO mice was reproduced, or exceeded, in the CC panel.

The adaptive virulence functions included a number of Mtb genes previously thought to be dispens-
able in the mouse model and were only necessary in CC strains. For example, the alkyl hydroperoxide 
reductase, AhpC has been proposed to function with the adjacently encoded peroxiredoxin, AhpD 
and is critical for detoxifying reactive nitrogen intermediates in vitro (Chen et al., 1998; Hillas et al., 
2000). However, deletion of ahpC has no effect on Mtb replication in B6 or BALB/c mice (Springer 
et al., 2001), and we confirmed that ahpC and ahpD mutations had no effect in any of the B6-de-
rived strains. In contrast, ahpC, but not ahpD mutants were highly attenuated in a small number of 
CC strains (Figure 4E). Similarly, the four phospholipase C enzymes of Mtb (plcA-D) are implicated 
in both fatty acid uptake and modifying host cell membranes but are dispensable for replication in 
B6 mice (Le Chevalier et al., 2015). Again, while we found that none of these genes were required 
in B6-derived KO mouse strains, the plcD mutants were specifically underrepresented in a number 
of CC mice (Figure 4E). These individual bacterial functions are controlled by regulatory proteins, 
such as the extracytoplasmic sigma factors. Despite the importance of these transcription factors in 
the response to stress, only sigF has consistently been shown to contribute to bacterial replication 
in standard inbred lines of mice (Geiman et al., 2004; Rodrigue et al., 2006). Our study assessed 
the importance of each sigma factor in parallel across diverse host genotypes and identified a clear 
role for several of these regulators. sigC, sigI, sigF, sigL, and sigM mutants were each significantly 
underrepresented in multiple strains of mice, and several of these phenotypes were only apparent in 
the diverse CC animals (Figure 4E). In sum, the 607 adaptive functions that are differentially required 
across the host panel represents nearly 20% of the non-essential gene set of Mtb, suggesting that a 
significant fraction of the pathogen’s genome is dedicated to maintaining optimal fitness in diverse 
host environments.

Differential genetic requirements define virulence pathways in Mtb
To more formally investigate the distinct stresses imposed on the bacterial population across this host 
panel, we characterized the differentially required bacterial pathways. Upon performing each possible 
pairwise comparison between the in vivo selected mutant pools, we found 679 mutants whose repre-
sentation varied significantly (FDR < 5%) in at least two independent comparisons (Figure 4—source 
data 1). We then applied weighted gene correlation network analysis (WGCNA) (Langfelder and 
Horvath, 2008) to divide the mutants into 20 internally-correlated modules. Further enrichment of 
these modules for the most representative genes (intramodular connectivity >0.6) revealed that nearly 
all modules contained genes that are encoded adjacently in the genome and many of these modules 
consisted of genes dedicated to a single virulence-associated function (Figure 5A). Module three 
contains two distally encoded loci both known to be necessary for ESX1-mediated protein secre-
tion, the primary ESX1 locus (rv3868-rv3883) and the espACD operon (rv3616c-rv3614c). Similarly, 
other modules consisted of genes responsible for ESX5 secretion (Module 7), mycobactin synthesis 
(Module 4), the Mce1 and Mce4 lipid importers (Modules 5 and 16), phthiocerol dimycocerosate 
synthesis (PDIM, Module 8), PDIM transport (Module 16), and phosphate uptake (Module 14). The 20 
genes assigned to Module six included two components of an important oxidative stress resistance 
complex (sseA and rv3005c) and were highly enriched for mutants predicted to be involved in this 
same process via genetic interaction mapping (11/20 genes were identified in Nambi et al., 2015, a 
statistically significant overlap [p < 2.8e-10 by hypergeometric test]). Thus, each module represented 
a distinct biological function.

Many pathway-specific modules contained genes that represented novel functional associa-
tions. For example, the gene encoding the sigma factor, sigC, was found in Module one along with 

were associated with both CFU and the relative abundance of mutants in each bacterial module (1-20; right hand-
side with known functions). Statistical analysis is described in Methods. Yellow shading indicates clusters associated 
with lung CFU. * indicate modules significantly associated with specific mouse clusters (p < 0.05).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Module-trait associations.

Figure 5 continued
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a non-ribosomal peptide synthetic operon. Previous genome-wide ChIP-seq and overexpression 
screens support a role for SigC in regulating this operon (Minch et al., 2015; Turkarslan et al., 2015). 
Similarly, rv3220c and rv1626 have been proposed to comprise an unusual two-component system 
that is encoded in different regions of the genome (Morth et al., 2005). Both of these genes are 
found in Module 2, along with the PPE50 and PPE51 genes that encode at least one outer membrane 
channel (Wang et al., 2020; Figure 5A). In both cases, these associations support both regulatory 
and obligate functional relationships between these genes. Six of the 20 modules were not obviously 

Figure 6. Identification of ‘Host Interacting with Pathogen’ QTL mapping (HipQTL). (A) Manhattan plot of single Mtb mutant QTL mapping across 
the mouse genome. Each dot represents an individual Mtb mutant plotted at the chromosomal location of its maximum LOD score. Red dashed line 
indicates p < 0.01; Blue p < 0.05. (B) Chromosome 10 QTL (in Mb) corresponding to Mtb eigentraits identified in network analysis in Figure 5. Module 
3 (Type VII secretion, ESX1 operon; orange), Module 4 (Mycobactin synthesis, mbt; green) and Module 16 (Cholesterol uptake, mce4; purple) are shown. 
Solid and dotted lines indicated p = 0.05 and p = 0.1, respectively. Chromosomal position is in megabase units (Mb). (C–E) QTL mapping of single Mtb 
mutants corresponding to the (C) ESX1 module, (D) mbt module and (E) mce4 modules. Coincidence of multiple QTL was assessed by the NL-method 
of Neto et al., 2012. Thresholds shown are for N = 9, N = 8, and N = 6 for panels C, D, and E, respectively. Chromosomal position is in megabase units 
(Mb). (F) Parental founder effects underlying Module 3, 4, and 16 QTL. Allele effects were calculated at the peak LOD score marker on chromosome 10. 
(G) Distribution of log2 fold change (LFC) of representative single mutants from each module; eccCa1 (ESX1 module), mbtE (mbt module), and mce4F 
(mce4 module) relative to in vitro. Each dot is the LFC of the specified mutant in each CC mouse strain. Box and whiskers plots of each trait indicate the 
median and interquartile range. (H) Spleen CEQ and Spleen CFU for CC strains (box plots as in G). Mouse values are grouped by the parental haplotype 
allele series underlying the chromosome 10 Hip42 locus (NOD/WSB vs AJ/B6/NZO). Each dot represents the average CFU/CEQ of each CC genotype. 
Statistical differences in disease-associated traits and distinct haplotypes groups were assessed by t-test. LOD, logarithm of the odds; LFC, log2 fold 
change; CEQ, chromosomal equivalents; CFU, colony-forming units.

