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The immune system recognizes and attacks non-self antigens, making up the cornerstone
of immunity activity against infection. However, during organ transplantation, the immune
system also attacks transplanted organs and leads to immune rejection and
transplantation failure. Interestingly, although the embryo and placenta are semi-
allografts, like transplanted organs, they can induce maternal tolerance and be free of a
vigorous immune response. Also, embryo or placenta-related antibodies might adversely
affect subsequent organ transplantation despite the immune tolerance during pregnancy.
Therefore, the balance between the immune tolerance in maternal-fetal interface and
normal infection defense provides a possible desensitization and tolerance strategy to
improve transplantation outcomes. A few studies on mechanisms and clinical applications
have been performed to explore the relationship between maternal-fetal immune tolerance
and organ transplantation. However, up to now, the mechanisms underlying maternal-
fetal immune tolerance remain vague. In this review, we provide an overview on the current
understanding of immune tolerance mechanisms underlying the maternal-fetal interface,
summarize the interconnection between immune tolerance and organ transplantation,
and describe the adverse effect of pregnancy alloimmunization on organ transplantation.

Keywords: placental immune tolerance, organ transplantation, immune rejection, clinical implication, maternal-
fetal interface
INTRODUCTION

The immune system recognizes, targets, and attacks non-self antigens, which makes up the
fundamental of immunity activity against infection (1). However, the immune system also
attacks transplanted organs, leading to immune rejection and transplant failure (2). The
developing embryo and placenta could be considered semi-allografts (3), while it can induce
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maternal tolerance and be free of a vigorous immune response
(4). The balance between the immune tolerance in the maternal-
fetal interface and normal infection defense plays a fundamental
role in pregnancy (5), which inspires further research in the
immune tolerance of maternal-fetal interface. Accumulating
studies suggest that the tolerogenic mechanisms in the
maternal-fetal interface are associated with and might be
applied in organ transplantations. This review provides an
overview of the current understanding of immune tolerance
mechanisms underlying the maternal-fetal interface. Then, we
summarize the interconnection between immune tolerance and
organ transplantation. Finally, we describe the adverse effect of
pregnancy alloimmunization on organ transplantation and
discuss the current challenges.
IMMUNE TOLERANCE MECHANISMS
UNDERLYING THE MATERNAL-FETAL
INTERFACE

During pregnancy, the non-functional state of the primary immune
cells (including decidual natural killer [dNK] cells, decidual T cells,
and decidual macrophages) induces placental immune tolerance,
and the dNK cells are probably the most important in the many
immune cells (6). Besides, immune tolerance synergistic molecules
are another significant players in the maternal-fetal interface, such
as HLA molecule and co-signaling molecules. HLA molecule is
usually involved with host versus graft reaction, while the non-
classic major histocompatibility complex (MHC) class I molecule,
HLA-G, was revealed to induce immune tolerance in the maternal-
fetal interface. Co-signaling molecules enhance the biological
function of trophoblasts, decidual stromal cells, and decidual
immune cells, while recent studies also revealed their roles in
regulating placental immune tolerance.

The Role of dNK Cells in Placental
Immune Tolerance
CD56brightCD16− NK cells are prominent NK cells (about 70%-
80% of lymphocytes), which make up more than half of the
maternal immune cells in human early pregnancy decidua (6).
The origin of NK cells in the endometrium remains unclear. The
C-X-C chemokine ligand 12 (CXCL12)/C-X-C chemokine
receptor type 4 (CXCR4) axis is necessary to recruit dNK cells
at the maternal-fetal interface. Tao et al. (7) obtained the
decidual tissues from normal pregnancies (5-10 weeks) and
revealed that CXCL12/CXCR4 axis could facilitate the
migration of dNK cells concentration-dependent manner.
CXCL12 could increase the migration of dNK cells by 1.2-,
1.4-, and 1.9-fold at a concentration of 1, 10, and 100 ng/ml,
respectively (7). When trophoblast culture media were treated
with anti-CXCR4, the chemotactic activity of dNK cells was
significantly inhibited (P < 0.01) (7).

