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Abstract: Pummelo (Citrus maxima) is one of important fruit trees, which belongs to Citrus species.
The fruits of different pummelo cultivars have different colors and differ in the contents of carotenoid.
Our results clearly showed that ‘Huangjinmiyou’ (HJMY) has the highest content of β-carotene,
followed by ‘Hongroumiyou’ (HRMY) and ‘Guanximiyou’ (GXMY). Lycopene is dominantly
accumulated in HRMY. However, the molecular mechanism underlying the carotenoid accumulation
in pummelo flesh is not fully understood. In this study, we used the RNA-Seq technique to investigate
the candidate genes of carotenoid metabolism in the flesh of pummelo cv. GXMY and its mutants
HRMY and HJMY in three development periods of fruit. After data assembly and bioinformatic
analysis, a total of 357 genes involved in biosynthesis of secondary metabolites were isolated, of which
12 differentially expressed genes (DEGs) are involved in carotenoid biosynthesis. Among these 12
DEGs, phytoene synthase (PSY2), lycopene β-cyclase (LYCB2), lycopene ε-cyclase (LYCE), carotenoid
cleavage dioxygenases (CCD4), 9-cis-epoxycarotenoid dioxygenase (NCED2), aldehyde oxidase 3
(AAO3), and ABA 8′-hydroxylases (CYP707A1) are the most distinct DEGs in three pummelo cultivars.
The co-expression analysis revealed that the expression patterns of several transcription factors
such as bHLH, MYB, ERF, NAC and WRKY are highly correlated with DEGs, which are involved in
carotenoid biosynthesis. In addition, the expression patterns of 22 DEGs were validated by real-time
quantitative PCR (RT-qPCR) and the results are highly concordant with the RNA-Seq results. Our
results provide a global vision of transcriptomic profile among three pummelo cultivars with different
pulp colors. These results would be beneficial to further study the molecular mechanism of carotenoid
accumulation in pummelo flesh and help the breeding of citrus with high carotenoid content.
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1. Introduction

Carotenoid is the second most abundant compound in natural pigments and provides colorless,
yellow, orange, and red colors for many fruits, flowers and vegetables [1]. Plant is the main source
of carotenoid for human. In recent years, with the improvement of people’s living standards and
health consciousness, horticultural products for high carotenoid content have been favored by many
consumers. Therefore, it is critical and urgent to accelerate horticultural plant breeding for high
carotenoid content through breeding technologies.

Citrus takes the leading position in fruit industry worldwide. Color of citrus flesh represents an
essential fruit quality attribute. Recently, high demand for citrus with different flesh colors provides
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potentials for genetic improvement of citrus. It is clear that coloration of most citrus fruits is mainly
caused by the accumulation of carotenoid [2–4]. Composition and content of carotenoid in fruits
depend on cultivars and species [5]. In order to regulate coloration of citrus fruit genetically, several
novel methods, such as gene cloning and transcriptomic and proteomic analysis, are used to isolate
genes associated with carotenoid metabolism [2,6]. Until now, RNA-Seq has been successfully applied
in fruit development of Citrus [7–10]. Previous studies mostly focused on the content and composition
of carotenoid in sweet orange (C. sinensis L. Osbeck), satsuma mandarin (C. unshiu Marc.), and lemon
(C. limon Burm.) [2]. However, the carotenoid regulation mechanism in pummelo flesh was not well
understood. Pummelo is monoembryonic, and for this reason, its true hybrids are easily obtained
by cross-breeding without nucellar seedling in progenies. It is helpful to identify genetic control of
carotenoid metabolism with pummelo as materials. Moreover, pummelo, one of three basic species
of citrus, shows lower heterozygosity than sweet orange, so it can overcome heterozygous loci in
genetic analysis. Liu et al. [11] investigated the carotenoid profile of red-flesh pummelo cv. “Chuhong”
and pale green-flesh pummelo cv. “Feicui” by high-performance liquid chromatography (HPLC) and
GC/MS and concluded that there are different tissue-biased patterns of carotenoid biosynthesis in
pummelos with different flesh colors. Guo et al. [10] identified the differentially expressed genes in
GXMY and its orange-pericarp mutant using the RNA-Seq technique and revealed extensive changes
of gene expression level between the control and its mutant. There was no report on the molecular
mechanism of carotenoid accumulation in pummelo flesh.

Since 1998, we have discovered two mutants with different flesh colors from GXMY in Pinghe
County, Zhangzhou City, China. These mutants can be used as materials to study the molecular
mechanism of carotenoid accumulation. C. maxima cv. GXMY is traditionally famous fruit in China
and has yellow flesh, in which the total carotenoid content is 0.875 µg/g in fresh weight (FW) [12].
HRMY is a bud mutant of GXMY with red flesh, of which the total carotenoid content is 96.55 µg/g
FW [12]. HJMY is also a high-quality bud mutant of GXMY with golden yellow flesh, of which the total
carotenoid content is 251.77 µg/g FW [12,13]. In order to unveil the molecular mechanism underlying
different colorations of GXMY and its mutants HJMY and HRMY, we investigated the gene expression
and transcription factors associated with carotenoid metabolism in the flesh of pummelo cv. GXMY,
HJMY and HRMY in three key stages of fruit development (according to the pigment contents and
the ratio of pulp and fruit) by using the RNA-Seq technique. The identified genes could be useful for
studying the molecular mechanism of carotenoid accumulation in citrus flesh and help the breeding of
citrus with high carotenoid content.