https://doi.org/10.7554/eLife.74419


 Tools and resources﻿﻿﻿﻿﻿﻿ Genetics and Genomics | Microbiology and Infectious Disease

Smith et al. eLife 2022;11:e74419. DOI: https://doi.org/10.7554/eLife.74419 � 14 of 31

Table 2. HipQTL for single Mtb mutant QTL and eigentrait/module QTL.
Hip1-41 each represent host loci associated with the relative abundance of a single mutant (p < 
0.05). Hip42-46 correspond to Mtb eigentraits identified in network analysis in Figure 5 (including 
significant p < 0.05 and suggestive p < 0.25). Figure column headings: QTL, quantitative trait loci; 
Mtb, Mycobacterium tuberculosis; Module #, module number determined from WGCNA modules; 
ORF, open reading frame; ID, identification number; LOD, logarithm of the odds; Chr, chromosome.

QTL Trait Mtb ORF ID Module # LOD P value Chr
Start 
(Mb)

Peak 
(Mb) End (Mb)

Hip1 rv0770 RVBD_0770 mod17 9.81 5.61E-03 1 40.43 42.73 43.32

Hip2 rv0309 RVBD_0309 mod13 7.95 3.22E-02 1 57.99 58.18 62.79

Hip3 rv3657c RVBD_3657 c mod15 7.90 4.95E-02 1 136.39 138.24 143.60

Hip4 rv0110 RVBD_0110 mod18 7.79 4.39E-02 2 170.67 174.00 178.84

Hip5 rv3577 RVBD_3577 mod7 9.23 3.83E-02 3 3.32 10.03 14.67

Hip6 rv3005c RVBD_3005 c mod6 8.03 3.75E-02 3 20.31 26.12 26.12

Hip7 dinX RVBD_1537 mod15 9.97 5.38E-03 3 26.99 30.29 33.85

Hip8 fadA6 RVBD_3556 c mod5 8.74 1.01E-02 3 29.23 35.22 37.11

Hip9 dinX RVBD_1537 mod15 9.22 1.60E-02 3 36.22 36.83 38.27

Hip10 rv2707 RVBD_2707 mod6 8.17 4.21E-02 3 100.90 103.23 115.82

Hip11 rv3701c RVBD_3701 c mod6 7.90 3.38E-02 4 74.00 78.25 87.00

Hip12 ahpC RVBD_2428 mod13 8.12 2.14E-02 6 19.75 22.21 23.31

Hip13 umaA RVBD_0469 mod20 8.32 2.31E-02 7 117.87 118.41 120.15

Hip14 rv2566 RVBD_2566 mod15 7.86 4.55E-02 7 123.21 126.67 126.67

Hip15 rv3173c RVBD_3173 c mod5 8.17 3.03E-02 7 137.41 138.36 138.36

Hip16 rv3173c RVBD_3173 c mod5 8.12 3.28E-02 7 139.15 140.76 141.88

Hip17 rv3502c RVBD_3502 c mod5 8.16 3.17E-02 9 15.91 16.33 18.72

Hip18 mycP1 RVBD_3883 c mod3 9.09 3.66E-03 9 28.47 29.45 31.10

Hip19 rv0057 RVBD_0057 mod6 8.39 3.79E-02 9 36.78 40.07 40.36

Hip20 hycE RVBD_0087 mod20 8.21 1.40E-02 9 47.40 47.93 51.80

Hip21 mbtA RVBD_2384 mod4 8.30 2.05E-02 10 64.48 68.09 75.42

Hip22 eccD1 RVBD_3877 mod3 8.08 3.08E-02 10 64.56 68.12 71.04

Hip23 rv2989 RVBD_2989 mod12 9.16 1.67E-02 10 74.30 77.63 81.03

Hip24 mce4A RVBD_3499 c mod16 7.91 4.12E-02 10 78.88 81.36 88.25

Hip25 treS RVBD_0126 mod7 7.94 3.04E-02 11 20.80 36.14 44.06

Hip26 pckA RVBD_0211 mod3 7.67 4.74E-02 11 85.95 89.78 91.75

Hip27 aspB RVBD_3565 mod7 8.32 3.66E-02 11 114.69 116.99 117.08

Hip28 rv1227c RVBD_1227 c mod17 9.16 4.64E-02 12 25.23 25.23 28.54

Hip29 rv0219 RVBD_0219 mod20 7.94 3.09E-02 12 40.65 42.65 47.22

Hip30 rv3643 RVBD_3643 mod8 8.89 1.04E-02 13 95.43 97.08 97.79

Hip31 ansA RVBD_1538 c mod11 8.28 3.32E-02 13 96.82 97.79 99.09

Hip32 echA19 RVBD_3516 mod20 9.68 3.95E-02 13 113.20 114.59 117.64

Hip33 rv1836c RVBD_1836 c mod15 9.19 1.75E-02 14 74.94 76.40 76.43

Hip34 rv2183c RVBD_2183 c mod11 7.75 4.84E-02 16 12.18 14.06 17.92

Table 2 continued on next page
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enriched for genes of a known pathway, demonstrating that novel virulence pathways are important 
for adapting to changing host environments.