DNK cells were reported to play a central regulating role in
decidual tolerance to embryos. During the first trimester, dNK
cells participate in trophoblast invasion by producing
Frontiers in Immunology | www.frontiersin.org 2
chemokines (such as IL-8 and IL-10) without attacking
placental cells (8, 9) since they would not polarize granules to
the target cells (10). Co et al. (11) first revealed that the inhibited
killing of dNK cells in invasive cytotrophoblasts was induced by
maternal decidual macrophages cell, which provided a possible
reason for the anergic dNK cells in placental immune. Placental
(5-22 weeks) and decidual tissues (5-13 weeks) were achieved
from patients undergoing elective terminations of pregnancy,
and the dNK cells were cultured in vitro. The results showed that
dNK cells could kill K562 target cells (leukemia cell lines) after
removing macrophages, while the cytotoxicity of dNK cells was
inhibited again when macrophages were added back.
Furthermore, the addition of soluble TGF-b1 to cytotoxicity
assays had a significant inhibitory effect on purified dNK-
induced cytotoxicity at a lower dNK: K562 ratio (5:1 vs. 20:1),
and more primary cytotrophoblast targets (such as NK92 and
K562) were attacked after removal of TGF-b1, which suggested
that the immune tolerance of dNK cells could be induced by
TGF-b1 (12). Wang et al. (13) obtained villi from healthy women
receiving pregnancy termination (7-9 weeks) and extracted
primary culture of first-trimester trophoblast cells. They
reported that CXCL16 induced the polarization of M2
macrophages via inducing high IL-10 expression. Moreover,
when dNK cells were co-cultured with M2 macrophage
pretreated with rhCXCL16, the decreased expression of IL-15
facilitated the inactivation of dNK cells. These studies indicate
the promoting role of macrophages in the dNK cell-induced
immune tolerance at the maternal-fetal interface (Figure 1).

Recently, Huang et al. (14) recruited recurrent spontaneous
abortion women (n=49) and normal pregnant women (n=52)
and measured the expression of miR-30e in the decidua tissues
via a quantitative polymerase chain reaction. They revealed that
the expressions of miR-30e in individuals with recurrent
spontaneous abortion were significantly decreased compared
with the control group, and the cytotoxicity of dNK cells was
reduced by upregulating miR-30e. Additionally, Tirado-
Gonzalez et al. (15) reported that dNK cells induced apoptosis
in decidua dendritic cells during pregnancy (40.2 ± 7.2% of DC-
SIGN+ cells in decidual sections and 34.4 ± 15.2% in leukocyte
suspensions), which induced the immune tolerance environment
for the maternal-fetal interface.

Besides maintaining fetal tolerance, dNK cells might also
contribute to the placental infection defense (16). Crespo et al.
collected placental and decidual samples (6-12 weeks) and revealed
that the antimicrobial peptide granulysin was highly expressed in
human dNK cells. Antimicrobial peptide granulysin was selectively
transferred via nanotubes to extravillous trophoblasts (EVTs) to kill
intracellular Listeria monocytogenes without killing the
trophoblasts (17, 18). Also, when pregnant women were infected
with human cytomegalovirus (HCMV), the expression of killer cell
immunoglobulin-like receptor 2DS1 (KIR2DS1) by dNK cells
increased the ability to prevent placental HCMV infection.
Similarly, the interaction between KIR2DS1 and HLA-C2 could
enhance the activation of KIR2DS1 single-positive dNK and
improve the response to placental HCMV infection (6-12 weeks
human placental and decidual material) (19).
August 2021 | Volume 12 | Article 705950
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The Role of Human Leukocyte Antigen in
Placental Immune Tolerance
Recently, accumulating studies are focused on the role of HLA
in maternal-fetal immunity, especially HLA-G. EVT expresses
a unique type of MHC molecules to induce immune tolerance.
The tripartite interactions of human leukocyte antigen
(HLA)-peptide-T cell receptors are fundamental in enabling
Frontiers in Immunology | www.frontiersin.org 3
the adaptive immune system, and MHC class I and II
molecules could distinguish the self from the non‐self
antigen (Figure 2).

