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Abstract

Lymphatic filariasis (LF) is a mosquito-borne parasitic neglected tropical disease. In 2000,

WHO launched the Global Programme to Eliminate Lymphatic Filariasis (GPELF) as a pub-

lic health problem. In 2020, new goals for 2030 were set which includes a reduction to 0 of

the total population requiring Mass Drug Administrations (MDA), a primary tool of GPELF.

We develop a mathematical model to study what can happen at the end of MDA. We use a

game-theoretic approach to assess the voluntary use of insect repellents in the prevention

of the spread of LF through vector bites. Our results show that when individuals use what

they perceive as optimal levels of protection, the LF incidence rates will become high. This

is in striking difference to other vector-borne NTDs such as Chagas or zika. We conclude

that the voluntary use of the protection alone will not be enough to keep LF eliminated as a

public health problem and a more coordinated effort will be needed at the end of MDA.

Author summary

We adapt a compartmental ODE model of lymphatic filariasis (LF) transmission and

focus our attention on what happens after Mass Drug Administrations (MDA) is termi-

nated. We add a game-theoretic component to the model and study whether LF transmis-

sion can be substantially interrupted by voluntary use of personal protection strategies

such as using insect repellents. We identify optimal voluntary protection levels and dem-

onstrate that LF incidence rates will become too high.

1 Introduction

Lymphatic filariasis (LF), also known as elephantiasis, is a mosquito-borne parasitic disease

caused by microscopic filarial roundworms Wuchereria bancrofti, Brugia malayi and Brugia
timori [1]. The roundworms are transmitted to humans by mosquitoes of the genera Aedes,
Anopheles, Culex and Mansonia [1]. LF is one of the leading causes of chronic disability world-

wide [2].

PLOS NEGLECTED TROPICAL DISEASES

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010765 September 22, 2022 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS
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In 2000, WHO launched its Global Programme to Eliminate Lymphatic Filariasis (GPELF)

as a public health problem [3]. The primary strategy for LF control and elimination is the

WHO recommended preventive chemotherapy [4]. The entire population at risk is treated by

mass drug administration (MDA) for at least five consecutive years. In 2020, 863 million peo-

ple in 50 countries were living in areas that require MDA [3]; see Fig 1. At the same time,

GPELF set new goals for the new NTD Road Map (2021-2030) that include reduction to 0 of

the total population requiring MDA and 100% of endemic countries implement post-MDA or

post-validation surveillance [3]. MDA has already ended and was successful in Dominican

Republic [5] but it was not so successful in Haiti [4] and American Samoa [6]. It is therefore

important to plan ahead and estimate what can happen at the end of MDA.

Mathematical modeling is a standard and indispensable tool for NTDs elimination efforts [9,

10]. The main mathematical models of LF transmission and control are LYMFASIM [11], EPI-

FIL [12, 13] and TRANSFIL [14]. The models and their implications for the LF control and

elimination through MDA are discussed in [15, 16] or [17]. Furthermore, [18] and [19] created

an SI-SI model to investigate the long-term effects of targeted medical treatment in Indonesia.

[20] developed an SEI-SI model which was extended by [21] to include possible vaccination and

chemoprophylaxis. [22] developed model with vaccination. [23] constructed an SEIQ-SI LF

model with quarantine and treatment as control strategies. Also, [24] modeled LF-tuberculosis

coinfections and [25] considered global stability and backward bifurcation of their LF transmis-

sion model. The cost-effectiveness of different intervention strategies is considered in [26].

In our paper, we adapt a SEI-SI compartmental model by [27] which investigated the effect

of MDA on LF transmission in the Philippines. Unlike previous LF modeling papers, we focus

our attention on what happens when MDA is terminated and no longer in place. We are inter-

ested to see whether the LF transmission can be substantially interrupted by voluntary use of

personal protection strategies such as using insect repellents. The research is inspired by [28]

Fig 1. World map of LF and MDA status in 2020. Data collected from [7] and map was made with the aid of

borders.m file [8] in MATLAB.

https://doi.org/10.1371/journal.pntd.0010765.g001
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and [29] who showed that a voluntary use of DEET can help eliminate dengue or zika virus

infections.

