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Abstract

This paper presents a new method, which we call SUSTain, that extends real-valued matrix and 

tensor factorizations to data where values are integers. Such data are common when the values 

correspond to event counts or ordinal measures. The conventional approach is to treat integer data 

as real, and then apply real-valued factorizations. However, doing so fails to preserve important 

characteristics of the original data, thereby making it hard to interpret the results. Instead, our 

approach extracts factor values from integer datasets as scores that are constrained to take values 

from a small integer set. These scores are easy to interpret: a score of zero indicates no feature 

contribution and higher scores indicate distinct levels of feature importance.

At its core, SUSTain relies on: a) a problem partitioning into integer-constrained subproblems, so 

that they can be optimally solved in an efficient manner; and b) organizing the order of the 

subproblems’ solution, to promote reuse of shared intermediate results. We propose two variants, 

SUSTainM and SUSTainT, to handle both matrix and tensor inputs, respectively. We evaluate 

SUSTain against several state-of-the-art baselines on both synthetic and real Electronic Health 
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Record (EHR) datasets. Comparing to those baselines, SUSTain shows either significantly better 

fit or orders of magnitude speedups that achieve a comparable fit (up to 425× faster). We apply 

SUSTain to EHR datasets to extract patient phenotypes (i.e., clinically meaningful patient 

clusters). Furthermore, 87% of them were validated as clinically meaningful phenotypes related to 

heart failure by a cardiologist.
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Tensor Factorization; Matrix Factorization; Phenotyping; Unsupervised learning

1 INTRODUCTION

Matrix and tensor factorization are among the most promising approaches to extracting 

meaningful latent structure from multi-aspect data. They have been applied successfully in 

diverse applications, including social network analysis [31], text mining [14], image 

processing [35], recommendation systems [26], brain data analysis [2] and healthcare 

analytics [22], to name a few. Factorization models decompose input data into real-valued 

representatives revealing clusters with distinct interpretable feature profiles.

However, a significant problem arises when the input data are most naturally expressed as 

integer values. Examples include event counts and ordinal data [15]. In such cases, real-

valued factors distort the original integer characteristics. For example, real values might no 

longer be interpretable as counts or frequencies. Also, the possible ranges and relative 

differences of elements in real-valued factors is arbitrary; this makes it hard to intuitively 

compare the importance of different elements. Furthermore, in many applications, 

practitioners are accustomed to interpreting integer-valued scores in standardized scales. 

Real-valued factors might require arbitrary thresholding or other unnatural transformations 

to convert into such scales, thereby inhibiting interpretation by domain experts.

A specific motivating application for our methods is clinical phenotyping from Electronic 

Health Records (EHR) data. Consider that a disease, such as heart failure, is often 

heterogeneous in that patients differ by underlying pathophysiology and needs. That is, a 

disease is often comprised of distinct disease subtypes, or phenotypes, which vary by the 

ensemble of causes, associations with other diseases, and treatment needs [52]. Phenotyping 

is intended to distinguish the latent structure among features that can, in turn, be used to 

prevent disease subtypes and improve treatment development and management [43]. EHR 

data offer a diverse and rich set of features (e.g., diagnostic, drug and procedure codes) that 

can serve to improve disease phenotyping. But, these data must often be represented in 

integer form (e.g., clinical event counts) to be utilized in unsupervised learning. For 

example, we can construct a patient-disease matrix where the ij-th element represents the 

number of times patient i had disease j documented in her records. Similarly, we can build 

higher-order tensors such as a patient-disease-medication one. The goal of unsupervised 

phenotyping is to identify patient clusters defined by unique feature sets, each one of which 

aligns with a distinct and intuitive clinical profile; in this work, we tackle this challenge via a 

scalable constrained integer tensor factorization.
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Factorization methods have been successfully used for EHR-based unsupervised 

phenotyping [21, 22, 24, 41, 42, 50]. In many of those settings, the problem can be 

formulated via Nonnegative Matrix Factorization (NMF) [35] e.g., minimizing the squared 

Frobenius norm of the error:

min X − U V T
F
2 ∣ U ≥ 0, V ≥ 0 (1)

X ∈ ℤ+
M × N is a non-negative integer input matrix whose X(i, j) cell reflects the event counts 

for the i-th (out of M) patient with respect to the j-th (out of N) features. Given an input 

number R of desired phenotypes, the matrix U ∈ ℝM × R corresponds to a membership 

matrix of the patients with respect to the R phenotypes. And the matrix V ∈ ℝN × R provides 

the phenotypes’ definition: the non-zero elements of the r-th column V (:, r) reveal the 

potentially relevant features to the r-th phenotype.