Regulation of HLA expression patterns is another potential
strategy to inhibit organ transplantation rejection (20). Unlike
most cells, EVTs do not express ubiquitous classical MHC class I
molecules (i.e., HLA-A and HLA-B) (21). Instead, HLA-C and
FIGURE 2 | The classification of major histocompatibility complex (MHC) molecules and main molecules in maternal-fetal immunity. MHC includes MHC class I and II
molecules. Classic MHC class I molecules include human leukocyte antigen (HLA)-A, HLA-B, and HLA-C. The non-classic MHC class I molecules include HLA-E,
HLA-F, and HLA-G. MHC class II molecules include HLA-DR, HLA -DP, HLA -DQ. HLA-C, HLA-E, and HLA-G play a significant role in immune tolerance in the
maternal-fetal interface.
FIGURE 1 | Inhibitory effect of macrophages on dNK cells in the maternal-fetal interface. Macrophages induce the immune tolerance of dNK cells and decrease the
chemokines (such as IL-8, and IL-10) in the maternal-fetal interface, thus stabilizing the embryo.
August 2021 | Volume 12 | Article 705950
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the nonclassical MHC class I molecules (i.e., HLA-E and HLA-G)
are expressed in EVTs. HLA‐G shows great immunosuppressive
features and a limited expression outside the trophoblasts (1). In
the term pregnancy, HLA-G+ EVTs have a weakened capacity to
induce Treg via isolating three types of HLA-G+ EVTs from
human placental tissues (HLA-G+ EVTs, 6 to 12 weeks, n = 2;
HLA-G+ EVTs, >37 weeks, n = 3; HLA-G+ chorionic EVTs, >37
weeks, n = 3), suggesting the distinct ability of HLA-G to enhance
placental immune tolerance via directly inducing Treg cells (22).
Meanwhile, the HLA-G could interact with decidual T cells, NK
cells, macrophages, and dendritic cells and induce immune
tolerance (23–25). Interestingly, Bortolotti et al. (26) isolated
mesenchymal stromal/stem cells (MSCs) in endometrial
decidual tissue (EDT) from menstrual blood collected from 5
healthy women during the first few days of the menstrual cycle.
They reported that EDT-MSC could inhibit lymphocytes
proliferation (70% for low culture passage EDT-MSC, 40% for
high culture passages EDT-MSC, P < 0.002). Interestingly, when
human EDT-MSCs were infected by the human herpesvirus
(HSV)-1, the expression of HLA-G and its immunosuppressive
funct ion wi l l be s ignificant ly reduced in a dose-
dependent manner.

Meanwhile, HLA-G is closely related to dNK cells in the
maternal-fetal interface. Tilburgs et al. (27) collected human
placental and decidual material (6-12 weeks), and the results
showed that co-culture of activated dNK with EVTs could lead to
the reacquisition of surface HLA-G. Meanwhile, co-culture of
HLA-G-expressing melanoma M8 cells with dNK cells could
restore the killer cell immunoglobulin-like receptor 2DL4 or
immunoglobulin-like transcript 2 expression on dNK cells,
which increased the expression levels of surface HLA-G.
Therefore, the activation of dNK could decrease the
internalized HLA-G and restore the cytotoxicity, and the HLA-
G could induce tolerance of dNK in turn.
The Role of Co-Signaling Molecules in
Placental Immune Tolerance
Generally, immune cells can be fully activated after a second
signal (co-signal) derived from the interaction between receptors
on immune cells and the corresponding co-stimulating ligands
on antigen-presenting cells. This classic ‘two-signal model’ is
originated from the model of lymphocyte activation, which
functions to optimize the immune response (28, 29). The
potential co-signaling molecules mediating maternal-fetal
immune tolerance are summarized in Table 1, including
programmed death 1 (PD-1)/programmed death-ligand 1 (PD-
L1) (30–34), T cell immunoglobulin and mucin domain 3 (TIM-
3) (35–40), cytotoxic T-lymphocyte-associated antigen 4 (CTLA-
4) (36, 37, 41), inducible co-stimulator (ICOS)/inducible co-
stimulator ligand (ICOS-L) (42), carcinoembryonic Ag cell
adhesion molecule 1 (CEACAM1) (43), and leukocyte-
associated immunoglobulin like receptor-1 (LAIR-1) (44).