2. Results

2.1. Changes in β-Carotene and Lycopene Contents During Fruit Development of Three Different Pummelo
Cultivars

The appearances of three pummelo cultivars of different fruit growth and development periods
are presented in Figure 1. The contents of β-carotene and lycopene in three different pummelo cultivars
were measured by HPLC (Figure 2). As results indicated, HJMY has the highest content of β-carotene
with a value of about 681.45 mg/kg FW, almost 34 times higher than that in GXMY and HRMY
at an early development stage 40 days after flowering (DAF). The β-carotene content decreases at
100 DAF and then increases at 190 DAF in HJMY and HRMY, whereas it decreases during the entire
development of GXMY. Lycopene was detected only in the HRMY, showing an increasing trend with
the development of the fruit and mainly accumulated in the late stage of fruit development. Based on
the overall trends, HJMY has the highest content of β-carotene, followed by HRMY and GXMY, and
lycopene is dominantly accumulated in HRMY.
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Figure 1. Three pummelo cultivars at different periods of fruit growth and development. 

Figure 2. β-carotene and lycopene contents in three pummelo cultivars of different fruit growth and 
development periods. Bars represent means ± SE (n = 3). Differences among the samples were 
analyzed by three (cultivars) × three (sampling dates) ANOVA. Different letters indicate a 
significant difference at p < 0.05. 

2.2. Transcriptome Sequence and De Novo Assembly 

Nine cDNA libraries were constructed from the total RNA of three pummelo cultivars at 40 
DAF, 100 DAF, and 190 DAF. The original sequencing data were filtered and assembled as shown in 
Table 1. The results showed that 201.78 million high-quality reads were obtained with a total base 
number of 40.66 billion (giga or G) and a total of 17.65 million contigs were assembled. The Q30 
value (base call accuracy of each read is more than 99.9%) of clean reads in each library is more than 
85%. These libraries were subjected to RNA-Seq using an Illumina HiSeq2500 and the clean reads 
from different libraries are presented in Table 1. Using Trinity software, the clean reads from the 
nine libraries were assembled into 106,957 transcripts with an average length of 858 bp and 54,051 
unigenes with a mean length of 858 bp (Table 1). The size distributions of these unigenes are shown 
in Figure 3. Among the unigenes, the lengths of 12,902 unigenes (23.87% of the total number of 
unigenes of 54,051) range from 300 to 500 bp, the lengths of 10,547 unigenes (19.51% of the total 
number of unigenes) range from 501 to 1000 bp, the lengths of 8116 unigenes (15.02% of the total 
number of unigenes) range from 1000 to 2000 bp, and the lengths of 5953 unigenes (11.01% of the 
total number of unigenes) are more than 2000 bp. 
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2.2. Transcriptome Sequence and De Novo Assembly

Nine cDNA libraries were constructed from the total RNA of three pummelo cultivars at 40 DAF,
100 DAF, and 190 DAF. The original sequencing data were filtered and assembled as shown in Table 1.
The results showed that 201.78 million high-quality reads were obtained with a total base number
of 40.66 billion (giga or G) and a total of 17.65 million contigs were assembled. The Q30 value (base
call accuracy of each read is more than 99.9%) of clean reads in each library is more than 85%. These
libraries were subjected to RNA-Seq using an Illumina HiSeq2500 and the clean reads from different
libraries are presented in Table 1. Using Trinity software, the clean reads from the nine libraries were
assembled into 106,957 transcripts with an average length of 858 bp and 54,051 unigenes with a mean
length of 858 bp (Table 1). The size distributions of these unigenes are shown in Figure 3. Among the
unigenes, the lengths of 12,902 unigenes (23.87% of the total number of unigenes of 54,051) range from
300 to 500 bp, the lengths of 10,547 unigenes (19.51% of the total number of unigenes) range from 501
to 1000 bp, the lengths of 8116 unigenes (15.02% of the total number of unigenes) range from 1000
to 2000 bp, and the lengths of 5953 unigenes (11.01% of the total number of unigenes) are more than
2000 bp.
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Table 1. Summary of transcriptomic sequencing and de novo assembly.

Samples Read number Base number GC content % (≥Q30)

GXMY1 (40 DAF) 22,744,151 4,581,699,084 46.49% 85.92%
GXMY2 (100 DAF) 22,575,178 4,548,053,121 46.10% 85.79%
GXMY3 (190 DAF) 22,780,099 4,589,605,411 45.77% 85.82%
HRMY1 (40 DAF) 22,437,953 4,515,689,216 47.34% 85.73%

HRMY2 (100 DAF) 22,964,175 4,624,970,836 45.06% 86.05%
HRMY3 (190 DAF) 22,607,952 4,557,243,046 44.76% 85.88%
HJMY1 (40 DAF) 22,064,221 4,450,273,681 46.50% 85.68%

HJMY2 (100 DAF) 19,694,950 3,977,639,966 45.25% 85.02%
HJMY3 (190 DAF) 23,914,670 4,816,251,310 45.48% 86.02%

Total 201,783,349 40,661,425,671 45.86% 85.76%
After assembly

Total clean reads 201,783,349
Total clean nucleotides (nt) 40,661,425,671
Total number of contigs 17,658,287
Total length of contigs (nt) 656,824,421
Mean length of contigs (nt) 37
N50 of contigs 37
Total number of unigenes 54,051
Total length of unigenes (nt) 46,385,997
Mean length of unigenes (nt) 858
N50 of unigenes 1,585
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2.3. Functional Annotation and Classification of Unigenes