We apply the game-theoretic framework developed in [30] and subsequently applied to

many diseases, including COVID-19 [31]; see [32] for a recent review. The framework is useful

in instances when individuals choose to protect against the mosquito bites and consequently

the disease on their own rather than when there are centralized efforts directed towards disease

elimination or mosquito control [33]. It has been long established that individuals act in a way

that maximizes their self-interests, rather than the interests of the entire group [34]. Voluntary

disease protection is prone to free-riding because it produces public goods (reduction of dis-

ease prevalence) that have the following two main characteristics [35]: non-rivalry (consump-

tion of a good by one person does not affect the quantities consumed by other individual) and

non-exclusion of consumption (impossible to restrict the benefits to certain individuals). The

“free-riders” avoid the costs associated with disease prevention while benefiting from other

individuals’ actions [36]. Individuals try to balance the real or perceived costs of disease protec-

tion against the costs of the disease [37]. The outcomes of different choices of a specific indi-

vidual depend on the actions chosen by the rest of the population since the behavior of the rest

of the population determines the prevalence of the disease and thus the risk of infection to a

focal individual. A solution of this game is a concept of Nash equilibrium, a strategy from

which nobody prefers to deviate.

We identify such optimal voluntary protection levels and demonstrate that under such con-

ditions, LF incidence rates become too high. Thus, we conclude that voluntary use alone is not

a sufficient tool to keep LF eliminated as a public health concern after the end of MDA.

2 Mathematical model

In this section we build a mathematical model for the voluntary use of insect repellents and

other personal protection means to prevent LF. We first introduce the compartmental model

of LF transmission. Then, we add the game-theoretic component that will allow us to investi-

gate individuals’ optimal decisions on choosing their level of protection. Finally, we will cali-

brate the model based on data from the literature.

2.1 Compartmental model

We consider the situation at the hypothetical termination of the MDA treatments. We adapt

an ODE compartmental model for LF transmission that was introduced in [27]. Their com-

partmental model simplified by the absence of MDA but extended by the presence of exposed

vectors is shown and described in Fig 2. The parameters are explained in Table 1.

As derived in 3.1, the effective reproduction number is

Re ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
2
yvhyhvnvas

bhbvðbh þ aÞðbv þ sÞ

s

: ð1Þ

When Re < 1, then the disease-free equilibrium is locally asymptotically stable and when

Re > 1, then the endemic equilibrium is locally asymptotically stable [38]. Furthermore, if

Re > 1, then the force of infection at the endemic equilibrium is given by

l
�

vh ¼ byvh
R2

e � 1

byvh

bh
þR2

e
bv þ s

nvs

:
ð2Þ
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2.2 Game-theoretic component

At this point, we add a game-theoretic component to study individual prevention strategies

and introduce the following game inspired by the framework introduced in [30].

The players of the game are uninfected individuals who repeatedly chose to protect them-

selves against mosquito bites. Their strategy is given by a number c 2 [0, 1] that specifies a pro-

portion of the time the individual uses personal protection such as insect repellent to prevent

mosquito bites. The strategy c influences the mosquito biting rate, β = β(c). For illustrative pur-

poses, we assume β(c) = β0(1 − c) where β0 is the maximal mosquito biting rate without any

protection. However, our analysis and qualitative results will stay valid for any non-negative

decreasing function β(c) satisfying β00(c)� 0 on [0, 1].

The protection does not come for free and we assume that to use a strategy c, the individual

has to pay the cost k(c). In our examples, we assume k(c) = κc where κ is the cost of complete

and maximal protection. However, our analysis and qualitative results stay valid for any non-

negative increasing function k(c) satisfying k00(c)� 0 on [0, 1]. We assume that the cost k(c) is

Fig 2. (a) Life cycle of W. bancrofti. Image courtesy of Public Health Image Library, Centers for Disease Control and Prevention (https://phil.cdc.gov/Details.aspx?pid=

3425). (b) Scheme of the ODE compartmental model for LF transmission from [27] with no treatment (after the termination of MDA). The human population is

divided into uninfected Uh, latent Lh, and infectious Ih; the total population is Nh = Uh + Lh + Ih. Mosquitoes are either uninfected Uv, exposed Ev, or infected Iv; the total

population is Nv = Uv + Ev + Iv. Solid arrows represent the transition of humans and mosquitoes between different states of infection. The letters next to the arrows

specify the rates of the transitions. All new members of both populations enter their respective uninfected classes at per capita rates bh and bv. Both humans and

mosquitoes leave their respective population through natural death at per capita rates δh and δv. The uninfected mosquitoes become infected at rate lhv ¼ byhv
Ih
Nh