Interpreting those factors is crucial in order to determine whether and to what extent a 

patient exhibits a phenotype, as well as which set of candidate features should be considered 

to compose each r-th phenotype so that it is clinically meaningful. However, this can be 

challenging if the resulting factors contain arbitrary (non-negative) real values. Real-valued 

factors distort the count nature of input data; thus, identifying cases and controls based on 

counts of relevant medical features [13, 34] is no longer possible. Also, the possible ranges 

and relative differences of elements in real-valued factors is arbitrary, thus impeding the 

practitioner’s assessment of their relative importance. In practice, ad hoc heuristics have 

been introduced with limited success: a) hard thresholding to the ranked list of factor 

elements, which is usually arbitrary and leads to poor model fit; b) the factor values are 

hidden altogether and only the elements’ ranking is preserved, which omits valuable 

information regarding the individual elements’ actual importance.

Contributions:

To tackle these challenges, we propose Scalable Unsupervised Scoring for Tensors 

(SUSTain), a framework extracting the factor values as scores, constrained to a small integer 

set. SUSTain offers a straightforward interpretation protocol: a score of zero indicates no 

feature contribution and higher scores indicate distinct levels of feature importance.

Our methodology relies on identifying a problem partitioning into integer-constrained sub-

problems so that each one of them can be solved optimally in an efficient manner; at the 

same time, their solution order is organized so as to promote re-use of shared intermediate 

results. SUSTain can handle both matrix and tensor inputs, through SUSTainM and 

SUSTainT methods, which we formulate in Sections 3.1 and 3.2 respectively.

SUSTain yields faster and more scalable approaches than baselines achieving comparable fit, 

as evaluated on both synthetic (publicly-available) and real healthcare datasets. For example, 

as shown in Figure 1, SUSTainM achieves the same level of accuracy as the most accurate 

baseline up to 425× faster. SUSTainT can handle large-scale tensor inputs for which the 

most accurate baseline fails and scales linearly with the number of patients.
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SUSTain’s interpretation protocol is particularly meaningful for unsupervised phenotyping: 

it is easily understood by medical experts who are used to simple and concise, scoring-based 

descriptions of a patient’s clinical status (e.g., risk scores1). While recent work derives risk 

scores for predictive modeling (supervised learning) [48], our application of SUSTain 

extracts scores for unsupervised phenotyping based on unlabeled EHR data. In Table 1, we 

provide a representative phenotype extracted through our method, as part of a case study we 

performed on phenotyping heart failure patients. The meaningfulness of the phenotype 

candidates extracted through this case study was confirmed by a cardiologist, who annotated 

87% of them as clinically meaningful phenotypes related to heart failure. We summarize our 

contributions as:

• Scalable unsupervised scoring: We propose SUSTain, a fast and scalable 

approach decomposing integer multi-aspect data into integer scores, preserving 

the original integer characteristics.

• SUSTain can handle matrix and tensor input: We present SUSTain for both 

matrix (Section 3.1) and tensor (Section 3.2) inputs, through SUSTainM and 

SUSTainT methods, respectively.

• Evaluation on various datasets: We evaluate both the matrix and tensor 

versions on both synthetic (publicly-available) and real healthcare datasets.

• Phenotyping heart failure patients: The interpretability of the extracted 

scoring-based phenotypes was confirmed by a cardiologist, who annotated 87% 

of them as clinically meaningful.

To promote reproducibility, our code is open-sourced and publicly available at: https://

github.com/kperros/SUSTain.