To determine and annotate the transcriptome data of three pummelo cultivars, approximately
24,206 unigenes were searched against five public databases [NCBI non-redundant protein (Nr),
Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups
(COG), and Gene Ontology (GO)] with an E-value of ≤ 10−5 by BLASTX and BLASTN searching
engines [14]. The functional annotation results showed that there were 8876, 17,764, 6093, 16,857, and
24,125 unigenes annotated to COG, GO, KEGG, Swiss-Prot, and Nr, respectively. Totally, only 44.8% of
the unigenes (24,206) could be successfully annotated to these five public databases. The remaining
unigenes (55.2% of the total number of unigenes) have no homologs with the known genes, which
is likely due to the presence of short sequences. Pathway-based analysis can help to understand
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the biological functions and interactions of genes. There were 6093 unigenes assigned to 117 KEGG
pathways (24,206) (Table S1, Supplementary Materials). The majority of unigenes were associated with
metabolic pathways (1847). We focused on the “Biosynthesis of secondary metabolites” category in
relation to fruit pigmentation. In this category, 357 unigenes were classified into nine subcategories
(Figure 4). Among these nine subcategories, “Carotenoid biosynthesis” is the highest clustered,
followed by “Flavonoid biosynthesis”. “Flavone and flavonol biosynthesis” and “Caffeine metabolism”
appear to be the smallest groups.
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2.4. Analysis of DEG During Fruit Development of Three Different Pummelo Cultivars

Using the criteria of p < 0.01 and |log2 (fold change)| ≥ 2, a differential expression analysis
of unigenes was performed during fruit development of three different pummelo cultivars. The
relationships between different DEG groups are displayed as Venn diagram (Figure 5), and 616, 258,
and 256 unigenes were shared in all development stages of three pummelo cultivars, respectively.
Through comparing the libraries, we found a number of differentially related genes, as shown in
Table 2. The results suggested that the developmental periods with the most dynamic changes in the
transcriptome are between 40 DAF and 190 DAF in GXMY, and between 100 DAF and 190 DAF in
HRMY and HJMY.
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Table 2. Differentially expressed genes at fruit developmental stages in three pummelo cultivars.

Fruit development at
different stages (days)

GXMY HRMY HJMY

ALL DEGs Up-
regulated

Down-
regulated ALL DEGs Up-

regulated
Down-

regulated ALL DEGs Up-
regulated

Down-
regulated

40 DAF/100 DAF 3240 1068 2172 1887 371 1516 2080 421 1,659
40 DAF/190 DAF 3882 1408 2474 2569 753 1816 2316 639 1,677

100 DAF/190 DAF 2562 1300 1262 4988 1875 3113 3371 1796 1,575
40 DAF/100 DAF/190

DAF 616 258 256
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2.5. Candidate Genes Involved in Carotenoid Biosynthesis

To further search for the genes involved in carotenoid biosynthesis, we analyzed the transcriptomic
data of three pummelo cultivars at different developmental stages. Based on the KEGG annotation,
12 DEGs that encode enzymes related to carotenoid biosynthesis pathway were isolated (Table 3 and
Table S2 (Supplementary Materials); Figure 6).

Table 3. Expression profiles of carotenoid biosynthesis-related genes at fruit developmental stages in
three pummelo cultivars.

Gene
Name

Unigene ID Gene
Length

GXMY HRMY HJMY

40
DAF

100
DAF

190
DAF

40
DAF

100
DAF

190
DAF

40
DAF

100
DAF

190
DAF

PSY2 c27977.graph_c0 1373 3.45 0.41 0.04 0.04 0.32 0 0 0.28 0.04
LYCB2 c35136.graph_c0 2037 5.57 15.15 19.49 2.3 15.07 25.57 0.58 15.4 19.32
LYCE c29745.graph_c0 2018 6.22 4.01 1.64 0.71 6.95 4.68 0.63 7.78 3.09
CCD1 c29184.graph_c0 903 6.04 3.81 0.65 1.4 5.87 0.47 1.26 5.31 0
CCD4 c20564.graph_c0 3057 60.55 20.59 16.36 96.28 18.75 16.19 118.99 17.24 12.32

NCED1 c17328.graph_c1 1536 8.23 0.45 5.20 12.65 1.09 10.87 2.23 0.63 8.46
NCED2 c31914.graph_c0 2425 17.56 107.12 99.71 10.13 105.11 84.13 4.57 97.99 59.51
NCED3 c11942.graph_c0 1101 11.74 0.46 7.28 14.57 0.51 10.62 3.26 1.24 11.98
AAO3 c33740.graph_c0 4559 22.27 18.46 7.99 2.5 19.43 6.51 1.22 22.02 5.97