. The

uninfected humans become latent at the rate lvh ¼ byvh
Iv
Nh

, the force of infection. The latent individuals progress to infectious at rate α. The exposed vectors become

infectious at rate σ. Dashed lines represent the transfer of parasites from human to mosquito and vice versa through a mosquito bite.

https://doi.org/10.1371/journal.pntd.0010765.g002
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relative to the cost of the disease, i.e., k(c) = 1 means that the cost of the protection equals the

cost of the disease.

The solution of the game, called the Nash equilibrium, is the population-level value cNE at

which no individual can increase their own benefits by deviating from the population strategy.

The individual’s benefits, or payoffs, depend on the individual’s strategy but also on the

prevalence of LF in the population, i.e., on the strategies of other players. Following [30], we

assume that all individuals are provided with the same information such as prevalence of LF in

the population, the cost of contracting LF, and the cost of protection. We will also assume that

they all use the information in the same and rational way to assess costs and risks.

2.3 Model calibration

We adopt most parameter values from [27] and references therein. All rates are expressed per

capita per week. We set the human birth rate as bh = 6 × 10−4 and the human death rate as δh =

4.2 × 10−4 to agree with the population dynamics of the Caraga region, the Philippines. As in

[39], we set the mosquito death rate as δv = 0.1. In line with [27], to keep the mosquito popula-

tion to be a constant multiple of Nh, we set bv = δv + bh − δh. The number of mosquitoes per

humans was estimated as nv = 3. We assume the progression rate from Lh to Ih is α = 0.0288

[17]. Also, we assume the maximal mosquito bite rate is β0 = 1 [39]. The probability of trans-

mission from human to mosquitoes is θhv = 0.37 [13]. In vectors, L1 stage larvae needs 1.5

weeks to mature into infectious L3 stage larvae [40], i.e., the rate of progression from Ev to Iv is

σ = 2/3.

We differ from [27] by setting the probability of transmission from mosquito to human as

θvh = 7.5 × 10−4 = 6.6 × 1.13 × 10−4 where 6.6 is the mean saturation level of L3 larvae in mos-

quitoes [41] and 1.13 × 10−4 is the proportion of L3 filarial parasites entering a host which

develop into adult worms [13]. We note that [27] used a value θvh = 1.13 × 10−4, but that gives

Re � 1:3. Our values of θvh yields Re � 3:43. Such a value is more in line with [42] which esti-

mates Re values for LF to be between 2.7 and 30.

Finally, we assume that the cost of (complete) protection, relative to the cost of LF, is given

by κ = 0.1. We arrived at this estimate as follows. In 2000, a chronic LF patient could lose up to

Table 1. Model parameters. The rates are per capita per week. The parameter values are discussed in Section 2.3. The

range shows the bounds we used in sensitivity and uncertainty analysis in Section 4.1.

Symbol Description Value Range

bh Human birth rate 6 × 10−4 [10−4, 10−3]

δh Human natural death rate 4.2 × 10−4 [10−4, 10−3]

δv Mosquito natural death rate 0.1 [0.05, 0.15]

bv Mosquito birth rate δv + bh − δh

c Proportion of the time the individuals use protection variable in [0, 1]

β0 Maximal mosquito bite rate 1 [0.5, 1.5]

β(c) Mosquito bite rate when protecting at c β0(1 − c)

θvh Probability of transmission from mosquito to human 7.5 × 10−4 [0, 10−3]

θhv Probability of transmission from human to mosquito 0.37 [0.2, 0.4]

α Progression rate from Lh to Ih 0.0288 [0.02, 0.05]

σ Progression rate from Ev to Iv 2/3 [0.1, 1]

nv Number of mosquitoes per human 3 [0, 5]

κ Cost of maximal protection (relative to cost of LF) 0.1 [0, 1]

k(c) Cost of protection (relative to cost of LF) when using c κc

https://doi.org/10.1371/journal.pntd.0010765.t001
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$50 annually due to LF [43]. We adjusted it to $100 annually for today’s value. At the same

time, the cost of full protection by DEET was estimated in [29] to about $10.

