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Abstract 

Background:  Recently, numerous biological experiments have indicated that microRNAs (miRNAs) play critical roles 
in exploring the pathogenesis of various human diseases. Since traditional experimental methods for miRNA-disease 
associations detection are costly and time-consuming, it becomes urgent to design efficient and robust computa-
tional techniques for identifying undiscovered interactions.

Methods:  In this paper, we proposed a computation framework named weighted bipartite network projection for 
miRNA-disease association prediction (WBNPMD). In this method, transfer weights were constructed by combining 
the known miRNA and disease similarities, and the initial information was properly configured. Then the two-step 
bipartite network algorithm was implemented to infer potential miRNA-disease associations.

Results:  The proposed WBNPMD was applied to the known miRNA-disease association data, and leave-one-out 
cross-validation (LOOCV) and fivefold cross-validation were implemented to evaluate the performance of WBNPMD. 
As a result, our method achieved the AUCs of 0.9321 and 0.9173± 0.0005 in LOOCV and fivefold cross-validation, and 
outperformed other four state-of-the-art methods. We also carried out two kinds of case studies on prostate neo-
plasm, colorectal neoplasm, and lung neoplasm, and most of the top 50 predicted miRNAs were confirmed to have 
an association with the corresponding diseases based on dbDeMC, miR2Disease, and HMDD V3.0 databases.

Conclusions:  The experimental results demonstrate that WBNPMD can accurately infer potential miRNA-disease 
associations. We anticipated that the proposed WBNPMD could serve as a powerful tool for potential miRNA-disease 
associations excavation.

Keywords:  miRNA-disease association, Bipartite network projection, Transfer weight assignment, Initial information 
configuration
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Background
MiRNAs are a class of the short endogenous non-cod-
ing RNAs (ncRNAs), and their length are about 20–25 
nucleotides [1]. These miRNAs can bind to specific target 
messenger RNAs (mRNAs), triggering regulated degra-
dation or suppressing their translation [1–4]. In this way, 
various important biological processes are influenced by 
miRNAs, including cell development [5], proliferation 

[6], apoptosis [7], differentiation [8], metabolism [9, 
10], aging [9, 10], and signal transduction [11]. In 2005, 
Croce and Calin discovered that the differential expres-
sion of miRNAs has a great influence on the development 
of various cancer [12], such as breast cancer [13], lung 
cancer [14], and prostate cancer [15]. Therefore, scien-
tists devoted themselves to mining the disease-associated 
miRNAs in recent years, to have a better comprehen-
sion of the mechanism of diseases on the molecular level, 
and thus improve the disease diagnosis and treatment 
[16–18]. In the early stage of miRNA research, the iden-
tification of disease–miRNA associations was conducted 
by biological experiments, which are rather expensive 
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and time-consuming. Therefore, increasing numbers of 
computational methods were developed into usage in the 
field of bioinformatics. Guided by the prediction result, 
miRNA-disease pairs with high potential uncovered by 
biological experiments were much more effective than 
before.

According to previous researches, miRNAs that have 
functional similarity regulates similar diseases and vice 
versa [19, 20]. Thus, various computational methods were 
developed for potential miRNA-disease associations 
excavation based on this assumption. So far, methods for 
miRNA-disease associations prediction can be roughly 
summarized into two categories, machine learning meth-
ods and complex network-based methods.

Generally, machine learning methods utilize the bio-
logical features of miRNA and disease to train classi-
fiers for miRNA-disease associations prediction. So far, 
supervised and semi-supervised methods were widely 
employed for associations identification, and their dif-
ference lies in the requirement of negative samples in 
the training stage. In the supervised method presented 
by Xu et  al. a support vector machine (SVM) classifier 
was trained by utilizing the topological information of 
miRNA target-dysregulated network (MTDN) for posi-
tive associations identification [21]. However, high con-
fidence negative samples are very hard to obtain, which 
significantly influences the accuracy of a supervised 
classifier. Considering this factor, many semi-super-
vised methods were proposed by latter studies. For 
example, Chen and Yan [19] proposed a global method 
named RLSMDA based on regularized least squares. 
The RLSMDA could predict novel miRNA-disease asso-
ciations without utilizing negative sample sets. Later, 
the GRMDA method proposed by Chen et  al. [22] per-
formed graph regression technique in three different 
latent spaces to infer potential miRNA-associated dis-
eases. Recently, the IMCMDA proposed by Chen et  al. 
[23] completed the missing miRNA-disease associations 
based on the known miRNA and disease similarity infor-
mation. Another method proposed by Zhao et  al. [24] 
namely NRLMFMDA focuses on the prediction task by 
mapping a miRNA and a disease to a shared low dimen-
sional latent space. By using the L2 regularization to 
produce a finally optimized non-sparse combination of 
multiple base kernel, the MKRMDA proposed by Chen 
et al. [25] obtained a high prediction accuracy. Although 
these semi-supervised methods no longer require nega-
tive samples, their performance is unstable. In conclu-
sion, the machine learning methods obtained an excellent 
result in miRNA-disease associations prediction.