CYP707A1 c20275.graph_c0 2041 2.11 2.97 7.5 25.59 4.14 27.64 85.48 5.58 13.47
CYP707A3 c27956.graph_c0 1811 3.92 5.03 2.61 1.36 4.26 2.13 1.11 3.72 0.46
CYP707A4 c35953.graph_c0 1734 17.32 8.77 1.16 1.22 9.11 0.89 0.81 11.71 0.59
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Transcription factors (TFs) are key regulators of gene expression associated with various
aspects of fruit growth and development including carotenoid biosynthesis. In order to identify
differentially expressed transcription factors from three pummelo cultivars, a BLASTX search
was conducted using all the transcription factors sequences available in the PlnTFDB database.
In total, 435 unigenes (Table S3, Supplementary Materials) were predicted to encode transcription
factors from 53 different families (Table S4, Supplementary Materials) and 227 of them were
differentially expressed (Table S5, Supplementary Materials). A transcription abundance correlation
analysis was carried out between the differentially expressed transcription factors and structural
genes from the carotenoid biosynthesis pathway. The expression levels of the 48 transcription
factors are highly correlated with those of the candidate structural genes (Table S6, Supplementary
Materials). The identified transcription factors included the transcription factors that are implicated
in regulating carotenoid biosynthesis, such as bHLH, ERF, and MYB (Table 4). The 34 bHLH
were differentially expressed during fruit development stages of three pummelo cultivars and
nine of them [c11225.graph_c0 (homologous to CsbHLH107), c12645.graph_c0 (homologous to
BIM1 isoform X1), c21405.graph_c0 (homologous to CsbHLH162), c22086.graph_c0 (homologous
to CsbHLH57), c2272.graph_c0 (homologous to CsbHLH35), c22910.graph_c0 (homologous to
CsbHLH61), c27501.graph_c0 (homologous to CsbHLH130), c6149.graph_c0 (homologous to ILR3),
and c589.graph_c1 (homologous to HEC2)] were associated with the carotenoid biosynthesis pathway
(Table 4, Tables S3 and S6 (Supplementary Materials)). Eight of the differentially expressed
transcription factors annotated as ERF or AP2/ERF showed a significant positive correlation with
carotenoid biosynthesis-related genes (Table 4 and Table S6 (Supplementary Materials)). Although
they are correlated with none of the structural genes, the expression levels of the homolog of
CsARF19 (c23948.graph_c1) and CsARF5 (c26184.graph_c0) show a differential expression during fruit
development of three different cultivars. Four of the differentially expressed transcription factors
annotated as MYB show a significant positive correlation with carotenoid biosynthesis-related genes
(Table 4 and Table S6 (Supplementary Materials)), while only two of the MYB genes (c22501.graph_c0
and c23847.graph_c0) show a negative correlation with the expression of structural genes. A MYB gene
(c21421.graph_c0), which shares a high similarity with transcription factor AS1 (XP_006429090.1) from
C. clementina, significantly correlates with six carotenoid biosynthesis-related structural genes (Table S6,
Supplementary Materials). In addition, one NAC (c13516.graph_c0) and two WRKYs (c21980.graph_c0
and c34311.graph_c0), which share a high sequence similarity with the NAC domain-containing protein
72 (XM_006451877.2), WRKY22 (XM_0064444887.2), and WRKY17 (XM_006450132.2) from C. clementina,
respectively, were also found to be correlated to the genes involved in the carotenoid pathway.
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Table 4. Correlation analyses of structural genes involved in carotenoid metabolism and
transcription factors.

Gene ID FPKM
(max)

FPKM
(min) Description for the best hit in C. sinensis Number of

correlations

c11225.graph_c0 17.95 0.69 bHLH107 4
12645.graph_c0 42.68 1.02 BIM1 isoform X1 3
c21405.graph_c0 3.45 0 bHLH162 2
c22086.graph_c0 9.37 0 bHLH57 2
c2272.graph_c0 2.60 0 bHLH35 2

c22910.graph_c0 14.15 0.46 bHLH61 4
c27501.graph_c0 21.44 5.78 bHLH130 4

c589.graph_c1 3.97 0 HEC2 2
c6149.graph_c0 2.74 0 ILR3 4

c34091.graph_c0 256.50 6.32 Ethylene-responsive transcription factor ERF12 3
c24274.graph_c0 12.57 1.31 Ethylene-responsive transcription factor-like protein 3
c34297.graph_c0 138.23 3.30 Ethylene-responsive transcription factor ERF107 3

c407.graph_c1 3.13 0 Ethylene-responsive transcription factor 13 2
c8122.graph_c0 111.06 5.19 Ethylene-responsive transcription factor RAP2-3 4
c8622.graph_c0 57.79 1.26 Ethylene-responsive transcription factor ERF23 2

c30160.graph_c0 22.31 0.04 AP2-like ethylene-responsive transcription factor
ANT 1

c26695.graph_c0 2.83 0 AP2-like ethylene-responsive transcription factor
AIL1 4

c30127.graph_c0 118.39 13.99 Auxin response factor 4 3
c27816.graph_c0 5.91 0 Growth-regulating factor 1 3
c9781.graph_c0 5.38 0 Growth-regulating factor 4 2

c22501.graph_c0 8.35 0.91 Transcriptional adapter ADA2b isoform X1 6
c23847.graph_c0 1296.81 106.33 MYB1R1-like 4
c25031.graph_c0 2.34 0 MYB11 4
c9240.graph_c0 6.37 0.20 MYB52 2
c1320.graph_c0 4.49 0 MYB13 2

c13169.graph_c0 104.34 1.68 Transcription factor AS1-like 6
c13009.graph_c0 157.18 2.18 REVEILLE 1 2
c21421.graph_c0 23.56 0.45 Transcription factor AS1 6
c13063.graph_c0 3047.44 242.76 Mini zinc finger protein 2 4
c21980.graph_c0 6.22 0.19 WRKY22 4
c34311.graph_c0 114.93 21.37 WRKY17 5
c13516.graph_c0 26.60 4.39 NAC72 3
c31393.graph_c0 20.63 3.05 Transcription factor RF2a-like 3
c28763.graph_c0 23.77 0.83 Transcription factor TGA7 3
c34869.graph_c0 58.15 5.27 BES1/BZR1 homolog protein 4 6
c35277.graph_c0 22.80 7.03 Transcription factor TCP20 3
c35957.graph_c0 17.19 1.35 Trihelix transcription factor GTL1 2
c31746.graph_c0 330.33 15.64 DELLA protein GAI 5
c31940.graph_c0 4.21 0 FAR1-related sequence 5-like 5
c28566.graph_c0 13.07 1.05 Transcription factor HHO2-like 6
c29740.graph_c0 26.66 1.14 B3 domain-containing transcription factor VRN1-like 4
c27534.graph_c0 303.99 13.66 Effector of transcription 2 4
c27216.graph_c0 110.23 3.11 Transcription factor TCP4 6
c22856.graph_c0 7.47 0 Trihelix transcription factor GT-2 4
c20987.graph_c0 30.86 0.03 GATA transcription factor 11 4
c14734.graph_c0 63.08 6.70 Transcription factor HHO3 5
c12838.graph_c0 49.59 9.91 YABBY 2 isoform X1 5
c10930.graph_c0 22.79 1.61 Trihelix transcription factor PTL 6
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2.6. Real-Time Quantitative PCR (RT-qPCR) Analysis of Selected DEGs During Fruit Development of Three
Pummelo Cultivars