To the best of our acknowledge, PD-1/PD-L1 is probably the
most studied among the many co-signaling molecules in
maternal-fetal immunity (45). Meggyes et al. (35) used flow
cytometry to measure PD-1 expression by peripheral and
Frontiers in Immunology | www.frontiersin.org 4
decidual immune cells from pregnant BALB-c mice on day
14.5 of pregnancy. The expression of PD-1 significantly
increased in dNK cells (P = 0.001), g/d T cells (P = 0.002), and
NKT cells (P = 0.024), thus reducing cytotoxic potential
compared with the periphery. Interestingly, the upregulation of
PD-1 was consistent with the increase in maternal T cells in the
decidua, which indicated a potential role for the PD-1/PD-L1
axis in silencing maternal immune responses to fetal antigens
(46). In the following study by Costa et al. (47), the term (37-40
weeks), uncomplicated gestation placentas were obtained, and
the results revealed that the PD-1/PD-L1 axis might limit T cell
expansion and induce tolerance to the fetal allotransplant. Wang
et al. (32) obtained the villous and decidual tissues from normal
(n = 78) and miscarriages (n = 36) pregnancy. They reported that
the co-culture of CD8+ T cells and trophoblasts could upregulate
PD-1+ immune cells (P < 0.001). Blockade of Tim-3 and PD-1
decreased CD8+ T cell proliferation, enhanced trophoblast
killing, and increased IFN-g production by CD8+ T cells. Then,
they established a mouse pregnancy model by mating BALB/c
males with CBA/J females and reached the same conclusion in
vivo. Sayama et al. (48) reported that production of IFN-g was
suppressed in peripheral T cells when T cell-expressed PD-1 and
macrophage-expressed PD-L1 interacted (Human first-trimester
decidual samples, n = 10), while the suppressive property was not
observed in the monocytes lacking PD-L1. These studies
demonstrated that PD-1/PD-L1 mediated immune tolerance as
the co-signaling molecules. Besides, PD-L1 was reported to
directly foster Treg differentiation and induce immune
tolerance (49).
THE RELATIONSHIP BETWEEN
PLACENTAL IMMUNE TOLERANCE AND
ORGAN TRANSPLANTATION

Since HLA-G can maintain placental immune tolerance during
pregnancy, it has been well explored as the promising diagnostic
and even therapeutic target of organ transplantation. Ajith et al.
(50) compared the expression of soluble HLA (sHLA)-G in
patients with the immune rejection of the renal allograft
(n=40) and those with a functioning renal allograft (n=90).
The results showed that HLA-G could inhibit the activation
and cytotoxic capabilities of human CD8+ T cells, one of the
important mechanisms in organ transplantation rejection.
Furthermore, Janssen et al. (51) genotyped 41 kidney recipients
with acute rejection and 134 without rejection, and the results
suggested that HLA-G polymorphisms were higher in recipients
without acute rejection. Similarly, Durmanova et al. (52)
reported that HLA-G polymorphisms were closely associated
with graft acceptance. The sHLA-G level can predict the renal
allograft outcome for high expression in patients with renal
allograft (31.6 ± 20.2 vs. 17.7 ± 8.5, P=0.003). These studies
suggest that HLA-G and its polymorphisms might play a
potential protective role in organ transplantation (53).
However, another study did not support the protective effect of
HLA-G in liver transplantation since sHLA-G levels were higher
August 2021 | Volume 12 | Article 705950
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in recipients with acute rejection than nonrejectors (54). The
authors claimed that it might be negative feedback to protect the
liver against immunological damage (54).