To explore the complexity of immune environments in the CC, we used the TnSeq profiles of the 
679 differentially fit Mtb mutants to cluster the mouse panel into six major groups of host genotypes 
(Figure 5B). One mouse cluster was significantly associated with high CFU (Cluster F, Figure 5B), 
which contained susceptible Nos2-/-, Cybb-/-, Ifng -/-, and Rag2-/- animals. This high CFU cluster was 
associated with alterations in a diverse set of bacterial modules and corresponded to an increased 
requirement for lipid uptake (Modules 5 and 16) and ESX1, consistent with previous TnSeq studies in 
susceptible Nos2-/- and C3HeB/FeJ mice (Mishra et al., 2017). In addition, we identified a significant 
reduction in the requirement for the oxidative stress resistance (Module 6) in the highest CFU cluster. 
Despite these associations between bacterial genetic requirements and susceptibility, the clustering 
of mouse genotypes was largely independent of overall susceptibility. Similarly, while Module one was 
significantly associated with high IFNγ levels, other bacterial fitness traits were not highly correlated 
with cytokine abundance (Figure 5—figure supplement 1). Instead, each major mouse cluster was 
associated with a distinct profile of Mtb genetic requirements. This observation supported the pres-
ence of qualitatively distinct disease states and complex genetic control of immunity.

Identification of genome-wide host interacting with pathogen QTL 
(HipQTL)
To investigate the host genetic determinants of the bacterial microenvironment, we leveraged TnSeq 
as a high-resolution phenotyping platform to associate Mtb mutant fitness profiles with variants in 
the mouse genome. When the relative abundance of each Mtb mutant phenotype was considered 
individually, the corresponding ‘Host Interacting with Pathogen QTL’ (HipQTL) were distributed across 
the mouse genome (Figure 6A). Forty-one of these traits reached an unadjusted p-value threshold of 
0.05 and can be considered as robust for single hypothesis testing (Hip1-41, Table 2). These included 
HipQTL associated with ahpC (Hip12) and eccD1 (Hip22), that explain at least a portion of the observed 
variable abundance of these Mtb mutants (Figure 4E). In order to reduce complexity and increase the 
power of this analysis, we performed QTL mapping based on the first principal component of each of 
the previously defined modules of Mtb virulence pathways (Figure 5A). Three of these ‘eigentraits’ 
were associated with QTL at a similar position on chromosome 10 (Figure  6B), corresponding to 

QTL Trait Mtb ORF ID Module # LOD P value Chr
Start 
(Mb)

Peak 
(Mb) End (Mb)

Hip35 rv1178 RVBD_1178 mod6 8.19 4.76E-02 17 80.92 80.92 83.23

Hip36 rv0492c RVBD_0492 c mod17 8.90 3.18E-02 18 5.85 5.85 12.40

Hip37 cysM RVBD_1336 mod12 8.47 8.67E-03 19 4.20 6.46 6.46

Hip38 atsA RVBD_0711 mod1 8.58 1.38E-02 19 31.21 37.86 37.93

Hip39 galE2 RVBD_0501 mod6 8.10 2.85E-02 X 6.01 6.01 9.12

Hip40 pks11 RVBD_1665 mod17 8.25 1.94E-02 X 50.43 51.75 52.29

Hip41 pknK RVBD_3080 c mod17 8.73 3.79E-02 X 95.01 102.02 130.04

Hip42 Module 3 ESX1 operon mod3 7.80 5.38E-02 10 64.7 68.27 77.07

Hip42 Module 4 Mycobactin (mbt) mod4 7.79 5.05E-02 10 65.23 69.94 74.30

Hip43
Module
16 mce4 operon mod16 7.53 7.97E-02 10 74.30 81.36 87.61

Hip44 Module 19 unclassified Module 19 7.64 1.39E-01 11 60.87 62.20 63.26

Hip45 Module 10
Transcriptional 
regulation Module 10 6.95 1.04E-01 15 100.39 102.25 103.36

Hip46 Module 10
Transcriptional 
regulation Module 10 6.32 2.54E-01 19 32.74 32.87 37.48

Table 2 continued
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Figure 7. Visual representation of all Tip and HipQTL mapped in the CC TnSeq infection screen. Tuberculosis 
ImmunoPhenotypes (Tip) QTL (QTL mapped by disease-associated traits in CC mice), are shown in green. TipQTL 
mapped by separate traits that share similar founder effects were considered to be the same QTL and were 
named accordingly. Host Interacting with Pathogen (Hip) QTL, (QTL mapped by individual TnSeq mutant relative 

Figure 7 continued on next page
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Module 3 (TypeVII secretion, ESX1), Module 4 (mycobactin synthesis, mbt), or Module 16 (cholesterol 
uptake, mce4). In all three cases, a single mutant from the module was independently associated with 
a QTL at the same position as the module eigentrait (Table 2; Hip21, Hip22, Hip24), and all genes in 
the corresponding network cluster (Figure 5A) mapped to the same location (Figure 6C–E). While not 
all individual traits mapped with high confidence, the coincidence of these multiple QTL was statisti-
cally significant (Figure 6B).

Both the relative positions of the module-associated QTL and the associated founder haplotypes 
indicated that a single genetic variant controlled the abundance of ESX1 and mbt mutants (Hip42). 
Specifically, we found no statistical support for differentiating these QTL based on position (p = 0.93) 
(Boehm et al., 2019) and the same founder haplotypes were associated with extreme trait values 
at both loci, though they had opposite effects on the abundance of ESX1 mutants and mbt mutants 
(Figure 6F). We conclude that a single haplotype has a pleiotropic effect on Mtb’s environment and 
has opposing effects of the requirement for mycobactin synthesis and ESX1 secretion. The relationship 
between this variant and the mce4-associated QTL (Hip43) was less clear, as the statistical support 
for independent QTL was weak (ESX1 and mce4 QTL p = 0.17; mbt and mce4 QTL p = 0.08) and 
the effects of founder haplotypes were similar but not identical (Figure 6F). Some of this ambiguity 
may be related to the relatively small range in trait values for mce4, compared to either ESX1 or mbt 
(Figure 6G). Based on this data, we report two distinct HipQTL in this region (Hip42 and 43; Table 2).