To further confirm the results of transcriptomic analysis, 11 enzyme-encoding genes and twelve
transcription factors associated with carotenoid biosynthesis were analyzed by RT-qPCR in three
pummelo cultivars. As RT-qPCR indicated, all selected DEGs were expressed at varying levels during
the three stages and their RNA-Seq data have a close correlation (Figure 7; Figure 8).
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biosynthesis of three pummelo cultivars at different developmental stages. Bars represent means ± SE
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ANOVA. Different letters indicate a significant difference at p < 0.05.

3. Discussion

Carotenoids are the main pigments in citrus fruits and different carotenoid components determined
different colors in citrus fruits. Carotenoid has an important role in the sensory quality and nutritional
quality of citrus fruit. Our previous studies have shown that the colorful pigments of HJMY juice
are mainly due to the contents of β-carotene, phytoene, α-carotene, and β-cryptoxanthin, and the
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total amount of carotenoid reaches 251.77 µg·g−1
·FW, which are 2.6 and 287.7 times those of HRMY

and GXMY, respectively [12]. This study showed that the β-carotene and lycopene are dominantly
accumulated in HJMY and HRMY during the development of pummelo fruits, respectively, which
confer the golden orange color in HJMY and red color in HRMY (Figures 1 and 2).

Identification and profile of the members of gene families involved in the carotenoid pathway
could explain the diversity of coloration in fruit. Previous studies have revealed that the key regulatory
genes, such as phytoene synthase (PSY), lycopene β-cyclase (LCYB), lycopene ε-cyclase (LCYE), CCD
and NCED in carotenoid biosynthesis, might be key factors in controlling the carotenoid metabolism
(Figure 6) [15–21]. The PSY is the rate-limiting enzyme in carotenoid biosynthesis and plays an important
role in the biosynthesis of carotenoid in many plants, such as apple, carrot, and tomato [22–24]. PSY
appears to be a small gene family in most plants including citrus. The up-regulation of PSY1 gene
and accumulation of carotenoid are found in the flavedo of sweet orange [25]. However, there are few
reports regarding PSY2. Recently, a new PSY member (PSY2) was reported in sweet orange and its
expression is at a lower level than that of PSY1 in both flavedo and juice sacs in Valencia and Rohde
Red Valencia [26], which suggests that PSY2 may also contribute to the accumulation of carotenoid in
citrus fruit. In the current study, the PSY2 (c27977.graph_c0, Table 3; Figure 7A) has a high expression
level at an earlier stage of GXMY and then decreases during the entire fruit development. It has
relatively low expression levels in both HRMY and HJMY. According to our pigment measurements,
PSY2 might not be the key regulatory gene responsible for carotenoid biosynthesis and accumulation
in pummelo pulp (Figures 2 and 7A). However, the PSY2 has the highest expression level in yellow
apple germplasm, which is significantly positively correlated with carotenoid contents in apple [22].

Previous studies showed that the transcriptional regulation of LYCB and LYCE are the critical
regulatory points in carotenoid biosynthesis [27]. In citrus, two LCYB members have also been isolated
in navel orange fruit and grapefruit cultivars, “marsh” (white flesh) and “flame” (red flesh) [28]. Two
LCYE genes are identified in sweet orange tissues, but only one LCYE gene is detected in leaves and
fruits [29]. The expression levels of VvLCYB and VvLCYE gradually increase with the accumulation of
carotenoid contents during the ripening of grapevine fruit [18]. In sweet potatoes, over-expression of
IbLCYB2 significantly increases the carotenoid contents and enhances abiotic tolerance by positively
regulating the biosynthesis of carotenoid and ABA [30]. The expression level of LCYB2 increases
markedly during the ripening of papaya [31]. Here, our results showed that the expression level of
LYCB2 increases from 40 DAF to ripening stages (190 DAF) in all the three pummelo cultivars with
a slightly lower expression level in HJMY at the ripening stage (190 DAF) (Table 3; Figure 7B). The
down-regulation of LYCE is only found at the development of GXMY, whereas the expression level of
LYCE is firstly up-regulated and then up-regulated during fruit development in HRMY and GXMY
(Table 3; Figure 7C). The expression levels of LYCE are higher in HRMY and HJMY at the color break
period (100 DAF) and ripening period (190 DAF) than in GXMY, which may contribute to the high
α-carotene content in HRMY and HJMY pulp [12].