By extracting information from the known miRNA-dis-
ease association network, complex network-based method 
offered an alternative approach in this field. There are two 

key factors for proposing network-based methods, the 
introduction of novel similarity information and differ-
ent network construction techniques. With the fast devel-
opment of biological research, more and more miRNA 
and disease similarity information became available, 
thus increasing numbers of studies started to introduce 
these novel information in their methods. The predic-
tion accuracy can possibly be improved if these similarity 
information is made good use of, and the key lies in the 
construction technique of the miRNA-disease association 
network. Considering that the prediction accuracy of simi-
larity measurement in the local network was unsatisfying 
[16], latter studies introduced many global network meth-
ods [26–29]. By implementing a random walk with restart 
into miRNA functional similarity network, Chen et  al. 
developed the RWRMDA method for associations predic-
tion [30]. With a given starting seed node, it simulates the 
process of the walker transfer from the current node to 
its neighborhood. However, the drawback of RWRMDA 
is that it could not predict new miRNA-disease pairs. The 
HDMP method proposed by Xuan et al. [31] employed the 
K-Nearest Neighbors technique to complete the prediction, 
which inspired many latter methods. Later, Liu et  al. [32] 
calculated miRNA similarity based on miRNA-target and 
miRNA-lncRNA associations. Then a heterogeneous net-
work was constructed by integrating known miRNA and 
disease information. Similarly, Luo and Xiao [33] imple-
mented the unbalanced bi-random walk on a heterogene-
ous network. The HlPMDA proposed by Chen et  al. also 
constructed a heterogeneous network, and implemented a 
heterogeneous label propagation to infer possible associa-
tion [34]. By incorporating miRNA and disease similarity 
information, Jiang et al. [35] proposed an improved collab-
orative filtering algorithm. Recently, Chen et  al. proposed 
a bipartite network projection model named BNPMDA 
[36]. By integrating known miRNA and disease similarity 
information, the BNPMDA constructed a weighted bipar-
tite network, then the two-round resource allocation was 
implemented to uncover miRNA-disease associations.

According to previous works, network-based methods 
generally yield a higher prediction accuracy compared 
to machine learning methods, while the appropriate uti-
lization of miRNA and disease similarities could further 
improve performance. In addition, the technique of assign-
ing transfer weight to bipartite network model is widely 
employed to many research fields, and according to the 
study of Zhou et  al. [37] the optimization of initial infor-
mation in the bipartite network could bring extra benefit 
for improving prediction accuracy. Inspired by the afore-
mentioned discussion, we proposed a novel method called 
weighted bipartite network projection for miRNA-disease 
association prediction (WBNPMD). In WBNPMD, the 
transfer weights in the bipartite network are assigned by 
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combining known miRNA and disease similarities, and the 
initial information is properly configured by reducing the 
recommendation power of popular nodes. Compared to 
the previous machine learning methods, our method does 
not need negative samples. With the assignment of trans-
fer weight and the configuration of initial information, our 
method acquired an even better result compared to other 
network-based methods. To evaluate the prediction accu-
racy of WBNPMD, we implemented leave-one-out cross-
validation (LOOCV) and fivefold cross-validation on our 
collected dataset downloaded from HMDD V2.0 [38], 
obtaining the AUCs of 0.9321 and 0.9173± 0.0005 . As an 
approach to further validation, we employed two types of 
case studies on three vital human diseases. These results 
indicated that our proposed method is a powerful tool for 
uncovering potential miRNA-disease associations.