Two TipQTL overlapped with HipQTL (Figure 7; Tip5/Hip4 on chromosome two and Tip9/Hip35 on 
chromosome 17), suggesting specific interactions between bacterial fitness and immunity. However, 
most Tip- and HipQTL were distinct, indicating that the fitness of sensitized bacterial mutants can be 
used to detect genetic variants that subtly influence the bacterial environment but not overtly alter 
disease. We chose to further investigate whether HipQTL might alter overall bacterial disease using 
the most significant HipQTL on chromosome 10 (Hip42). We found that the founder haplotypes asso-
ciated with extreme trait values at this QTL could differentiate CC strains with significantly altered total 
bacterial burden, and the NOD and WSB haplotypes were associated with higher bacterial numbers 
(p = 0.0085 for spleen CEQ; P = 0.027 for spleen CFU; Figure 6H). Thus, not only could the HipQTL 
strategy identify specific interactions between host and bacterial genetic variants, but it also appears 
to be a sensitive approach for identifying host loci that influence the trajectory of disease.

Identifying candidate genes underlying QTL
A pipeline was designed to prioritize genetic variants based on genomic and tuberculosis disease 
criteria. We concentrated on three QTL: two that were highly significant and with clear allele effects 
(Tip5, Hip42), and the Tip8 locus which we validated by intercross. For each QTL region, we identified 
genes that belonged to a differentially expressed transcriptional module in mouse lungs following 
Mtb infection (Moreira-Teixeira et  al., 2020). Next, we identified genetic variants segregating 
between the causal CC haplotypes in the gene bodies corresponding to these transcripts, and priori-
tized missense or nonsense variants.

For the Tip5 QTL underlying CEQ, CFU, and IL-10 levels, we identified nine candidate genes with 
regulatory or splicing variants and two genes with missense variants specific to the NOD haplotype. 
Of these candidates, cathepsin Z (Ctsz) encodes a lysosomal cysteine proteinase and has previously 
been associated with TB disease risk in humans (Adams et al., 2011; Cooke et al., 2008). The QTL 
underlying lung CFU and CXCL1 abundance (Tip8), which was driven solely by the genetically diver-
gent CAST founder haplotype, contained over 50 genes (Table 3) and will need further refinement. 
The QTL associated with the abundance of ESX1 and mbt mutants (Hip42) had a complex causal 
haplotype pattern (AJ/B6/NZO vs. 129/CAST/PWK vs. NOD/WSB) suggesting multiple variants might 
be impacting common genes. Within this interval, we identified 13 genes expressed in response to 
Mtb infection, three of which had SNPs fully or partially consistent with at least one of the identified 
causal haplotype groups (Table 3). Ank3 contains several SNPs in the 3’ UTR and other non-coding 
exons that differentiated NOD/WSB from the other haplotypes. Similarly, Fam13c had two missense 
mutations following the same haplotype pattern. For the AJ/B6 haplotype state, we identified a 

abundance profiles), are shown in purple. After WGCNA mutant clustering and mapping with representative 
eigengenes from each module, QTL mapped by module eigengenes are shown in magenta.

Figure 7 continued
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missense mutation and several variants in the 3’ 
UTR of Rhobtb1, which belongs to the Rho family 
of the Ras superfamily of small GTPases (Goitre 
et  al., 2014). Overall, the evidence supports a 
role for Rhobtb1 in a monogenic effect at the 
chromosome 10 locus. This evidence includes 
both protein coding differences dividing AJ/B6 
from the other haplotypes, a potential expres-
sion/transcript regulatory difference that segre-
gates the NOD/WSB state from the remaining 
parental haplotypes, and a plausible role for this 
gene in controlling intracellular trafficking (Long 
et al., 2020) and the opposing requirements for 
ESX1 and mycobactin.

Discussion
Our broad profiling of both host and pathogen 
traits after Mtb infection in a large panel of CC 
strains, created a reproducible resource to study 
the diverse host-pathogen interactions that drive 
tuberculosis disease. The immunological anal-
ysis of the CC panel identified correlates of TB 
disease progression that were consistent with 
previous studies in both mice and human patients 
(Ahmed et  al., 2020; Niazi et  al., 2015; Zak 
et  al., 2016). We also identified outlier strains 
that produce distinct immunological states, 
suggesting that our previous reliance on geneti-
cally homogenous lab strains of mice has oversim-
plified our understanding of TB pathogenesis. For 
example, despite the strong correlation between 
lung bacterial burden and weight loss, CC030/
GeniUnc and CC040/TauUnc mice suffered from 
more inflammation and wasting than would be 
predicted from the number of bacteria in their 
lungs or spleens. This phenotype reflects a failure 
of disease ‘tolerance’, which is proposed to be a 
critical determinant of protective immunity (Ayres 
and Schneider, 2012; Olive et al., 2018). Simi-
larly, we identified a number of CC genotypes 
that produce very low, or undetectable, levels 
of the protective cytokine IFNγ, but still control 
lung bacterial replication. While a growing body 
of literature suggests that immune responses 
distinct from the canonical Th1 response can 
control infection (Lu et  al., 2019; Sakai et  al., 
2016), these CC strains are the first example of 
an animal model in which IFNγ appears to be 
dispensable. Despite the relatively small group 
sizes used in this initial phenotypic screen, the 
reproducibility of the CC strains facilitated the 
identification of these phenotypes and provides 
tractable models for further characterization.

The ability to separate aspects of the immune 
response from disease progression implied 

Table 3. Candidate genes within QTL regions.
Prioritized candidates shown for selected QTL. 
Candidates were prioritized by filtering on (1) 
differential expression during Mtb infection, 
and (2) variants within TB-expressed genes that 
segregated between informative CC haplotypes. 
Genes listed below contain non-synonymous 
variants (i.e. amino acid changes, regulatory 
mutations or splicing mutations) consistent with 
the identified singly causal haplotype (NOD for 
Tip5; CAST for Tip8). Hip42 displayed a more 
complex haplotype pattern (WSB/NOD vs AJ/
B6/NZO), and candidate selection is discussed in 
the main text. Genes with missense or nonsense 
variants (denoted by *).