In plants, the CCD family consists of nine members, which catalyze the oxidative cleavage of
carotenoid [32]. Among them, five genes are related to the synthesis of ABA, named NCED (NCED2, 3,
5, 6, 9), and the remaining four are named CCD1, 4, 7, 8, which are closely related to the growth and
development of lateral branches, plant hormones (such as strigolactones), the formation of volatile
aromatic compounds, and colorless or red volatile apocarotenoids compounds [33]. Carotenoid
accumulation in several yellow fruits and flowers has been shown to be negatively associated with
CCD1 or CCD4 expression. For example, transcription inactivation of CmCCD4a causes yellow
coloration of flowers in chrysanthemum [34]. In azalea petals, the expression levels of CCD4 are higher
in ‘Miyamasatsuki’ (white-flowered) and the progeny than in R. japonicum f. flavum (yellow-flowered)
at all stages [35]. In fruit, the negative correlation between the expression level of CCD4 and the
carotenoid content is also observed in summer squash, peach, potato, and apple [36–39]. Here, we also
found that the expression level of CCD4 (c20564.graph_c0) gene, which is homologous to the CCD4a in
C. clementina (DQ309330.1), decreases with the fruit development in three pomelo varieties (Table 3;



Int. J. Mol. Sci. 2019, 20, 2246 13 of 21

Figure 7E). In addition, we also found that the expression level of the CCD1 (c29184.graph_c0) increases
from the early stages of fruit development (40 DAF) to the color break period (100 DAF), followed
by a decrease as fruit becomes mature in HJMY and HRMY. In GXMY, the expression level of CCD1
decreases as the fruit becomes mature (Table 3; Figure 7D).

ABA is synthesized in the plastids from xanthophyll pigments and is derived from a precursor
generated by the carotenoid biosynthesis pathway [40]. Previous research has demonstrated that ABA
could potentially regulate carotenoid composition during ripening by increased leaf chlorophylls,
carotenoid, and fruit LYCO in tomato [41]. Furthermore, foliar-applied ABA on grapes (Vitis vinifera)
results in stimulatory effects on fruit color [42]. Previous researches indicated that the cleavage reaction,
catalyzed by NCED, is the first and regulatory step in ABA biosynthesis [43,44]. The expression levels
of NCED1 and NCED3 are down-regulated from 40 DAF to 100 DAF at first and then up-regulated
until 190 DAF in three pummelo cultivars, whereas that of NCED2 is up-regulated from 40 DAF to
100 DAF and then down-regulated until 190 DAF (Table 3 Figure 7F). The expression levels of NCED1
and NCED3 are higher at both of 40 DAF and 100 DAF in HRMY and HJMY than in GXMY (Table 3),
suggesting that the higher expression levels of NCED1 and NCED3 may facilitate the biosynthesis
of ABA in HRMY and HJMY. Applications of exogenous ABA increase concentrations of tomato
leaf carotenoid and fruits, which might be due to the increased activity of key enzymes such as BC
hydroxylase and PSY3 or both carotenoid, and chlorophylls are derived from the MEP pathway [45].
Sun et al. [46] suggested that carotenoid is the precursor of ABA synthesis, which could trigger
ethylene production and then induce an increase in carotenoid biosynthesis in the pre-ripening stage
of fruit. Conversely, ABA production can also be achieved by the change of carotenoid content
and composition [47]. Evidence showed that the regulation of ABA contents in fruit is mediated
by two main early-response catabolic enzyme AAO3 and CYP707A1 [48]. Here, we showed that
AAO3 and CYP707A3 have a high expression level in the color break period in HJMY and HRMY
(Table 3; Figure 7G,I). Expression of CYP707A1 shows an increasing trend in GXMY and HRMY and
a decreasing trend in HJMY, which may involve degrading ABA at the later stages of fruit ripening
and potentially preventing the over-accumulation of ABA at this stage. These results indicate the
possibility to control carotenoid composition and content during fruit ripening by regulating ABA
metabolism. Similarly, ABA is also involved in fruit ripening and affects carotenoid accumulation in
tomato and strawberry [49,50]. However, whether phytohormones directly regulate the expression
level of key genes in carotenoid biosynthesis pathway remains unknown.

Several transcription factors have been reported to be associated with carotenoid metabolism such
as RAP2.2 and PIF1 in Arabidopsis [51,52], RIN, TAGL1, ERF6 and HB-1 in watermelon [53], NAC, MYB,
AP2/ERF, WRKY, bZIP, and ARF in sweet potato [54]. Furthermore, many genes such as RIN, TAG1,
ERF6, AP2a, SGR, NOR, SlNAC4, and PIF have been shown to encode the respective transcriptional
factors that affect the expression levels of genes involved in carotenoid biosynthesis through the
regulation of ethylene biosynthesis and signaling [55–57]. Lu et al. [4] indicated that CsMADS6 directly
regulates LCYB1 and other carotenogenic genes to coordinately and positively modulate carotenoid
metabolism in citrus. bHLH transcription factors have been reported to play an important role in
carotenoid biosynthesis regulation under environmental signals [57,58]. In tomatoes, a PRE-like
atypical bHLH gene SlPRE2 negatively regulates carotenoid accumulation during fruit ripening by
repressing the expression of PSY1, PDS, and ZDS [59]. In citrus, CubHLH1 is considered to have a
similar function like Arabidopsis AIFs, which is functionally characterized as a negative regulator of the
brassinolide (BR) signaling pathway and might be directly involved in carotenoid metabolism [58].
Here, our results showed that the expression patterns of two bHLH gene homolog CsbHLH107
(CsbHLH107, c11225.graph_c0) and AtFBH4 (CsbHLH130, c27501.graph_c0) negatively correlate with
the genes involved in carotenoid biosynthesis (Table S6 (Supplementary Materials); Figure 8A,B).
WRKY genes are known to participate in growth and developmental processes, the biosynthesis of
secondary metabolites as well as biotic and abiotic stress responses through modulation of ABA
signaling pathways [60]. Recently, a sweet osmanthus OfWRKY3 was shown to positively regulate
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the OfCCD4 gene through binding to its promoter W-box [61]. Our results indicated that two WRKY
gene homolog GhWRKY17 (c34311.graph_c0) and AtWRKY22 (c21980.graph_c0) positively correlate
with the expression level of CCD4 and negatively correlate with NCED2 (Table S6 (Supplementary
Materials); Figure 8C,D). This result implied that WRKY gene could be involved in regulating carotenoid
metabolism by modulating ABA signaling pathways, but the specific regulatory mechanisms need to
be further studied. NAC proteins have also been reported to be related to carotenoid biosynthesis in
tomato and papaya [62,63]. In tomato, over-expression of SlNAC1 leads to a decline in the contents of
carotenoid and ABA, decreasing the synthesis of ethylene [62]. In addition, the SNAC4 (the protein
structure of SNAC4 is very similar to that of ANAC072) and SNAC9 positively and negatively regulate
fruit ripening and carotenoid accumulation by affecting ethylene and ABA levels [64]. Our results
indicated that pummelo homologs of NAC072 (c13516.graph_c0) and NAC74 (c9680.graph_c0) are
negatively and positively correlated with genes involved in carotenoid biosynthesis, respectively (Table
S6 (Supplementary Materials); Figure 8E,K).