2 BACKGROUND

In Table 2 we summarize the notations used throughout the paper. Let x0 ∈ ℝn. The 

euclidean projection of x0 to a set C ⊆ ℝn is defined as ΠC x0 = argmin x − x0 2
2 ∣ x ∈ C ; 

thus, it is the problem of determining the vector x* among all x ∈ C which is the closest to 

x0 w.r.t. the Euclidean distance [5]. A matrix X is called rank-1 if it can be expressed as the 

outer product of 2 non-zero vectors: X = x ∘ y. The Khatri-Rao Product (KRP) [46] is the 

“matching column-wise” Kronecker product: for two matrices U ∈ ℝM × R, V ∈ ℝN × R

their KRP is as follows: 

U ⊙ V = [U(: , 1) ⊗ V (: , 1)U(: , 2) ⊗ V (: , 2)…U(: , R) ⊗ V (: , R)] ∈ ℝMN × R

A tensor is a multi-dimensional array. The tensor’s order denotes the number of its 

dimensions, also known as ways or modes (e.g., matrices are 2-order tensors). A d-order 

tensor X is called rank-1 if it can be expressed as the outer product of d non-zero vectors: X 

= a1 ∘ a2 ∘ ⋯ ∘ ad. A fiber is a vector extracted from a tensor by fixing all modes but one. For 

example, a matrix column is a mode-1 fiber. A slice is a matrix extracted from a tensor by 

1In MDCalc, one can find a vast amount of such scores used in medicine.
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fixing all modes but two. Matricization, also called reshaping or unfolding, logically 

reorganizes tensors into other forms without changing the values themselves. The mode-n 

matricization of a d-order tensor X ∈ ℝI1 × I2 × ⋯ × Id is denoted by 

X(n) ∈ ℝIn × I1I2…In − 1In + 1…Id and arranges the mode-n fibers of the tensor as columns of 

the resulting matrix. The Matricized-Tensor Times Khatri-Rao Product (MTTKRP) [3] w.r.t. 

mode-n is the matrix multiplication X(n)A⊙
( − n), where A⊙

( − n) corresponds to the Khatri-Rao 

product of all the modes except the n-th. MTTKRP is the bottleneck operation in many 

sparse tensor algorithms.

3 THE SUSTAIN FRAMEWORK

First we present SUSTain for matrix input. Then, we describe how SUSTain can be extended 

for general high-order tensor input. Finally, we provide our interpretation protocol of 

SUSTain for unsupervised phenotyping.

3.1 SUSTain for matrix input

Model: For an integer input matrix X ∈ ℤ+
M × N and a certain target rank R, the problem 

can be defined as:

min X − U Λ V T
F
2 ∣ U ∈ ℤτ

M × R, V ∈ ℤτ
N × R, Λ ∈ ℤ+

R × R
(2)

where ℤτ = 0, 1, …, τ  is the set of nonnegative integers up to τ, ℤ+ = 1, 2, …, ∞  is the set 

of positive integers and Λ is a diagonal R-by-R matrix. The above problem can be also 

formulated as X − ∑r = 1
R λ(r) U(: , r) V : , r T

F
2

 where λ(r) = Λ(r, r). The reason for having 

λ(r) is to absorb any scaling of each r-th rank-1 component, since the entries of U and V 
factors are upper bounded by τ. Note that the λ(r) values cannot be simply obtained through 

normalization as in the corresponding real-valued models (e.g., NMF [25, 35]), due to the 

integer constraints. Finally, note that the integer set ℤτ can easily vary for different factor 

matrices and even allow negative integers; this can also happen for the input matrix X. The 

formulation in Problem (2) favors simplicity of presentation and matches the need of 

phenotyping applications.

Fitting Algorithm: We employ an alternating updating scheme to tackle the non-convex 

optimization Problem (2). Our scheme leads to optimal solutions to each one of the sub-

problems in an efficient manner, while organizing the order of updates so as to promote re-

use of already computed intermediate results.

We follow the intuition behind the Hierarchical Alternating Least Squares (HALS) 

framework, which enables isolating and solving for each k-th rank-1 component separately. 