Tip5 Tip8 Hip42

Ctsz Fxyd5* Siglecg Ank3

Tubb1 Fxyd1 Nkg7 Cdk1

Atp5e Lgi4 Cd33* Tmem26

Prelid3b Fxyd3 Siglece* Slc16a9

Zfp831* Hpn Klk13 Fam13c

Edn3 Scn1b Klk8 Rhobtb1

Gm14391* Gramd1a* Klk7*  �

Gm6710 Pdcd2l* Klk1b9*  �

Zfp931 Gpi1 Klk1  �

 �  4931406P16Rik Clec11a  �

 �  Kctd15 Shank1  �

 �  Chst8 Syt3  �

 �  Pepd Lrrc4b  �

 �  Cebpa Josd2  �

 �  Slc7a10 Spib  �

 �  Lrp3* Pold1  �

 �  Rhpn2 Napsa*  �

 �  Faap24 Kcnc3  �

 �  Tdrd12* Myh14  �

 �  Ankrd27* Atf5  �

 �  Pdcd5 Il4i1  �

 �  Dpy19l3 Pnkp*  �

 �  Tshz3* Ptov1  �

 �  Ccne1 Fuz  �

 �  1600014C10Rik Tsks  �

 �  Plekhf1 Cpt1c*  �

 �  Vstm2b  �   �

 �  Zfp975*  �   �

 �  Zfp715*  �   �

https://doi.org/10.7554/eLife.74419
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that these features are under distinct multigenic control. Our study demonstrated the feasibility of 
mapping the genetic variants that control the complex immune response to Mtb. The QTL identi-
fied in this study are generally distinct from CC loci that control immunity to viruses (Ferris et al., 
2013; Gralinski et al., 2017; Noll et al., 2020) or another intracellular bacterial pathogen, Salmonella 
(Zhang et al., 2019). However, Tip8 and Tip10 overlap with QTL previously defined via Mtb infection 
of a CC001xCC042 F2 intercross population (Smith et al., 2019) suggesting that common variants 
may have been identified in both studies. While the specific genetic variants responsible for these 
QTL remain unknown, both coincident trait mapping and bioinformatic analysis suggest mechanistic 
explanations for some QTL-phenotype associations. For example, a single interval on chromosome 
two controls CFU levels and IL-10, and contains a variant in the Ctsz gene encoding Cathepsin Z. 
Ctsz is a strong candidate considering its known roles in autophagy (Amaral et al., 2018), dendritic 
cell differentiation and function (Obermajer et al., 2008), its upregulation in non-human primates 
(Ahmed et al., 2020) and human patients with Mtb (Zak et al., 2016), and the association of CTSZ 
variants with disease risk in human TB studies (Adams et al., 2011; Cooke et al., 2008). Regardless of 
the responsible variants, these data will facilitate the generation of new congenic animal models that 
isolate the contribution of each QTL to phenotype.

Using TnSeq as a multidimensional phenotyping method across this population provided insight 
into how the diversity of host-derived microenvironments have shaped the pathogen’s genome. While 
Mtb is an obligate pathogen with no significant environmental niche, only a minority of the genes in 
its genome have been found to contribute to bacterial fitness in either laboratory media or individual 
inbred mouse models, leaving the pressures that maintain the remaining genomic content unclear. 
Our study indicated that a roughly similar number of genes are important for Mtb fitness in a given 
mouse strain, even immunodeficient strains that likely represent the most divergent environments. 
While this observation may seem counterintuitive, it is consistent with previous TnSeq studies in both 
mouse models (Mishra et  al., 2017) and in vitro conditions (Minato et  al., 2019), where distinct 
but similarly sized gene sets are necessary for growth under very different conditions. Overall, we 
find that approximately three times more genes contribute to bacterial growth or survival in the CC 
population than in the standard B6 model. While some bacterial genetic requirements could be asso-
ciated with known immune pathways, most of the differential pressures on bacterial mutants could 
not be attributed to these simple deficiencies in known mechanisms of immune control. Instead, it 
appears that the CC population produces a spectrum of novel environments, and that a relatively 
large fraction of the pathogen’s genome is needed to adapt to changing immune pressures. Differen-
tial pressures on these adaptive virulence functions are similarly apparent in genomic analyses of Mtb 
clinical isolates. Signatures of selection have been detected in ESX1-related genes (Holt et al., 2018; 
Sousa et al., 2020), phoPR (Gonzalo-Asensio et al., 2014), and the oxidative stress resistance gene 
sseA (de Keijzer et al., 2014), suggesting that Mtb is exposed to similarly variable host pressures in 
genetically diverse human and mouse populations. While the combinatorial complexity of associating 
host and pathogen genetic variants in natural populations is daunting, the identification of HipQTL in 
the CC panel indicates that these inter-species genetic interactions can be important determinants of 
pathogenesis and can be dissected using this tractable model of diversity.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Strain, strain background (Mus musculus, 
male) Collaborative Cross mice

DOI: https://doi.org/10.​
1038/ng1104-113

Strain, strain background (Mycobacterium 
tuberculosis) H37Rv

DOI: 10.1073/
pnas.2134250100

Genetic reagent (Mycobacterium 
tuberculosis)

∆glpK; ∆pstC2; ∆eccB1; 
∆mbtA;

DOI: 10.1128/mBio.01467–
18

Genetic reagent (Mycobacterium 
tuberculosis) ∆BioA

DOI: 10.1371/journal.ppat.​
1002264

https://doi.org/10.7554/eLife.74419
https://doi.org/10.1038/ng1104-113
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Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Recombinant DNA reagent pKM464 (plasmid)
DOI: 10.1128/mBio.01467–
18