Methods
Human miRNA‑disease associations
In this article, we downloaded the known human 
miRNA-disease associations from HMDD v2.0 database, 
including 5430 associations, 383 diseases and 495 miR-
NAs. Also, the number of miRNA and disease are repre-
sented as nm and nd respectively. In order to formalize 
these associations, a adjacency matrix A is constructed. 
If disease dj has confirmed relation with miRNA mi , then 
Aij is set to 1, otherwise 0.

MiRNA functional similarity
According to the assumption that functionally similar 
miRNAs tend to related with phenotypically similar dis-
eases, Wang et al. [39] proposed a calculation method for 
miRNAs functional similarity, and its scores is obtained 
from http://www.cuila​b.cn/files​/image​s/cuila​b/misim​
.zip. A nm by nm matrix FS is constructed to represent 
miRNA functional similarity. Then the similarity score 
between two miRNAs mi and mj is denoted as FS(i, j).

Disease semantic similarity model 1
Here, we will introduce two models for disease seman-
tic similarity calculation. Based on the Medical Subject 
Headings (MeSH) descriptors, Wang et  al. developed 
the first model [39]. Given a specific disease S, Directed 
Acyclic Graph (DAG) can be utilized for its representa-
tion, i.e. DAG(S) = (S,T (S),E(S)) , where T(S) and E(S) 
denote the node set and edge set respectively. The contri-
bution value of disease t in DAG(S) is defined as follows:

where � is the semantic contribution decay parameter. 
The semantic value of disease S is defined as follows:

(1)

D1S(t) =

{

1 if t = S
max{� ∗ D1S(t

′)|t ′ ∈ children of t} if t �= S,

where T(S) means all ancestor nodes of S and S itself. It is 
easy to conclude that the more DAG parts two diseases 
shared, the higher the semantic similarity score. Thus a 
nd by nd semantic similarity matrix SS1 is constructed, 
and entity SS1(A, B) representing the semantic similarity 
score between disease A and B can be defined as follows:

Disease semantic similarity model 2
In disease similarity model 1, different ancestor diseases 
on the same layer of DAG(S) have same semantic con-
tribution value. Considering that a more specific dis-
ease which appears in DAGs less frequently should have 
a higher contribution value to the semantic similarity of 
disease S, another disease semantic similarity model was 
proposed by Xuan et  al. [31]. The contribution value of 
disease S in DAG(S) is defined as follows:

Based on model 2, the semantic similarity matrix SS2 is 
computed with the utilization of DV2(A) and DV2(B), 
and they are calculated by the same way as formula 2. 
Then the semantic similarity score SS2(A,  B) between 
disease A and B can be calculated as follows:

At last, these two semantic similarity matrices SS1 and 
SS2 are combined into final semantic similarity matrix SS 
as follows:

Gaussian interaction profile kernel similarity
As an another approach to measure miRNA similarity 
and disease similarity, Gaussian interaction profile ker-
nel similarities were also be constructed using the Radial 
Basic Functions. In adjacency matrix A, the ith row means 
whether miRNA mi have associations with every disease, 
and the jth column means whether disease dj have associa-
tions with every miRNA. Vector IP(mi) and IP(dj) repre-
sent the ith row vector and the jth column vector as feature 
vector for Gaussian kernel. Thus, we defined the Gaussian 
interaction profile kernel similarity between diseases di and 
dj as KD, the Gaussian interaction profile kernel similarity 

(2)
DV 1(S) =

∑

t∈T (S)

D1S(t),

(3)SS1(A,B) =

∑

t∈T (A)∩T (B)(D1A(t)+ D1B(t))

DV 1(A)+ DV 1(B)
,

(4)

D2S(t) = − log

(

the number of DAGs including t

the number of diseases

)

.

(5)SS2(A,B) =

∑

t∈T (A)∩T (B)(D2A(t)+ D2B(t))

DV 2(A)+ DV 2(B)
.

(6)SS(A,B) =
SS1(A,B)+ SS2(A,B)

2
.

http://www.cuilab.cn/files/images/cuilab/misim.zip
http://www.cuilab.cn/files/images/cuilab/misim.zip
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between miRNAs mi and mj as KM, and they can be calcu-
lated as follows:

Here, the kernel bandwidth βd and βm are defined as 
follows:

where we set the value of original kernel bandwidth 
parameters β ′

d and β ′
m to 1.