Apart from the acute rejection, HLA-G can also predict the
long-term prognosis of organ transplantation. Lazarte et al. (55)
reported that sHLA-G increased in patients with chronic lung
allograft dysfunction, and HLA-G single nucleotide
polymorphism +3142 was associated with increased mortality
(hazard ratio [HR] = 1.78, P = 0.015). Consistently, Brugiere et al.
(56) and Ezeakile et al. (57) demonstrated that the HLA-G level
and expression of the membrane-bound form of HLA-G on
monocytes were related to the postoperative lifetime of kidney
transplantation. Additionally, Adamson et al. (58) also found
that HLA-G was a risk factor for cell-mediated rejection (CMR)
following heart transplant in humans with a P-value of 0.03 (n =
123). Compared with the minor HLA-G +3196/GG genotype,
the CG genotype had a 47.2% reduction in CMR risk (HR =
0.528, 95% CI, 0.235-1.184), while CC genotype had a 66.9%
reduction (HR = 0.331, 95% CI, 0.144-0.761). The authors
Frontiers in Immunology | www.frontiersin.org 5
indicated that HLA-G might be considered a diagnostic
strategy and a potential therapeutic target for transplant
rejection. In the following research, Von et al. (59) firstly
reported the therapeutic recombinant HLA-G5 in the intestinal
transplantation model. Allogenic intestinal transplantation was
performed in rats (Brown Norway to Lewis) with and without
HLA-G treatment. The rats with HLA-G treatment showed
significantly decreased postoperative acute rejection in 4 and 7
days after the operation, and acute rejection-related gene
expression was higher in rats with HLA-G treatment (TNFa,
P < 0.05; IL-10, P < 0.05).

Moreover, NK cells and co-signaling molecules also induce
immune tolerance in organ transplantation. For example, NK
cells can induce both immune rejection and tolerance in liver
transplantation (60). The recipient-derived NK cells tend to
promote immune rejection, while the donor-derived NK cells
tend to induce immune tolerance. Yazdani et al. (61) reported
that the differential expression genes, which were identified in
antibody-mediated rejection through bioinformatics pipeline
TABLE 1 | Co-signaling molecules and their mechanism to induce the maternal-fetal immune tolerance.

Cells Co-signaling Molecules

Trophoblasts Syncytiotrophoblasts: PD-L1, CD200, CD200R1, PD-L2
Cytotrophoblasts: PD-L1, CD200, CD200R1
EVTs: ICOS-L, PD-L1, CD276, CEACAM1, Gal-9, CD200, CD200R1, CD155, CD112

Decidual stromal
cells

TIM-3, Gal-9, PD-L1, PD-L2

Decidual immune
cells

dNK cells: CEACAM1, TIM-3, LAIR-1, CD226
Decidual T cells: PD-1, CEACAM-1, TIM-3, LAIR-1
Decidual macrophages: LAIR-1

Main Molecules Recent studies
PD-1/PD-L1 Elevated PD-1 expression in decidual CD8+ T, CD4+ T, and NKT-like cells and PD-L1 expression in decidual CD4+ T, Treg, NKT-like and CD56+

NK cell compared to peripheral blood (30).
The soluble PD-L1 increased in pregnant women and suppress maternal immunity (31).
Blockade of PD-1 resulted in decreased proliferation and Th2-type cytokine production while increased trophoblast killing and IFN-g producing
capacities of CD8+ T cells (32).
PD-1/PD-L1 signaling is critical for macrophage differentiation and function, which is the success of a pregnancy (33).
PD-1 promote Th2 bias and pregnancy maintenance by regulating CD4+ T cell function at the maternal-fetal interface (34).

TIM-3 Decidual NKT cells exhibit a reduced TIM-3 expression with increased relative receptor expression and a slightly increased cytotoxicity when
compared to the periphery (35).
TIM-3+CTLA-4+dCD8+ T cells produced more anti-inflammatory cytokines. Blocking TIM-3 pathways inhibited the anti-inflammatory cytokines and
induced fetal loss (36).
TIM-3 pathways maintain tolerance by regulating dCD4+T cells. Blockade of TIM-3 pathways induces fetal loss with altered cytokine profiles by
dCD4+ T cells (37).
TIM-3 is upregulated in NK cells and inhibits NK cytotoxicity toward trophoblast in Gal-9 dependent pathway (38).
Activation of TLR signaling induced upregulated TIM-3 expression. TIM-3 inhibited TLR signaling-induced inflammatory cytokine production (39).
TIM-3 are expressed on over 60% of dNK cells. TIM-3+ dNK cells display higher IL-4 and lower TNF-a and perforin production.
Peripheral NK cells can be transformed into a dNK-like phenotype via Gal-9 and the interaction between Gal-9 and TIM-3.
Trophoblasts inhibit LPS-induced pro-inflammatory cytokine and perforin production by dNK cells, which can be attenuated by TIM-3 neutralizing
antibodies.
Th2-type cytokines decreased and Th1-type cytokines increased in TIM-3+ dNK cells from human and mouse miscarriages (40).