Recombinant DNA reagent Barcode qtag (plasmid)
DOI: 10.1128/
mSystems.00396–20

Sequence-based reagent
qtag/barcode sequencing 
primer sets

DOI: 10.1128/
mSystems.00396–20 Table S6

Sequence-based reagent MiniMUGA genotyping array Neogen Inc

Sequence-based reagent
GigaMUGA genotyping 
array Neogen Inc

Commercial assay or kit 32-plex cytokine assay
Eve Technologies, Calgary, 
CA

Software, algorithm R/qtl2
DOI: 10.1534/
genetics.118.301595

Dr. Karl Broman (University of 
Wisconsin-Madison)

Software, algorithm WGCNA
DOI: 10.1186/1471-2105-
9-559 Dr. Peter Langfelder (UCLA)

 Continued

Mice
Male and female Collaborative Cross parental strains (A/J #0646; C57BL/6  J #0664; 129S1/SvImJ 
#02448; NOD/ShiLtJ #01976; NZO/HiLtJ #02105; CAST/EiJ #0928, PWK/PhJ #3,715 and WSB/EiJ 
#01145) and single gene immunological knockout mice were purchased from The Jackson Labora-
tory (Nos2-/- #2609, Cybb-/- #2365, Ifnγ-/- #2287) or Taconic (RagN12) and bred at UMASS. Male mice 
from 52 CC strains were purchased from the UNC Systems Genetics Core Facility (SGCF) between 
July 2013 and August 2014. The 52 CC strains used in this study include: CC001/Unc, CC002/Unc, 
CC003/Unc, CC004/TauUnc, CC005/TauUnc, CC006/TauUnc, CC007/Unc, CC008/GeniUnc, CC009/
Unc, CC010/GeniUnc, CC011/Unc, CC012/GeniUnc, CC013/GeniUnc, CC015/Unc, CC016/GeniUnc, 
CC017/Unc, CC018/Unc, CC019/TauUnc, CC021/Unc, CC022/GeniUnc, CC023/GeniUnc, CC024/
GeniUnc, CC025/GeniUnc, CC027/GeniUnc, CC028/GeniUnc, CC029/Unc, CC030/GeniUnc, CC031/
GeniUnc, CC032/GeniUnc, CC033/GeniUnc, CC034/Unc, CC035/Unc, CC037/TauUnc, CC038/
GeniUnc, CC039/Unc, CC040/TauUnc, CC041/TauUnc, CC042/GeniUnc, CC043/GeniUnc, CC044/
Unc, CC045/GeniUnc, CC046/Unc, CC047/Unc, CC051/TauUnc, CC055/TauUnc, CC056/GeniUnc, 
CC057/Unc, CC059/TauUnc, CC060/Unc, CC061/GeniUnc, CC065/Unc, CC068/TauUnc. More infor-
mation regarding the CC strains can be found at http://csbio.unc.edu/CCstatus/index.py?run=Avail-
ableLines.information.

CC030 x CC029 F2 mice were generated in the FPMV lab at UNC by crossing CC030 and CC029 
mice (purchased from the SGCF in 2016) to generate F1s (both CC030 dam by CC029 sires as well 
as CC029 dam by CC030 sires). The resulting F1s were subsequently intercrossed to generate 251 F2 
mice with all possible grandparental combinations. Male and female F2 mice were shipped to UMASS 
for Mtb infections.

All mice were housed in a specific pathogen-free facility under standard conditions (12 hr light/
dark, food and water ad libitum). Mice were infected with Mtb between 8 and 12 weeks of age. Male 
mice were used for initial large CC screen; male and female mice were used for F2 validation cohort.

M. tuberculosis trains
All M. tuberculosis strains (H37Rv background) were grown in Middlebrook 7H9 medium containing 
oleic acid-albumin-dextrose-catalase (OADC), 0.2% glycerol, and 0.05% Tween 80 to log-phase with 
shaking (200 rpm) at 37 °C. Hygromycin (50 µg/ml) or kanamycin (20 µg/ml) was added when neces-
sary. The TnSeq library consisting of Himar1 transposon mutants was described previously (Sassetti 
et  al., 2003). The ∆bioA strain was made by homologous recombination as previously described 
(Woong Park et al., 2011). For pooled mutant infections, deletion strains (GlpK, PstC2, EccB1, MbtA) 
were constructed using ORBIT (Murphy et al., 2018), which included gene replacement by the vector 
pKM464 carrying unique q-Tag sequences to identify each mutant for deep sequencing. The rnaseJ 

https://doi.org/10.7554/eLife.74419
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mutant was also made by ORBIT and was kindly provided by Dr. Nathan Hicks and Dr Sarah Fortune. 
Prior to all in vivo infections, cultures were washed, resuspended in phosphate-buffered saline (PBS) 
containing 0.05% Tween 80, and sonicated before diluting to desired concentration (see below).

Mouse infections
For TnSeq experiments, 1 × 106 CFU of a saturated library of Himar1 transposon mutants (Sassetti 
et  al., 2003) was delivered via intravenous tail vein injection, resulting in an infectious dose (Day 
1 CFU) of 105 in the spleen and 104 in the lung. For the TnSeq screen, groups of three to six mice per 
genotype were infected, including 52 CC strains, 8 parental strains, and single-gene knockout mice 
(Nos2-/-, Cybb-/-, Ifnγ-/- and RagN12). Mice were infected over three infection batches, as denoted in 
Figure 1—source data 1. Burden and immunological data from all surviving animals are provided in 
Figure 1—source data 1. At indicated time points mice were euthanized, and organs were harvested 
then homogenized in a FastPrep-24 (MP Biomedicals). CFU was determined by dilution plating on 
7H10 agar with 20 µg/mL kanamycin. For library recovery, approximately 1 × 106 CFU per mouse was 
plated on 7H10 agar with 20 µg/mL kanamycin. After three weeks of growth, colonies were harvested 
by scraping and genomic DNA was extracted. The relative abundance of each transposon mutant was 
estimated as described (Long et al., 2015).

Single strain validation aerosol infections were performed in a Glas-Col machine to deliver 
50–150 CFU/mouse. At indicated time points, mice were euthanized, and organs were harvested then 
homogenized in a FastPrep-24 (MP Biomedicals). CFU was determined by dilution plating on 7H10 
agar with 20 ug/mL kanamycin or 50 µg/mL hygromycin as required.