Integrated similarity for miRNAs and diseases
From previous sections, we constructed several similarity 
matrices including miRNA functional similarity, disease 
semantic similarity and Gaussian profile kernel similar-
ity. In here, we combined them into the integrated matrix 
for miRNAs and diseases. Concretely, if miRNA mi and 
mj are functionally similar, then the integrated similarity 
score for them is equal to FS(mi,mj) , otherwise is equal 
to KM(mi,mj) . The disease integrated matrix can be pro-
cessed in a similar way. Then we computed the integrated 
matrices for miRNAs and diseases as follows:

WBNPMD
In this paper, we presented a bipartite network based 
method for miRNA-disease associations prediction 
named WBNPMD. The data preparation process for 
WBNPMD has been presented from previous six sec-
tions. The flowchart of WBNPMD is shown in Fig. 1.

According to the assumption that similar miRNAs have 
higher chance to associate with similar diseases and vice 
versa, we utilized the integrated similarity of miRNA and 
disease to assign transfer weight to every edges in the 
miRNA-disease bipartite network. Therefore, the transfer 
weights are denoted as the following equation:

(7)KD(di, dj) = exp (−βd ||IP(di)− IP(dj)||
2),

(8)KM(mi,mj) = exp (−βm||IP(mi)− IP(mj)||
2),

(9)βd = β ′

d

(

1

nd

n
∑

i=1

||IP(di)||
2)

)

,

(10)βm = β ′

m

(

1

nm

m
∑

i=1

||IP(mi)||
2)

)

.

(11)MS(mi,mj) =

{

FS(mi,mj), mi and mj has functional similarity
KM(mi,mj), otherwise,

(12)
DS(di, dj) =

{

SS1(di ,dj)+SS2(di ,dj)

2 , di and dj has semantic similarity
KD(di, dj), otherwise.

(13)wr(mj , di) =

∑nm
k=1MS(mj ,mk)A(mk , di)
∑nm

k=1MS(mj ,mk)
,

where wr(mj , di) is the transfer weight of the edge from 
miRNA mj to disease di , and wd(mj , di) is the trans-
fer weight of the edge from disease di to miRNA mj . 
The transfer weight wr represents the recommendation 
power of every miRNA to different diseases, while wd 
represents the recommendation power of every disease 
to different miRNAs, indicating miRNA-disease pairs 
with higher potential.

We utilized known miRNA and disease similarity infor-
mation to construct a more accurate bipartite network. 
Concretely, we separately implemented the disease-based 
bipartite network and the miRNA-based bipartite net-
work. In the first implementation, all miRNAs are recom-
mended to diseases, while in the second implementation 
all diseases are recommended to miRNAs. The recom-
mendation score is obtained by averaging the final infor-
mation matrices.

In the next, we will detailedly introduce the implemen-
tation of disease-based bipartite network. According to 
the study of Zhou et al. [37] reducing the initial informa-
tion of popular nodes may lead to higher prediction accu-
racy. Therefore we denote the initial information between 
miRNA mj and disease di as follows:

(14)wd(mj , di) =

∑nd
k=1 DS(di, dk)A(mj , dk)
∑nd

k=1 DS(di, dk)
,

(15)Sini(mj , di) = Ajik
β
i ,

where Sini is the initial information matrix, ki is the 
number of miRNAs that associated with disease di , and 
parameter β ∈ (−1, 0).

After the initial information of all miRNAs and the trans-
fer weight of every edges in the bipartite network are all set, 
we begin the information propagation process to obtain the 
final recommendation score. The information propagation 
process can be separated into two steps. In the first step, 
the initial information propagated from every miRNA to 
disease di is calculated as:

(16)Smid(di) =

nm
∑

k=1

wr(mk , di)Sini(mk , di)

d(mk)
,
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where

In the second step, we propagate the information of dis-
eases gathered from step one back to miRNAs to obtain 
the recommendation score, and can be calculated as the 
following equation:

where

(17)d(mk) =

nd
∑

i=1

wr(mk , di).