Ethylene plays a critical role in the regulation of carotenoid accumulation and carotenogenic gene
expression [65,66]. In some non-climacteric fruits like papayas, CpEIN3a acts as a key transcription factor
in the ethylene signal transduction pathway and interacts with CpNAC2 to activate the transcription of
a subset of carotenoid biosynthesis-related genes, such as CpPDS2/4, CpZDS, CpLCYe, and CpCHYb [67].
As a non-climacteric fruit, ethylene promotes the color of citrus fruits and it increases the transcription of
carotenoid biosynthesis-related genes and chlorophyll degradation-related genes [68]. Here, we showed
that the ERF2 (c31821.graph_c0) is increased with the development of these three pummelo fruits,
whereas the ERF23 (c8622.graph_c0) decreases in GXMY and increases in HRMY and HJMY during
the development of fruit (Table S5 (Supplementary Materials); Figure 8H,I). This result indicated
that ERF23-mediated biological regulation of ethylene may have a functional role in carotenoid
biosynthesis in HRMY and HJMY. Previous studies showed that MYB transcription factors play
important regulatory roles in anthocyanins biosynthesis, which could be responsible for fruit color
formation [69–71]. Recently, studies have shown that MYB transcription factors might also play a role
in carotenoid biosynthesis [72]. In this study, six MYB transcription factors are positively correlated
with carotenoid biosynthesis-related genes, while only two pummelo MYB transcription factors
(c22501.graph_c0 and c23847.graph_c0) show a negatively correlation with the expression of structural
genes involved in carotenoid biosynthesis and one MYB transcription factor (c21421.graph_c0) is
positively correlated with six structural genes involved in carotenoid biosynthesis (Tables S5 and S6,
Supplementary Materials).

4. Material and Methods

4.1. Plant Materials

Three pummelo cultivars, named GXMY (yellow pulp) and its bud mutants HRMY (red pulp)
and HJMY (golden pulp), were manually harvested from plants grown in the pummelo-producing
areas in Pinghe County, Zhangzhou City, Fujian Province, China. Fruit samples were picked at 40 DAF
(young fruit; the pulp radius accounts for one-fourth of the fruit radius), 100 DAF (color break period;
the pulp radius accounts for half of the fruit length), 190 DAF (ripe stage, harvested for commercial
sale) from three trees on a clear day, respectively (Figure 1). All the trees were grown in a square of 4 m
× 5 m and received a standard horticultural practice such as irrigation, sod cultivation, bagging, and
pathogen prevention. Samples were collected at sunny noon, peeled, and sliced into appropriate pieces
after their weight and diameter were measured. In all cases, there were three biological replicates per
cultivar for each sampling date and each biological replicate was mixed from at least five fruits. The
pulp pieced from each fruit or several fruits were wrapped into one aluminum foil bag and labeled.
Then, the samples were frozen in liquid nitrogen and stored at −80 ◦C until analysis.
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4.2. β-Carotene and Lycopene Extractions and Analysis by HPLC

β-carotene and lycopene were extracted from fruits and were analyzed by HPLC according
to the method previously described by Xu et al. [73]. Extracts were analyzed on Agilent 1100
HPLC system equipped with a C18 Kromasil column (250 mm × 4.6 mm, 5 µm). The acetonitrile:
methanol:dichloromethane ratio was 70:15:15 as the mobile phase, with a flow rate of 1.0 mL·min−1

isocratic elution and a 10 µL injection volume with a detection wavelength of 450 nm in 35 min.
β-carotene and lycopene contents were calculated using a standard curve method and expressed as
mg·kg−1 FW. There were three replicates for the measurement of β-carotene and lycopene.

4.3. RNA Extraction, cDNA Library Construction and Sequencing

Total RNA was extracted from each sample using the TRIzol reagent (Invitrogen, Carlsbad, USA)
and DNase I was then used to remove DNA (Takara, Dalian, China). The quality, quantity, and integrity
of the total RNA were evaluated using Nanodrop (IMPLEN, CA, USA), Qubit 2.0 (Life Technologies,
CA, USA), and Aglient 2100 (Agilent Technologies, CA, USA). Briefly, the first cDNA chain was
synthesized using random hexamers as a six-base random primer, and the second cDNA chain was
synthesized by adding a buffer solution, dNTPs, RNase H, and DNA polymerase I. The purified
double-stranded cDNAs were terminal repaired, tailed, and sequenced. Then, the fragment size was
selected by AMPure XP (Beckman Coulter, Brea, CA, USA) beads and the cDNA library was obtained
by PCR enrichment. Finally, libraries were loaded on Illumina/Solexa HiSeq2000 platform with a
sequenced read length set to PE100.