Chromosomal equivalent (CEQ) was enumerated according to previously published protocol (Lin 
et al., 2014; Munoz-Elías et al., 2005). Cytokines and chemokines were assayed from organ homog-
enates using the pro-inflammatory focused 32-plex (Eve Technologies, Calgary, CA).

For pooled mutant infections, three to five mice per genotype (B6, CC051, PWK, CC042, CC005, 
CC018) were infected with a pool of deletion mutants at equal ratios via the intravenous route (1 
× 106 CFU/mouse resulting in an infectious dose (D1 CFU) of 1 × 105 in the spleen). At indicated 
time points, approximately 10,000 CFU from the spleen homogenate of each mouse was plated on 
7H10 agar. Genomic DNA was extracted for sequencing as described previously (Long et al., 2015). 
Sequencing libraries spanning the variable region of each q-Tag were generated using PCR primers 
binding to regions common among all q-Tags, similar to previously described protocols (Bellerose 
et al., 2020; Blumenthal et al., 2010; Martin et al., 2017). In each PCR, a unique molecular counter 
was incorporated into the sequence to allow for the accurate counting of input templates and account 
for PCR jackpotting. The libraries were sequenced to 1000-fold coverage on an Illumina NextSeq 
platform using a 150-cycle Mid-Output kit with single-end reads. Total abundance of each mutant in 
the library was determined by counting the number of reads for each q-Tag with a unique molecular 
counter. Relative abundance of each mutant in the pool was then calculated by dividing the total 
abundance of a mutant by the total abundance of reads for wild-type H37Rv. The relative abundance 
was normalized to relative abundance at initial infection (Day 0) and log2 transformed. Fitness was 
calculated as previously described (Palace et al., 2014). Burden and normalized counts from all Mtb 
mutants in each mouse are provided in Figure 4—source data 2.

For CC030 x CC029 F2 infections, 251 F2 mice (including equivalent numbers of male and female 
mice) were infected via IV route with an infectious dose of 105 CFU of TnSeq library (as described 
above), to replicate the original CC infection experimental conditions. Mice were sacrificed at 1 month 
post-infection and bacterial burden was quantified by plating for CFU (as described above).

Quantification and statistical analysis
TnSeq analysis
TnSeq libraries were prepared and counts of each transposon mutant were estimated as described 
(Long et  al., 2015). NCBI Reference Sequence NC_018143.1 was used for H37Rv genome and 
annotations. A total of 123 libraries were sequenced, capturing 60 distinct mouse genotypes. In the 
majority of cases, two replicate mouse libraries were used per genotype. Only a single TnSeq library 
was obtained for CC010, CC031, CC037, CC059, CC016, and PWK/PhJ. Insertion mutant counts 
across all libraries were normalized by beta-geometric correction (DeJesus et al., 2015), binned by 
gene, and replicate values for each mouse genotype averaged. Mean values for each gene were 

https://doi.org/10.7554/eLife.74419
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divided by the grand mean then log2 transformed and quantile normalized. The resulting phenotype 
values were used for both WGCNA and QTL mapping.

To eliminate genes having no meaningful variation across the mouse panel, statistical tests of log2 
fold change (LFC) in counts between all possible pairs of mouse genotypes were performed by resa-
mpling (DeJesus et al., 2015). 679 ‘significantly varying genes’ were identified whose representation 
varied significantly (FDR < 5%) in at least two independent comparisons. For relative mutant abun-
dance estimates, LF C in counts between in vitro-grown H37Rv (six replicate libraries) vs libraries from 
each mouse genotype were determined by resampling as above. LFC, Q-values and modules for 
TnSeq data across the mouse strains is available in Figure 4—source data 1.

WGCNA analysis
Weighted gene correlation network analysis (WGCNA) was applied to categorize the 679 signifi-
cantly varying genes into 20 internally-correlated modules (Langfelder and Horvath, 2008). Modules 
were filtered (intramodular connectivity >0.6) to obtain the most representative genes. First principal 
component scores of module eigengenes were used as phenotype values for QTL mapping after first 
winsorizing (q = 0.05) using the R package broman (https://cran.r-project.org/web/packages/broman/​
index.html).

In order to perform association analysis between modules of genes and clusters of mice (Figure 5B), 
the mice were clustered based on the matrix of TnSeq LFCs for significantly varying genes using hclust 
in R (with the ‘Ward.D2’ distance metric). Then, for each module of genes, the LFCs in each cluster of 
mice were pooled and compared to all the other mice using a t-test, identifying modules with a mean 
LFC in a specific mouse cluster that is significantly higher or lower than the average across all the other 
mice. The resulting p-values over all combinations of gene modules and mouse clusters were adjusted 
using Benjamini-Hochberg for an overall FDR < 0.05.

Disease-related trait analysis and heritability estimation
For the trait heatmap, trait values were clustered (hclust in R package heatmaply; traits scaled as per 
default function) and dendrogram nodes colored by 3 k-means. Correlation between disease-related 
TB traits for both IV and aerosol validation experiments was determined by Pearson’s correlation 
and visualized using corrplot (ordered by hclust) (Figure 1—figure supplements 1 and 2). Herita-
bility (h2) of the immunological and TB disease-related traits was calculated by estimating the percent 
of variation attributed to between strain differences relative to within strain noise as previously 
described (Appendix1) (Noll et al., 2020). This is explicitly: SS(strain)/SS(total) in an ANOVA table 
(where SS(total) is SS(strain)+ SS(error)) (SS; sum of squares). p-Values were calculated by ANOVA and 
multiple-test corrected using the Benjamini-Hochberg method. Throughout the text, correlations are 
cited using the following standardized nomenclature: 0–0.19 = very weak, 0.2–0.39 = weak, 0.40–0.59 
= moderate, 0.6–0.79 = strong, 0.8–1.0 = very strong correlation.