(18)

SM(mj) =

nd
∑

i=1

wr(mj , di)Smid(di)

d(di)

=

nd
∑

i=1

wr(mj , di)

d(di)

nm
∑

k=1

wr(mk , di)Sini(mk , di)

d(mk)
,

(19)d(di) =

nm
∑

j=1

wr(mj , di).

The disease-based recommendation score matrix SM can 
also be defined as follows:

Here, P is defined as the nm by nm propagation matrix, 
and SM is the recommendation score gathered by two-
step information propagation of weighted miRNA-
disease bipartite network. The entity P(mj ,mk) in 
propagation matrix P, which represents the information 
gathered by miRNA mj from mk is defined as follows:

Hence, equation 18 can also be rewritten as follows:

(20)SM = PSini.

(21)P(mj ,mk) =
1

d(mk)

nd
∑

i=1

wr(mj , di)wr(mk , di)

d(di)
.

(22)SM(mj) =

m
∑

k=1

P(mj ,mk)Sini(mk , di),

Fig. 1  The basic idea of WBNPMD. In the first step, integrated similarity matrix are constructed by combining known miRNA-disease associations, 
miRNA and disease similarity information. Next, after the steps of transfer weight assignment and initial information configuration, two bipartite 
networks are constructed. Finally, the disease-based and miRNA-based bipartite network are separately implemented, and the final prediction result 
is obtained by averaging the recommendation score of above
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The equations from 15 to 22 are the details for the dis-
ease-based bipartite network. We similarly implemented 
the miRNA-based bipartite network to recommend dis-
eases to miRNAs, and obtained the recommendation 
score matrix SD which represents the information propa-
gated from diseases to miRNAs. Lastly, we calculated the 
final recommendation score matrix Sfin between every 
miRNA-disease pairs by averaging SM and SD as follows:

Results
Evaluation metrics
To evaluate the performance of WBNPMD for miRNA-
disease associations identification, the LOOCV and five-
fold cross-validation techniques were performed on the 
collected dataset. In each trial of LOOCV, each known 
miRNA-disease associations were treated as a test sam-
ple in turn while the rest were taken as training samples. 
The receiver operating characteristic (ROC) curve was 
plotted to visualize the performance of WBNPMD, and 
the area under the ROC curve (AUC) was computed to 
illustrate the superiority of our method. In fivefold cross-
validation, all known miRNA-disease associations were 

(23)Sfin =
SM + SD

2

randomly divided into 5 groups with equal size. Each 
group was left out as a test sample in turn, while the 
other 4 groups were utilized for training. To avoid data 
bias, the fivefold cross-validation was repeated 100 times, 
then we computed the average AUC value.

Effect of parameter
The WBNPMD method introduced one parameter β . 
According to Eq.  (15), β configures the initial informa-
tion of every node in the bipartite network. To study the 
effect of β , the LOOCV technique was implemented in 
the miRNA-disease associations dataset to observe how 
different β values would influence the AUCs. LOOCV 
was repeated multiple times by choosing the parameter 
value of β from − 1 to 0 with the step of 0.1. As shown in 
Fig. 2, we can observe that the AUCs have little fluctua-
tion in the parameter range from − 1 to 0. The optimal 
parameter β is chosen based on the highest AUC value in 
the figure. In this paper, we set the parameter value of α 
to − 0.1.

Performance comparison
In order to express the reliability of WBNPMD, we com-
pared WBNPMD with other four state-of-the-art meth-
ods, including RWRMDA, RLSMDA, GRMDA, and 

Fig. 2  The AUCs of WBNPMD with different parameter choices of β
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IMCMDA. All these methods were reproduced by our-
selves on the same collected dataset and were assessed 
by LOOCV and fivefold cross-validation. The result 
of LOOCV is shown in Fig.  3, WBNPMD achieved 
the highest AUC value of 0.9321, while the AUCs of 
RWRMDA, RLSMDA, GRMDA and IMCMDA were 
0.6850, 0.8716, 0.8747 and 0.8272. The ROC curves of 

fivefold cross-validation are also represented in Fig. 4. To 
conclude, the AUCs of RWRMDA, RLSMDA, GRMDA 
and IMCMDA were 0.6830± 0.0078 , 0.8389± 0.0006 , 
0.7976± 00023 and 0.7978± 0.0014 respectively, while 
WBNPMD produced the reliable AUC of 0.9173± 0.0005

.