Thus, Problem (2) gives:
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min X − ∑
r = 1, r ≠ k

R
λ(r) U(: , r) V : , r T

Rk

− λ(k) U(: , k) V : , k T

F

2
∣ U

∈ ℤτ
M × R, V ∈ ℤτ

N × R, Λ ∈ ℤ+
R × R

(3)

where Rk corresponds to the “residual matrix” and is considered fixed when solving for the 

k-th rank-1 component. The objective can be written as [30]:

J = Rk F
2 + λ2(k) U(: , k) 2

2 V (: , k) 2
2 − 2 λ(k)U : , k TRk V (: , k)

We set:

∂J / ∂λ(k) = 2 λ(k) U(: , k) 2
2 V (: , k) 2

2 − 2 U : , k TRk V (: , k) = 0

and obtain:

λk* ≔
U :, k T Rk V (: , k)

U(: , k) 2
2 V (: , k) 2

2

If U (:, k)T Rk V (:, k) > 0 then the minimum value of J for λ(k) ∈ ℤ+ is obtained at 

max 1, round λk*  where round() rounds to the nearest integer. If U (:, k)T Rk V (:, k) ≤ 0, then 

the minimum objective value for λ(k) ∈ ℤ+ is attained at λ(k) = 1. Combining these two 

cases, the optimal λ(k) ∈ ℤ+ is given by:

λ(k) max 1, round U(: , k)T Rk V (: , k)
U(: , k) 2

2 V (: , k) 2
2 (4)

In practice, Rk may be large (M × N) and dense, even if the input is sparse (as happens in 

our main motivating application); thus its explicit materialization should be avoided [16, 27]. 

Expanding the above expression gives:

λ(k) max 1, round λ(k) +
V (: , k)T XTU : , k − V Λ UT U : , k

UT U k, k V T V k, k
(5)

Next, solving Problem (3) for V (:, k) gives:

min Rk − λ(k) U(: , k) V (: , k)T
2
2 ∣ V (: , k) ∈ ℤτ

N
(6)
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To solve the above, we apply the Optimal Scaling Lemma [8] for the integer constraint. This 

Lemma states that for any set C of constraints imposed on b, it holds that:

min Y − x bT 2
2 ∣ b ∈ C = ΠC(β)

where β = xT Y
xT x

 is the unconstrained solution to the above problem. This means that the 

optimal solution of the constrained problem is simply the projection of the unconstrained 

solution onto the constraint set C. Thus, the optimal solution of Problem (6) is:

V (: , k) ΠℤτN
Rk

T U(: , k)
UT U k, k λ(k)

(7)

Since ℤτ
N is the Cartesian product of subsets of the real line, i.e., ℤτ

N = ℤτ × ℤτ × ⋯ × ℤτ
N times

 we 

can take

ΠℤτN(V (: , k)) = Πℤτ(V (1, k)), …, Πℤτ(V (N, k)) (8)

thus project each scalar coordinate individually. For a real-valued scalar α, projecting onto 

ℤτ gives [47]:

Πℤτ(α) = min(max(round(α), 0), τ) (9)

Finally, expanding Rk in Expression (7), combining with (8), (9) and setting:

b V (: , k) +
XT U : , k − V Λ UT U : , k

UT U k, k λ(k)
(10)

gives the optimal solution for Problem (6):

V (: , k) min(max(round(b), 0), τ) (11)

where min(), max(), round() are taken element-wise.

Having derived the updates for λ(k), V (:, k), in Relations (5) and (11) respectively, we 

remark that the computationally expensive intermediate results [XT U] and [UT U] are 

shared between them. To exploit that, we choose to successively update λ(k) and V(:, k) 

during the same iteration and iterate ∀k ∈ {1, … , R}. As a result of the proposed update 

order, the only non-negligible additional operation in order to compute both λ(k) andV (:, k) 

is to re-compute t ≔ V Λ UT U]:, k after having updated λ(k).