4.4. Reads Assembly and Functional Annotation

The raw reads were filtered to remove adapter sequences and reads with low-quality sequences
containing more than 10% of bases which had a Q-value (quality score) of ≤ 20. The clean reads
were assembled de novo using the Trinity Method [74]. Using the longest transcription as a sample
of unigene, nine samples of unigene were combined. To calculate unigene expression, we used
the fragments per kilobase of transcript per million mapped reads (FPKM) method [75]. Unigenes
differentially expressed between two samples were screened using a false discovery rate (FDR) of <

0.01 and |log2 (fold changes)| of ≥1 as the criteria. To get annotation unigene sequences, the BLASTX
alignment (E-value < 10−5) was performed between unigenes and Nr, Swiss-Prot, KEGG, COG, GO
databases. The Blast2GO program [76] was used to obtain GO annotations of the unigenes based on
Nr annotations.

The RNA-Seq data were deposited in NCBI database (https://www.ncbi.nlm.nih.gov/sra/) [77]
with an SRA accession number PRJNA517027.

4.5. Identification of Genes Related to the Carotenoid Biosynthesis Pathways and Transcription Factor

According to the selected candidate gene information, genes responsible for the biosynthetic
pathway of carotenoid were searched using the annotation database. Furthermore, the Arabidopsis
Information Resource (TAIR) and sweet orange (C. sinensis L. Osbeck) annotation databases were used
to analyze the homologous sequence similarly of the structural genes. The identified and searched
sequences were confirmed by the NCBI BLAST program [14]. In order to understand the underlying
transcriptional mechanisms of three pummelo fruits, we used the transcription factor prediction
module PlantTFDB 3.0 [78] with a default E-value of 10−6.

4.6. Correlation Analysis of Structural Genes and Transcription Factors

A correlation analysis of structural genes and transcription factors was carried out to identify
transcription factors that were co-expressed with the functional genes involved in carotenoid
biosynthesis. In order to exclude false positives, functional genes and transcription factors with
an FPKM value of ≥10.0 in at least one of the three stages during fruit development were selected, and

https://www.ncbi.nlm.nih.gov/sra/
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transcription factors with correlation coefficient values of ≥0.666 by the t-test (the formula to calculate
t value was t = (r

√
(n–2))/

√
(1–r2), at p < 0.05 and n = 9. |t| > t0.05,7 = 2.365 means significant correlation,

so r > 0.666 means significant correlation. The co-expression analysis was performed by “CORREL”
function in “EXCEL 2003” and confirmed by an in-house Perl scripts and IBM SPSS Statistics software.

4.7. RT-qPCR analysis

To validate the reliability of our transcriptome dataset, 10 putative candidate functional genes
and 12 transcription factors selected from the DEGs were further analyzed using RT-qPCR. Total
RNA of nine fruit samples was extracted using the TRIzol® Reagent (Invitrogen, USA). RT-qPCR was
performed on a CFX96 real-time system (BIO-RAD, Hercules, CA, USA) with a TaKaRa 2×SYBR Premix
ExTaqTM kit (Takara, Dalian, China). RT-qPCR was performed under the following conditions: at 95 ◦C
for 30 s, followed by 40 cycles at 95 ◦C for 5 s and at 72 ◦C for 30 s. Relative expression analysis was
performed using the 2−∆∆CT method. The transcript levels were normalized relative to the actin gene.
The RT-qPCR primer sequences are listed in Table S7. Three biological and three technical replicates
were used for the RT-qPCR assays.

4.8. Experimental Design and Statistical Analysis

There were three biological replicates per cultivar for each sampling date and each biological
replicate was mixed from at least five fruits. Considering that HRMY and HJMY were the bud mutation
of GXMY and fruit samples at different development stages and used, one biological replicate of mixed
sample was used for RNA-Seq in each time point for each cultivar. There were three replicates for
the measurement of β-carotene, lycopene, and RT-qPCR assays. Differences among the nine samples
were analyzed by three (cultivars) × three (sampling dates) ANOVA. Means were separated by the
Duncan’s new multiple range test at p < 0.05.

5. Conclusions

Our results clearly showed that HJMY has the highest content of β-carotene, followed by
HRMY and GXMY. Lycopene is dominantly accumulated in HRMY. By using RNA-Seq technique,
we identified 357 genes involved in biosynthesis of secondary metabolites, of which 12 DEGs are
involved in carotenoid biosynthesis. Among these 12 DEGs, PSY2, LYCB2, LYCE, CCD4, NCED2,
AAO3, and CYP707A1 are the most distinct DEGs in three pummelo cultivars. The co-expression
analysis revealed that the expression patterns of several transcription factors such as bHLH, MYB, ERF,
NAC, and WRKY are highly correlated with DEGs, which are involved in carotenoid biosynthesis.
In addition, the expression patterns of 22 DEGs are validated by real-time RT-qPCR and the results
are highly concordant with the RNA-Seq results. In conclusion, our results provide a global vision
of transcriptomic profile among three pummelo cultivars with different pulp colors and would be
beneficial to further study the molecular mechanism of carotenoid accumulation in pummelo flesh and
help the breeding of citrus with high carotenoid content.
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