Fig. 3  Performance comparison between WBNPMD and other four miRNA-disease association prediction models (RWRMDA, RLSMDA, GRMDA and 
IMCMDA) by means of ROC curves and AUCs based on LOOCV

Fig. 4  Performance comparison between WBNPMD and other four miRNA-disease association prediction models (RWRMDA, RLSMDA, GRMDA and 
IMCMDA) by means of ROC curves and AUCs based on fivefold cross-validation
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Case studies
As an approach of further evaluation, three important 
human diseases were further verified through two types 
of case studies based on three different miRNA-disease 
databases named dbDEMC, miR2Disease and HMDD 
v3.0. We recorded the number of experimentally con-
firmed miRNAs in top 10, top 20, and top 50 that have 
associations with three diseases.  In addition, the pre-
diction result of all candidate miRNAs were publicly 
released for further expermental verification (see Addi-
tional file 1).

Prostate neoplasms are one of the most frequently diag-
nosed malignant tumor in men, resulting in increased 
morbidity and mortality with age [40, 41]. According to 
studies, some miRNAs could be the diagnostic biomarker 
for prostate neoplasms and even be helpful for the treat-
ment process. For example, previous studies showed that 
miR-20 is vital to the regulation of prostate neoplasms 
[42], and upregulated expression of miR-483-5p would 
cause prostate cancer cell growth [43]. As shown in 
Table 1, 10 out of the top 10, 20 out of the top 20, and 47 
out of the top 50 predicted miRNAs were experimentally 

confirmed to have an association with prostate  neo-
plasms based on dbDEMC or miR2Disease.

Colorectal neoplasms are the third most common 
cancer type in both men and women with high a mor-
tality rate, causing about 700,000 deaths every year. Only 
about 10% of colorectal neoplasms cases are hereditary, 
while most of the rest are posteriority. Studies confirmed 
that several factors may be the cause of colorectal neo-
plasms, including alcohol consumption, smoking, and 
physical inactivity [44]. Various miRNAs were confirmed 
to have a relation with colorectal neoplasms in recent 
researches. Take miR-10a for an example, by differently 
expressed in SW480 and SW620 cell lines, it could sup-
press the metastasis of colorectal cancer [45]. The pro-
posed WBNPMD was employed on colorectal neoplasms 
and verified through dbDEMC and miR2Disease. As 
shown in Table 2, 10 out of the top 10, 19 out of the top 
20, and 46 out of the top 50 miRNAs were experimentally 
confirmed.

In the second type of case studies, we evaluated the pre-
diction accuracy of WBNPMD in lung neoplasms based 
on HMDD V2.0 database, and our results were validated 
in HMDD V3.0, dbDEMC and miR2Disease. As the most 