We investigate the dependence of our result on the parameter values in Section 4.1.

3 Analysis

To solve the game, i.e., find the Nash equilibrium and the optimal voluntary protection level,

we assume that all players use the same strategy, cpop, and only the strategy of the focal player,

c, may vary. We assume that human and mosquito populations are large enough so that the

behavior of a single individual does not significantly affect the number of infected mosquitoes.

The effective reproduction number depends on cpop. Specifically,

ReðcpopÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

2
ðcpopÞyvhyhvnvas

bhbvðbh þ aÞðbv þ sÞ

s

: ð3Þ

Assuming β(cpop) = β0(1 − cpop), we get

ReðcpopÞ ¼ ð1 � cpopÞReð0Þ: ð4Þ

When ReðcpopÞ � 1, the population will reach disease-free equilibrium. When

ReðcpopÞ > 1, i.e., when cpop 2 [0, cmax] where

cmax ¼ 1 �
1

Reð0Þ
; ð5Þ

the population will reach the endemic equilibrium. Here, cmax is the maximal protection level

at which Re � 1 and the disease-free equilibrium is not stable. We will assume Reð0Þ > 1 and

cpop 2 [0, cmax] as otherwise the disease is eliminated and thus there is no need for a further

analysis. As common in game-theoretical models, we will assume that the population actually

is in the endemic equilibrium [30].

An uninfected focal individual in Uh using a strategy c when everyone else uses a strategy

cpop contracts the infection and moves to Lh at rate bðcÞyvh
Iv
Nh

. Note that the ratio iv ¼
Iv
Nh

depends on the strategy cpop, see Eq (47) in Section 3.1. The rate is thus given by

lvhðc; cpopÞ ¼ bðcÞyvhi�vðcpopÞ ð6Þ

where

i�vðcpopÞ ¼
R2

eðcpopÞ � 1

bðcpopÞyvh

bh
þR2

eðcpopÞ
bv þ s

nvs

:
ð7Þ

As in [30], the payoff to the focal individual is the negative expected cost of getting the

infection minus the cost of individual protection, i.e.,

Eðc; cpopÞ ¼ �
lvhðc; cpopÞ

lvhðc; cpopÞ þ dh
� kðcÞ; ð8Þ

where λvh/(λvh + δh) is the probability that an uninfected individual contracts the infection.

To solve for the Nash equilibrium, we need to find a protection level cNE such that the func-

tion f(c) = E(c, cNE) on [0, 1], attains its maximum at c = cNE. We note that while the population

strategy cNE must be between 0 and cmax, the individual strategy can still be between 0 (no
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protection) and 1 (complete protection). We have

@

@c
Eðc; cpopÞ ¼ �

dh �
@

@c lvhðc; cpopÞ
ðlvhðc; cpopÞ þ dhÞ

2
� k0ðcÞ; ð9Þ

@
2

@c2
Eðc; cpopÞ ¼ 2

dh �
@

@c lvhðc; cpopÞ
� �2

ðlvhðc; cpopÞ þ dhÞ
3
�

@2

@c2 lvhðc; cpopÞ
ðlvhðc; cpopÞ þ dhÞ

2
� k00ðcÞ: ð10Þ

Because k00(c)� 0 and @2

@c2 lvhðc; cpopÞ ¼ b
00
ðcÞ lvhðcpop;cpopÞ

bðcpopÞ
� 0, it follows that @2

@c2 Eðc; cpopÞ > 0.