CTLA-4 Blocking CTLA-4 pathways inhibited the anti-inflammatory cytokines and induced fetal loss (36).
CTLA-4 pathways maintain tolerance by regulating dCD4+T cells. Blockade of CTLA-4 pathways induces fetal loss with altered cytokine profiles by
dCD4+ T cells (37).
Antigen-stimulated T cells become activated ligated with CD28 and anergic ligated with CTLA-4 (41).

ICOS/ICOS-L ICOS-L blockade abrogates placental immune tolerance by enhancing CD8+ effector response and reducing local immunomodulation via CD8+

Treg cells (42).
CEACAM1 CEACAM1 interactions inhibit the lysis, proliferation, and cytokine secretion of activated dNK, T, and NKT cells, respectively (43).
LAIR-1 Co-culture of dNK with primary TROs/DSCs downregulated Th1 cytokine production, which were abrogated by LAIR-1 inhibitor (44).
PD-L1, programmed death-ligand 1; CD200, cluster of differentiation-200; CD200R1, CD200 receptor 1; PD-L2, programmed death-ligand 2; ICOS-L, inducible co-stimulator ligand;
CD276, cluster of differentiation-276; CEACAM1, carcinoembryonic Ag cell adhesion molecule 1; Gal-9, galectin-9; CD155, cluster of differentiation-155; CD112, cluster of differentiation-
112; TIM-3, T cell immunoglobulin and mucin domain 3; LAIR-1, leukocyte-associated immunoglobulin-like receptor-1; CD226, cluster of differentiation-226.
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(microarray transcriptomic data from a case-control study,
n=95), were enriched in NK cell pathways. Also, in
multivariate cox analysis, NK cell infiltration could predict
graft failure (P < 0.001) and diagnosis of rejection (P = 0.039)
with the highest accuracy compared with other immune cell
subtypes (e.g., CD8+ T cells, CD4+ T cells, macrophages, and so
forth) according to the Banff classification.

Furthermore, the PD-1/PD-L1 axis induces placental immune
tolerance and improves organ transplantation. In brief, the PD‐
1/PD‐L1 axis can induce tolerance in organ transplantation
through PD‐1 and CD28 gates and influence the effector T
cells. Xu et al. (62) reported that cellular exosome-like
nanovesicles could inhibit the proliferation of mononuclear
cells in peripheral blood (76% vs. 2%, P < 0.001) through the
interaction of PD-1/PD-L1 and CTLA-4/CD80, which would
subsequently decrease the density and activation of CD8+ T cells,
downregulate cytokine production (HEK293T cells), and
prolonged the survival of mouse skin and heart grafts. The
blocked PD-1/PD-L1 axis could lead to a high rejection rate
[37% to 80% (63)] for transplanted organs. A recent meta-
analysis (64) reviewed the VigiBase database to explore the
association of rejection events with drugs and revealed that
anti-PD-1 and anti-PD-L1 drugs were more involved
compared with anti-CTLA-4 drugs in rejection events (93.0%
vs. 7.0%) due to the blockade of the specific pathway.
THE ADVERSE EFFECT OF PREGNANCY
ALLOIMMUNIZATION ON ORGAN
TRANSPLANTATION

Despi te the immune to lerance dur ing pregnancy ,
alloimmunization also exists, which might induce an increased
risk for future organ transplantation rejection (65). Studies (66–
71) regarding the adverse effect of pregnancy on subsequent
organ transplantation are summarized in Table 2.