Table 1  Prediction of the top 50 miRNAs associated with prostate neoplasms

miRNA Evidence miRNA Evidence

hsa-mir-21 dbDEMC;miR2Disease hsa-let-7b dbDEMC;miR2Disease

hsa-mir-155 dbDEMC hsa-mir-200c dbDEMC

hsa-mir-146a miR2Disease hsa-mir-181a dbDEMC

hsa-mir-17 dbDEMC hsa-mir-200a dbDEMC

hsa-mir-20a dbDEMC;miR2Disease hsa-let-7c dbDEMC;miR2Disease

hsa-mir-34a dbDEMC;miR2Disease hsa-mir-210 dbDEMC;miR2Disease

hsa-mir-221 dbDEMC;miR2Disease hsa-mir-34c Unconfirmed

hsa-mir-92a dbDEMC hsa-mir-133a dbDEMC

hsa-mir-126 dbDEMC;miR2Disease hsa-mir-142 Unconfirmed

hsa-mir-16 dbDEMC;miR2Disease hsa-mir-146b dbDEMC

hsa-mir-18a dbDEMC hsa-mir-9 dbDEMC

hsa-mir-19b dbDEMC;miR2Disease hsa-mir-150 dbDEMC

hsa-mir-29a dbDEMC;miR2Disease hsa-mir-182 dbDEMC;miR2Disease

hsa-let-7a dbDEMC;miR2Disease hsa-mir-181b dbDEMC;miR2Disease

hsa-mir-29b dbDEMC;miR2Disease hsa-mir-106b dbDEMC

hsa-mir-19a dbDEMC hsa-let-7e dbDEMC

hsa-mir-1 dbDEMC hsa-mir-203 dbDEMC

hsa-mir-143 dbDEMC;miR2Disease hsa-let-7d dbDEMC;miR2Disease

hsa-mir-15a dbDEMC;miR2Disease hsa-mir-141 dbDEMC;miR2Disease

hsa-mir-200b dbDEMC hsa-mir-214 dbDEMC;miR2Disease

hsa-mir-222 dbDEMC;miR2Disease hsa-mir-133b dbDEMC

hsa-mir-223 dbDEMC;miR2Disease hsa-let-7i dbDEMC

hsa-mir-199a dbDEMC;miR2Disease hsa-let-7f dbDEMC;miR2Disease

hsa-mir-29c dbDEMC hsa-mir-34b Unconfirmed

hsa-mir-31 dbDEMC;miR2Disease hsa-mir-196a dbDEMC
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common cancer in the world, lung cancer causes about 
1.4 million deaths per year [46]. Based on the result given 
by Table  3, 10, 20 and 47 out of the top 10, 20 and 50 
miRNAs were confirmed to have an association with lung 
neoplasms by the aforementioned three databases. Taken 
together, these case studies above have indicated that 
WBNPMD has an outstanding performance for uncover-
ing potential miRNA-disease associations.

Discussion
The results from above illustrate that both in LOOCV 
and fivefold cross-validation, the WBNPMD outperforms 
other comparison methods in terms of AUC. In addition, 
two types of case studies further confirmed the excellent 
performance of our proposed method. The excellent per-
formance of WBNPMD can mainly be attributed to two 
reasons, the construction of transfer weight in the bipar-
tite network and the adjustment of initial information. By 
combining known miRNA similarities and disease simi-
larities, the weighted bipartite network is suitable for our 
work, guaranteeing a more precise result. Meanwhile, 
decreasing the initial information of popular nodes can 
further improve the prediction accuracy.

However, our method still has some limitations. First 
of all, the information completeness of the adjacency 
matrix A will have a heavy impact on the performance of 
WBNPMD. Moreover, the bipartite network projection 
model that we employ for predicting potential miRNA-
disease associations cannot deal with the isolated nodes,1 
thus WBNPMD is not suitable for the excavation of the 
associations for a miRNA without any known associated 
disease or vice versa.

Conclusions
In this paper, we proposed the weighted bipartite network 
projection for miRNA-disease prediction (WBNPMD) 
method. LOOCV and fivefold cross-validation tech-
niques were implemented to evaluate the performance 
of WBNPMD based on our collected dataset. The AUC 
values of the WBNPMD was 0.9321 in LOOCV and 
0.9173± 0.0005 in fivefold cross-validation. Also, two 
types of case studies were conducted by implementing 