Thus, the function c! E(c, cpop) attains its maximum either at c = 0 or c = 1. Thus, the

Nash equilibrium can be only cNE = 0, cNE = 1, or a solution of E(0, cNE) = E(1, cNE). Consider-

ing the last option, we get, by (8) and (6), at Nash equilibrium,

i�v;NE ¼
dh

b0yvh

� �
k

1 � k

� �
: ð11Þ

Thus, by (7), cNE is a solution of

0 ¼ ð1 � cÞ2R2

eð0Þ 1 �
bv þ s

nvs
i�v;NE

� �

� ð1 � cÞ
b0yvh

bh
i�v;NE � 1: ð12Þ

3.1 Detailed calculations of steady states

The compartmental model in Fig 2 yields the following system of differential equations.

dUh

dt
¼ bhNh � dh þ byvh

Iv
Nh

� �

Uh ð13Þ

dLh

dt
¼ byvh

Iv
Nh

Uh � ðdh þ aÞLh ð14Þ

dIh
dt
¼ aLh � dhIh ð15Þ

dUv

dt
¼ bvNv � dv þ byhv

Ih
Nh

� �

Uv ð16Þ

dEv

dt
¼ byhv

Ih
Nh

Uv � ðdv þ sÞEv ð17Þ

dIv
dt
¼ sEv � dvIv: ð18Þ
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We set uh ¼
Uh
Nh

, lh ¼
Lh
Nh

, ih ¼
Ih
Nh

, uv ¼
Uv
Nh

, ev ¼
Ev
Nh

, and iv ¼
Iv
Nh

. Using bv = δv + bh − δh, this

yields,

duh

dt
¼ bh � ðbh þ byvhivÞuh ð19Þ

dlh
dt
¼ byvhivuh � ðbh þ aÞlh ð20Þ

dih
dt
¼ alh � bhih ð21Þ

duv

dt
¼ bvnv � ðbv þ byhvihÞuv ð22Þ

dev

dt
¼ byhvihuv � ðbv þ sÞev ð23Þ

div
dt
¼ sev � bviv: ð24Þ

The steady states are thus given as solution of the following system of algebraic equations.

0 ¼ bh � ðbh þ byvhivÞuh ð25Þ

0 ¼ byvhivuh � ðbh þ aÞlh ð26Þ

0 ¼ alh � bhih ð27Þ

0 ¼ bvnv � ðbv þ byhvihÞuv ð28Þ

0 ¼ byhvihuv � ðbv þ sÞev ð29Þ

0 ¼ sev � bviv: ð30Þ

There are two sets of solutions of (25)–(30). The disease-free equilibrium E0
¼

ðu0
h; l

0
h; i

0
h; u

0
v; e

0
v ; i

0
vÞ is given by

E0
¼ ð1; 0; 0; nv; 0; 0Þ: ð31Þ

The effective reproduction number can be derived using the next-generation matrix

method [38], or directly as follows. The infected vector stays infected for the time b� 1
v . During

that time, it infects individuals at rate βθvh. The latently infected individuals become infectious

with probability a

bhþa
. Infectious individuals stay infectious for time b� 1

h and they infect vectors

at rate βθhvnv. The exposed vectors become infectious with probability s

bvþs
. Thus,

Re ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
2
yvhyhvnvas

bhbvðbh þ aÞðbv þ sÞ

s

: ð32Þ
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We solve for the endemic equilibrium E� ¼ ðu�h; l
�
h; i
�
h; u

�
v ; e
�
v ; i
�
vÞ, we do the following. By (25),

u�h ¼
1

1þ
byvh
bh

i�v
ð33Þ

l�h ¼
byvh

bh þ a
i�vu
�

h ð34Þ

i�h ¼
a

bh
l�h ð35Þ

u�v ¼
nv

1þ
byhv
bv

i�h
ð36Þ

e�v ¼
byhv

bv þ s
i�hu
�

v ð37Þ

i�v ¼
s

bv
e�v : ð38Þ

Thus, by sequentially plugging (33)–(37) into (38), we get

i�v ¼
s

bv
e�v ð39Þ

¼
s

bv

byhv

bv þ s
i�hu
�

v ð40Þ

¼
s

bv

byhv

bv þ s

a

bh
l�h

nv

1þ
byhv
bv

i�h
ð41Þ

¼
s

bv

byhv

bv þ s

a

bh

byvh

bh þ a
i�vu
�

h
nv

1þ
byhv
bv

a

bh
l�h

ð42Þ

¼
s

bv

byhv

bv þ s

a

bh

byvh

bh þ a
i�v

1

1þ
byvh
bh

i�v

nv

1þ
byhv
bv

a

bh

byvh
bhþa

i�vu�h
ð43Þ

¼
s

bv

byhv

bv þ s

a

bh

byvh

bh þ a
i�v

1

1þ
byvh
bh

i�v

nv

1þ
byhv
bv

a

bh

byvh
bhþa

i�v
1

1þ
byvh
bh

i�v

ð44Þ

¼ R2

e
1

1þ
byvh
bh

i�v þ
byhv
bv

a

bh

byvh
bhþa

i�v
i�v ð45Þ

¼ R2

e
1

1þ
byvh
bh
þR2

e
bvþs

nvs

� �
i�v

i�v : ð46Þ
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Hence, either i�v ¼ 0, or