A study including 69 participants based on the Luminex
screening test showed that about 24% to 49% of parous
transplant candidates have the detectable anti‐HLA antibody,
which composed a barrier to transplant success due to pregnancy
alloimmunization (72). Redfield et al. (68) reported that
retransplants (53%), pregnancy (20%), and transfusion (5%)
Frontiers in Immunology | www.frontiersin.org 6
were the three main reasons for high sensitivity to kidney
transplantation (patients with a panel reactive antibody ≥
98%). The rate of organ transplantation rejection increased in
highly sensitized patients within one year compared with
those non-sensitized (10.6% vs. 8.3%, P < 0.001). The 10-year
survival rate of highly sensitized patients was also significantly
worse (43.9% vs. 52.4%, P < 0.001). A study of 2,587 kidney
transplant candidates suggested that the rate of living
donor kidney transplantation for women decreased by
30% due to histocompatibility (67). Retransplants, pregnancy,
and transfusion all contribute to the high sensitivity to
transplantation, and retransplants have a more significant
immunologic impact, followed by pregnancy and transfusion
(73). However, in practice, spouses are often the primary
transplant source, and pregnancy is the unique cause of sex
disparity in organ transplantation (67).

Meanwhile, Van et al. (74) reported that the incidence of
kidney graft loss was 9.4% within two years, 9.2% within 2-5
years, and 22.3% within 5-10 years after pregnancy, respectively.
They pointed that pregnancy affected the graft loss significantly
within two years. Furthermore, when comparing male and
female recipients with 0% panel reactive antibody, there was
no significant difference in all‐cause graft failure (66), which
indirectly indicated that pregnancy alloimmunization might
negatively impact the subsequent transplantation process
after pregnancy.
CONCLUSION

Currently, the survival of patients receiving organ transplantation
remains unsatisfactory, with a five-year survival of 89.6% (75),
86.6% (76), and 77% (77) in the liver, kidney, and heart
transplantation, respectively. Although immunosuppression has
been widely used to inhibit acute graft-vs-host disease after organ
transplantation (78), many complications (like heart failure or
acute kidney injury) increase morbidity and mortality (79). Long-
term immunosuppression treatment is likely to cause many graft-
or host-related adverse events, such as bone mass loss (80),
infection (81), and malignancies (82). Patients with organ
transplants have an approximately 2-fold increased cancer risk
than the general population (83, 84). The interconnection between
TABLE 2 | Adverse effect of pregnancy on subsequent organ transplantation.

Author Type Study time Sample
size

Type of
organ

Conclusion

Cohen et al. (66) Retrospective 2001‐2013 5012 Kidney No difference in graft failure between recipients of fathers and mothers.
Bromberger et al. (67) Retrospective 2007‐2013 502 Kidney Pregnancy is the major reason for loss of living donor access for women.
Redfield et al. (68) Dataset

analysis
1997‐2014 107292 Kidney Pregnancy alone is made up 20% of sensitization; Waiting time for organ

transplantation is longer for women.
Higgins et al. (69) Retrospective 2003‐2012 64 No mention Pregnancy leads to the greatest increase in HLA antibody levels from pre-treatment to

peak
Choi et al. (70) Retrospective 1979‐2011 374 Kidney The antibody originated from the sensitization in pregnancy results in the

transplantation failure.
Ghafari et al. (71) Retrospective 1989‐2006 171 Kidney Graft survival time was significantly worse because of pregnancy
HLA, human leukocyte antigen.
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placental immunity and transplantation immunity has recently
become a hot topic since it might provide a potential strategy to
regulate the immune balance between the hosts and transplanted
organs. This article provides an overview on the current
understanding of immune tolerance mechanisms underlying the
maternal-fetal interface. We review the immune tolerance
mechanisms of dNK cells and immune tolerance synergistic
molecules (such as HLA molecule and co-signaling molecules),
and we summarize current evidence on the relationship between
immune tolerance and organ transplantation. Finally, we describe
the adverse effect of pregnancy alloimmunization on
organ transplantation.

Still, it should be highlighted that the total view of the
mechanisms underlying placental immunity remains vague.
The immune tolerance in the maternal-fetal interface is a
complex balance associated with both the immune tolerance
molecules and immune microenvironment. However, most
Frontiers in Immunology | www.frontiersin.org 7
studies were performed on a cellular level, and there lacks
enough validation in mature animal models. Only a few
immune tolerance molecules in the maternal-fetal interface
have been studied. Besides, the studies regarding the
application of placental immunity on organ transplantation are
limited (Figure 3). Accordingly, further in vivo experiments
using animal models are necessary, and more immune
pathways and immune networks should be explored.
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