Table 2  Prediction of the top 50 miRNAs associated with colorectal neoplasms

miRNA Evidence miRNA Evidence

hsa-mir-15a dbDEMC hsa-mir-30d dbDEMC

hsa-mir-29b dbDEMC;miR2Disease hsa-mir-302a dbDEMC

hsa-mir-223 dbDEMC;miR2Disease hsa-mir-196b dbDEMC

hsa-let-29c dbDEMC hsa-mir-302c dbDEMC

hsa-mir-7d dbDEMC hsa-mir-204 dbDEMC

hsa-mir-106b dbDEMC;miR2Disease hsa-mir-296 miR2Disease

hsa-let-7i dbDEMC hsa-mir-30e dbDEMC

hsa-let-7f dbDEMC hsa-mir-10a dbDEMC;miR2Disease

hsa-mir-214 dbDEMC hsa-mir-98 dbDEMC

hsa-let-7g dbDEMC;miR2Disease hsa-mir-99b dbDEMC

hsa-mir-24 dbDEMC hsa-mir-212 dbDEMC

hsa-mir-101 dbDEMC hsa-mir-302d dbDEMC

hsa-mir-15b dbDEMC;miR2Disease hsa-mir-32 dbDEMC;miR2Disease

hsa-mir-205 Unconfirmed hsa-mir-181c dbDEMC

hsa-mir-125a dbDEMC;miR2Disease hsa-mir-153 dbDEMC

hsa-mir-100 dbDEMC hsa-mir-130b dbDEMC;miR2Disease

hsa-mir-30c dbDEMC;miR2Disease hsa-mir-424 dbDEMC

hsa-mir-132 dbDEMC;miR2Disease hsa-mir-181d dbDEMC

hsa-mir-30b dbDEMC hsa-mir-197 dbDEMC

hsa-mir-192 dbDEMC;miR2Disease hsa-mir-449a Unconfirmed

hsa-mir-20b dbDEMC hsa-mir-452 dbDEMC

hsa-mir-23b dbDEMC hsa-mir-138 dbDEMC

hsa-mir-302b dbDEMC hsa-mir-494 Unconfirmed

hsa-mir-193b dbDEMC hsa-mir-449b Unconfirmed

hsa-mir-191 dbDEMC;miR2Disease hsa-mir-383 dbDEMC

1  On the bipartite network, we treat a miRNA or a disease as a node. An iso-
lated node implies that the miRNA do not have a confirmed link to a disease 
or vice versa.
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WBNPMD on three important human diseases. As a 
result, 47 (prostate neoplasms), 46 (colorectal neoplasms) 
and 47 (lung neoplasms) out of the top 50 predicted miR-
NAs were experimentally confirmed. All the results from 
above indicate that WBNPMD is a power tool for novel 
miRNA-disease association prediction.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1296​7-019-2063-4.

 Additional file 1. All potential miRNA-disease associations were ranked 
by WBNPMD utilizing data obtained from HMDDv2.0. Prediction results 
were publicly released for future study.
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Table 3  Prediction of the top 50 miRNAs associated with lung neoplasms

miRNA Evidence miRNA Evidence

hsa-mir-16 dbDEMC;miR2Disease;HMDD hsa-mir-99b dbDEMC

hsa-mir-15a dbDEMC;HMDD hsa-mir-367 dbDEMC

hsa-mir-106b dbDEMC hsa-mir-339 dbDEMC;miR2Disease

hsa-mir-141 dbDEMC;miR2Disease;HMDD hsa-mir-302d dbDEMC

hsa-mir-15b dbDEMC hsa-mir-215 dbDEMC;HMDD

hsa-mir-195 dbDEMC;miR2Disease;HMDD hsa-mir-149 dbDEMC;HMDD

hsa-mir-122 dbDEMC;HMDD hsa-mir-28 dbDEMC

hsa-mir-429 dbDEMC;miR2Disease hsa-mir-129 dbDEMC;HMDD

hsa-mir-20b dbDEMC hsa-mir-139 dbDEMC;miR2Disease;HMDD

hsa-mir-23b dbDEMC hsa-mir-153 dbDEMC;HMDD

hsa-mir-130a dbDEMC;miR2Disease;HMDD hsa-mir-130b dbDEMC;HMDD

hsa-mir-373 dbDEMC;HMDD hsa-mir-424 dbDEMC

hsa-mir-302b dbDEMC hsa-mir-181d dbDEMC

hsa-mir-193b dbDEMC hsa-mir-491 dbDEMC

hsa-mir-302a dbDEMC hsa-mir-451a dbDEMC;HMDD

hsa-mir-194 dbDEMC;HMDD hsa-mir-144 dbDEMC;HMDD

hsa-mir-196b dbDEMC;HMDD hsa-mir-452 dbDEMC

hsa-mir-99a dbDEMC;miR2Disease;HMDD hsa-mir-449a dbDEMC;HMDD

hsa-mir-302c dbDEMC hsa-mir-378a Unconfirmed

hsa-mir-92b dbDEMC hsa-mir-148b dbDEMC

hsa-mir-204 dbDEMC;miR2Disease hsa-mir-449b dbDEMC;HMDD

hsa-mir-342 dbDEMC;HMDD hsa-mir-520b dbDEMC;HMDD

hsa-mir-296 Unconfirmed hsa-mir-151a Unconfirmed

hsa-mir-10a dbDEMC;HMDD hsa-mir-383 dbDEMC

hsa-mir-372 dbDEMC;HMDD hsa-mir-184 dbDEMC;HMDD
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