Re-computing t can be further optimized by observing that only the contribution of the k-th 

component tk ≔ V (:, k) * λ(k) [UT U]k, k has to be adjusted. Thus, we can store t and tk, 

compute λ′(k), and then adjust t as: t ← t − tk + (V (:, k) * λ′(k) [UT U]k, k).
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Updating U (:, k) can be executed in symmetric fashion to V (:, k). In Algorithm 1, we 

present our main procedure to update both the factor matrices U and V and λ values in an 

alternating fashion. In Algorithm 2, we provide the definition of SUSTain_Update_Factor 

which updates a single factor (denoted as F) and the vector λ.

Algorithm 1

SUSTainM

Require: X ∈ ℝM × N, target rank R and upper bound τ

Ensure: U ∈ ℤτ
M × R, V ∈ ℤτ

N × R, λ ∈ ℤ+
R

 1: Initialize U, V, Λ

 2: while convergence criterion is not met do

 3:  F ← U, M ← X V, C ← VT V

 4:  [U, λ] = SUSTain_Update_Factor(F, M, C, λ, R, τ)

 5:  F ← V, M ← XT U, C ← UT U

 6:  [V, λ] = SUSTain_Update_Factor(F, M, C, λ, R, τ)

 7: end while

Algorithm 2

SUSTain_Update_Factor(F, M, C, λ, R, τ)

Require: F ∈ ℤτ
I × R, M ∈ ℝI × R, C ∈ ℝR × R, λ ∈ ℤ+

R, target rank R and upper bound τ

Ensure: F ∈ ℤτ
I × R, λ ∈ ℤ+

R

 1: for k = 1, … , R do

 2:  t ← F (λ * C(:, k))

 3:  tk ← F (:, k) * λ(k) C(k, k)

 4:  α λ(k) + F(: , k)T (M(: , k) − t)
C(k, k) FT F k, k

 5:  λ(k) ← max (1, round (α))

 6:  t ← t − tk + (F (:, k) * λ(k) C(k, k))

 7:  b F(: , k) + M(:, k) − t
C(k, k)λ(k)

 8:  F (:, k) ← min (max (round (b), 0), τ)

 9: end for

Computational Complexity: The asymptotic cost of executing Algorithm 2 is 2R2I flops 

(i.e., floating-point operations), ∀R > 5. This step costs 2R2N when updating V and 2R2M 
when updating U. In Algorithm 1, assuming the input X is sparse, the cost of each one of X 
V and XT U is 2 nnz (X) R flops. Also, computing VT V and UT U cost 2R2N and 2R2M 
flops respectively. Thus, the total cost is: 4R (nnz(X) + (M + N)R) flops.
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3.2 SUSTain for tensor input

Model: For a tensor X ∈ ℝI1 × I2 × …Id of order d and a certain target rank R, the problem 

can be defined as

min X − ∑
r = 1

R
λ(r) A(1)(: , r) ∘ … ∘ A(d)(: , r)

F

2
∣ A(n) ∈ ℤτ

In × R, λ(r) ∈ ℤ+ (12)

where n = {1, … , d}, ℤτ = 0, 1, …, τ  is the set of nonnegative integers up to τ and 

ℤ+ = 1, 2, …, ∞  is the set of positive integers. Our model is an extension of SUSTainM 

presented in Section 3.1 for high-order tensors. It can be viewed as a constrained version of 

the CP tensor model [9, 18, 20].

Fitting Algorithm: Similarly to the matrix case, we set:

ℛk ≔ X − ∑
r = 1, r ≠ k

R
λ(r) A(1)(: , r) ∘ … ∘ A(d)(: , r)

Thus, Problem (12) becomes:

min ℛk − λ(k) A(1)(: , k) ∘ … ∘ A(d)(: , k) F
2 ∣ A(n) ∈ ℤτ

In × R, λ(k) ∈ ℤ+ (13)

We matricize the above expression w.r.t. mode-n and utilize the fact that the mode-n 
matricization of a rank-1 tensor b1 ○ ⋯ ○ bd can be expressed as bn (bd ⊗ ⋯ ⊗ bn+1 ⊗ 
bn−1 ⊗ ⋯ ⊗ b1)T [17]:

min

ℛk(n) − λ(k)A(n)(: , k) A(d)(: , k) ⊗ ⋯ ⊗ A(n + 1)(: , k) ⊗ A(n − 1)(: , k) ⊗ ⋯ ⊗ A(1)(: , k) T
F
2