i�v ¼
R2

e � 1

byvh

bh
þR2

e
bv þ s

nvs

:
ð47Þ

It follows that the endemic equilibrium exists only if Re > 1. Once i�v is evaluated by (47),

the formulas (33)–(37) then yield values of the remaining compartments in the endemic

equilibrium.

Furthermore,

l
�

vh ¼ byvhi�v ¼ byvh
R2

e � 1

byvh

bh
þR2

e
bv þ s

nvs

:
ð48Þ

4 Results

For the parameter values specified in Table 1, the population level protection leading to elimi-

nation of LF is given by cmax� 0.71 while the optimal voluntary protection level is cNE� 0.70.

The annual incidence rate when individuals use the optimal voluntary level of protection is

about 112 cases per 105 individuals. We can thus see that after the termination of MDA, the

disease would not be eliminated as a public health concern by optimal voluntary use of per-

sonal protection alone.

Fig 3a shows the dependence of the optimal individual protection levels cNE on the relative

cost of protection the full protection, κ. Once the cost of protection grows above 0.77, cNE = 0.

It means that if the cost of protection is higher than about 3/4 of the cost of LF, it is not

Fig 3. The dependence of (a) the optimal individual protection levels cNE and (b) the effective reproduction number Re on the relative cost of

protection the full protection, κ.

https://doi.org/10.1371/journal.pntd.0010765.g003
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beneficial to use any personal protection at all. On the other hand, when the cost of protection

is very low, cNE� cmax, meaning that LF would be very close to elimination.

Similarly, Fig 3b shows the dependence of the effective reproduction number on κ. In

agreement with Fig 3a, when κ� 0, Re � 1 and when κ> 3/4, Re � 3:43. Note that as long as

κ> 0, Re > 1, i.e., the optimal voluntary use of protection will never completely eliminate the

disease on its own.

4.1 Uncertainty and sensitivity analysis

We performed uncertainty and sensitivity analysis using the Latin hyper-cube sampling with

partial rank correlation coefficient (LHS-PRCC) scheme [44, 45]. The scheme is described in

detail in [46] and the MATLAB and R implementation can be found in [47].

Fig 4a shows the results of uncertainty analysis, i.e., the distribution of cNE among all the

sampled parameter values. The most frequent value of cNE is around 0.75 with the average

value of above 0.53.

Fig 4b shows the sensitivity of cNE on various parameters. There is a strong negative correla-

tion between the optimal voluntary protection level cNE and the cost of protection, κ. Increas-

ing κ decreases cNE. The human or mosquito death rates or the human birth rate also has a

negative effect on cNE. On the other hand, there is a positive correlation between cNE and the

probability of transmission from vector to humans, θvh, the number of mosquitoes per human,

nv, and the maximal transmission rate β0. Increasing any of these parameters will increase cNE.

The correlations between cNE and the probability of transmission from human to vectors, θhv

or the incubation rate σ are positive but relatively small. The correlation with the progression

rate from Lh to Ih, α, is negligible.

We note that the actual value of cNE is not as important as the annual incidence rate of LF

when everybody adopts the optimal voluntary strategy. As seen from Fig 5a, the incidence rate

is typically quite large which demonstrates that our results are robust and not overly affected

by parameter changes. As shown in Fig 5b, the incidence rate is positively correlated with κ,

Fig 4. Results of the uncertainty (a) and sensitivity (b) analysis for the dependence of cNE on parameter values. The parameter ranges are as in

Table 1. Only parameters with sensitivity over 0.05 are shown in figure (b).

https://doi.org/10.1371/journal.pntd.0010765.g004
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θvh, nv as well as with β0 and bh. The incidence rate is negatively correlated with the vector

death rate δv.