Genotyping and QTL mapping
A subset of the inbred CC mice used in the analysis were genotyped on the GigaMUGA array (Morgan 
et al., 2015) available from Neogen Inc The inbred parents, F1s and F2 mice from the CC030xCC029 
cross were genotyped on the MiniMUGA array (Sigmon et al., 2020) at Neogen Inc, For CC030 x 
CC029 F2 QTL analysis, markers were filtered to 2499 markers that differentiated between CC029 and 
CC030 haplotypes (Figure 3—source data 1). For QTL mapping in the F2 panel, genotype (Figure 
3—source data 1) and lung burden data (Figure 3—source data 2) from 251 Mtb-infected F2 individ-
uals was imported into R (version 3.6.1) and formatted for R/qtl2 (version 0.20) (Broman et al., 2019). 
QTL mapping incorporated kinship as a covariate using the LOCO (Leave One Chromosome Out) 
method. Further, sex and infection batch were also considered as covariates for mapping. LOD scores 
were calculated within R/qtl2 to assess genotypic associations with lung burden at each marker. QTL 
significance thresholds were established by 10,000 permutations.

For QTL mapping in the CC panel, the Most Recent Common Ancestor (Srivastava et al., 2017) 
36-state haplotypes were downloaded from the UNC Systems Genetics Core Facility and simplified to 
8-state haplotype probabilities (for the 8 CC founder strains), which is appropriate for additive genetic 
mapping. We generated 36-state haplotype probabilities from the individual CC mice genotyped on 
GigaMUGA and combined these data with the MRCA data to obtain a common genome cache.

https://doi.org/10.7554/eLife.74419
https://cran.r-project.org/web/packages/broman/index.html
https://cran.r-project.org/web/packages/broman/index.html


 Tools and resources﻿﻿﻿﻿﻿﻿ Genetics and Genomics | Microbiology and Infectious Disease

Smith et al. eLife 2022;11:e74419. DOI: https://doi.org/10.7554/eLife.74419 � 23 of 31

For CC QTL analysis, genotype and phenotype data were imported into R (version 3.6.1) and 
reformatted for R/qtl2 (version 0.20) (Broman et al., 2019). Individual TnSeq and clinical trait pheno-
type values were winsorized (q = 0.006) as above. GigaMUGA annotations were downloaded from 
the Jackson Laboratory, and markers were thinned to a spacing of 0.1 cM using the reduce_markers 
function of R/qtl2. The final genetic map contained 10,067 markers. QTL mapping was carried out 
using a linear mixed model with LOCO (leave one chromosome out) kinship. For clinical trait scans, 
batch (denoted by ‘block’ in Figure 1—source data 1) was included as an additive covariate. Signifi-
cance thresholds for QTL were estimated using 10,000 permutations (scan1_perm function). For each 
trait, the maximum LOD scores from the permutation scans were used to fit generalized extreme 
value distributions, from which genome-wide permutation p-values were calculated. LOD profiles 
and effect plots were generated using the plotting functions of the R/qtl2 package. Multiple QTL at 
similar genetic locations were assessed for independence using qtl2pleio with 400 bootstrap samples 
(Boehm et al., 2019). The quantile-based permutation thresholding method of Neto et al., 2012 
was used to assess the statistical significance of co-mapping traits. The NL-method, which determines 
the LOD thresholds controlling genome-wide error rate for a given p-value and ‘hotspot’ size, was 
employed.

Candidate gene prioritization
To identify potential candidate genes, we focused on three QTL that were either statistically significant 
(Tip5, Hip42) or were validated by intercross (Tip8). For each QTL interval (determined by Bayesian 
interval in qtl2), we identified mouse genes that were in differentially expressed modules between 
infected lungs of resistant and susceptible mouse strains (Moreira-Teixeira et al., 2020). Of these 
genes, we next used the Sanger sequence data (Keane et  al., 2011) to filter on genetic variants 
segregating between CC founder haplotypes. Where there were clear causal haplotypes, we further 
filtered to genes with missense or nonsense variants.
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Appendix 1

Appendix 1—table 1. Heritability (h2) estimates for each measured TB-disease associated 
phenotype (Tuberculosis ImmunoPhenotypes;Tip).
h2 was calculated from the percentage of variation attributed to strain differences in each trait across 
the CC strains, as previously described (Noll et al., 2020). P-values were calculated by ANOVA and 
multiple-test corrected using the Benjamini-Hochberg method. Weight change is the percentage of 
weight (grams), CFU/CEQ is log10 transformed, cytokines are measured in pg/mL lung homogenate 
and log10 transformed.

Trait h2 (%) p-value Adj. p-value

IFN-γ 87.70 7.90E-20 2.21E-18

Lung CFU 83.30 5.83E-15 8.16E-14

Lung CEQ 80.55 2.65E-14 2.47E-13

CXCL1 81.57 8.19E-14 5.73E-13

MIG 81.19 1.62E-13 9.09E-13

MIP-2 80.82 3.07E-13 1.43E-12

IP-10 80.13 9.73E-13 3.89E-12

M-CSF 79.33 3.54E-12 1.24E-11

IL-17 78.85 7.43E-12 2.31E-11

MIP-1α 78.02 2.53E-11 7.08E-11

G-CSF 77.71 3.98E-11 1.01E-10

MCP-1 77.05 1.00E-10 2.34E-10

IL-1α 75.62 6.60E-10 1.42E-09

IL-6 73.97 4.89E-09 9.77E-09

RANTES 73.70 6.63E-09 1.20E-08

Spleen CFU 72.94 6.83E-09 1.20E-08

LIF 73.48 8.50E-09 1.40E-08

VEGF 73.08 1.34E-08 2.08E-08

IL-1β 71.66 6.11E-08 9.00E-08

Weight Change 67.56 8.75E-07 1.22E-06

MIP-1β 68.51 1.23E-06 1.65E-06

TNF-α 66.38 7.39E-06 9.41E-06

LIX 65.30 1.70E-05 2.07E-05

Eotaxin 64.27 3.63E-05 4.23E-05

IL-10 63.97 4.48E-05 5.02E-05

IL-2 62.87 9.59E-05 1.03E-04

Spleen CEQ 60.43 1.09E-04 1.13E-04

IL-9 56.79 3.19E-03 3.19E-03
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