Finally, we investigate the sensitivity of Reð0Þ and ReðcNEÞ on the parameters. It follows

directly from formula (1) and it is also illustrated in Fig 6 that Reð0Þ positively correlates with

θvh, nv and β0 and negatively with bh and δv. The sensitivity of ReðcNEÞ is similar; moreover,

ReðcNEÞ is most sensitive on κ. We note that the average value of Reð0Þ is approximately 2.45

and the average value of ReðcNEÞ is approximately 1.53. The latter fact again indicates that vol-

untary prevention of LF will not significantly help with elimination efforts.

5 Conclusions and discussion

We applied the game-theoretic framework [30] to the compartmental model of LF transmis-

sion [27]. We identified optimal voluntary protection levels against mosquito bites and esti-

mated the annual incidence rate in a hypothetical scenario when the whole population uses

this level of protection. We demonstrated that the LF incidence rates remain too high. Thus,

we can conclude that the voluntary use of insect repellents alone is not sufficient to keep LF

eliminated as a public health concern after the end of MDA.

Our result underlines the critical importance of conducting the Transmission Assessment

Surveys (TAS) to properly define endpoints MDA [48].

We calibrated our model based on the data from literature and performed uncertainty and

sensitivity analysis to understand how different parameter values influence the outcomes.

However, there is an ongoing need to strengthen data collection and evaluation for decision-

making [49].

Unlike previous models of LF transmission that focused on disease control and treatment

on the population level, our model focuses on voluntary individual use of prevention.

On one hand, our main finding that voluntary prevention alone is not enough to eliminate

LF is not surprising. Similar results have been already demonstrated in a general scenario [50]

as well as for specific diseases such as typhoid fever [51], polio [52], cholera [53] or Hepatitis B

Fig 5. Results of the uncertainty (a) and sensitivity (b) analysis for the dependence of the annual incidence rate (per 105 individuals) on various

parameters. The parameter ranges are as in Table 1. Only parameters with sensitivity over 0.05 are shown in figure (b).

https://doi.org/10.1371/journal.pntd.0010765.g005
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[54, 55]. In all cases, the results are caused by a high cost of prevention relative to the cost of

the disease.

On the other hand, our results is in striking contrast with models for other vector-borne

diseases such as malaria [56], dengue [28], chikungunya [57] and visceral leishmaniasis [58] or

diseases like Ebola [59]. It should be noted that in all these cases, cost of disease prevention is

low relative to the cost of the disease.

Our model can be further improved in several ways. We assumed that individuals have per-

fect information about the LF epidemics and the protection coverage in the population. This is

almost certainly not the case. In fact, the knowledge about LF and its transmission can be quite

Fig 6. Results of the uncertainty (a) and (c), and sensitivity (b) and (d) analysis for the dependence of Reð0Þ and ReðcNEÞ on various parameters.

The parameter ranges are as in Table 1. Only parameters with sensitivity over 0.05 are shown in figures (b) and (d).

https://doi.org/10.1371/journal.pntd.0010765.g006
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low [60]. This means that the perceived risk of LF and subsequently the optimal voluntary pro-

tection levels will be lower than predicted by our model. This will, in turn, cause the incidence

rates to be even higher. Furthermore, we assumed that individuals are rational and base their

decision solely on the expected payoff. However, individuals have different risk perceptions

[61] and also base their decision on different social aspects [62]. Therefore, many recent stud-

ies now use multi-agent-simulation (MAS) methodology which allows more flexibility and

realism [63–69]. Despite these shortcomings, the general framework used in our model still

works well and has been shown to predict incidence rate of Chagas disease based on the cost of

protection (insecticide-treated nests) in various countries [70].

The above mathematical models in aggregate show a potential path towards NTDs elimina-

tion by leveraging individual’s decisions and interests. The key is to increase individuals’

knowledge about the diseases in general. While the cost of insect repellents alone may be too

large to offset the risk of LF, avoiding mosquito bites also prevents the risk of other vector-

borne diseases. This lowers the relative cost of protection and makes the bite prevention a

rational choice. Thus, a coordinated educational campaign aimed at all common mosquito

transmitted diseases may be a low cost tool with large benefits that should be used in disease

elimination efforts.
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