∣ A(n) ∈ ℤτ
In × R, λ(k) ∈ ℤ+

(14)

We set A⊙
( − n) ≔ A(d) ⊙ ⋯ ⊙ A(n + 1) ⊙ A(n − 1) ⊙ ⋯ ⊙ A(1) as the Khatri-Rao Product of all 

the factor matrices except the n-th and

C( − n) ≔ A(d)TA(d) * ⋯ * A n + 1 T
A(n + 1) * A(n − 1)TA(n − 1) * ⋯ * A(1)TA(1) (15)

as the Hadamard product of the Gram matrices of all the factor matrices except the n-th. 

Then, Objective (14) becomes

min ℛk(n) − λ(k)A(n)(: , k)A⊙
( − n)(: , k)T

F
2 ∣ A(n) ∈ ℤτ

In × R, λ(k) ∈ ℤ+ (16)
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Solving the above for λ(k) can be handled equivalently to the corresponding matrix case 

(Relation (4)). Thus, the optimal solution for λ(k) ∈ ℤ+ is:

λ(k) max 1,  round 
A(n)(: , k)Tℛk(n)A⊙

( − n)(: , k)
A(n)(: , k) 2

2 A⊙
( − n)(: , k) 2

2 (17)

By exploiting that [29]:

A⊙
( − n)(: , k) 2

2
= A⊙

( − n)(: , k)TA⊙
( − n)(: , k) = A⊙

−n T
A⊙

( − n)
k, k

= C( − n)(k, k)

and expanding:

ℛk(n)A⊙
( − n)(: , k) = M(n)(: , k) − A(n) Λ C( − n)(: , k) + λ(k)C( − n)(k, k)A(n)(: , k) (18)

where M(n)(:, k) is the Matricized-Tensor Times Khatri-Rao Product (MTTKRP) [3] 

operation w.r.t. mode n, we get the optimal solution for λ(k) ∈ ℤ+ as:

λ(k) max 1,  round  λ(k) +
A(n)(: , k)T M(n)(: , k) − A(n) Λ C( − n)(: , k)

C( − n)(k, k) A(n)T A(n)
k, k

(19)

Next, we transpose the Objective (16) and solving for A(n)(:, k) can be handled as in the 

matrix case (Relation (7)) through the(Optimal Scaling Lemma [8]. Thus, the optimal 

A(n)(: , k) ∈ ℤτ
In is given by:

A(n)(: , k) ΠℤτIn ℛk(n)A⊙
( − n)(: , k)

C( − n)(k, k) λ(k)
(20)

Finally, combining Equation (18) into the above gives:

A(n)(: , k) ΠℤτIn A(n)(: , k) + M(n)(: , k) − A(n) Λ C( − n)(: , k)
C( − n)(k, k) λ(k)

(21)

Note the direct correspondence of the above formulations for λ(k), A(n)(:, k) with the core 

update Algorithm 2 we used for the matrix case. If we set F ← A(n), M ← M(n), C ← C(−n) 

then we can simply use Algorithm 2 to update a single factor A(n) and the λ values. Also, we 

can exploit the development of existing scalable software libraries computing the bottleneck 

MTTKRP kernel for sparse data efficiently [3]. In Algorithm 3, we summarize the 

operations of our methodology for tensor input.

Computational Complexity: Updating the n-th mode in Algorithm 3 requires: 

3 R nnz(X) flops to compute the MTTKRP using state-of-the-art libraries for sparse tensors 

[3], 2 R2 In flops to compute A(n)T An and (d − 1) R2 flops to update C(−n) as in Equation 
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(15). As discussed in the matrix case, the dominant cost of Algorithm 2 is 2 R2 In flops. 

Overall, Algorithm 3 requires: 3 d R nnz(X) + 4 R2∑n = 1
d In + d(d − 1)R2 flops. In our 

experiments, the first term, thus the computation of MTTKRP, dominates the total cost.

Algorithm 3

SUSTainT

Require: X ∈ ℝI1 × I2 × …Id, target rank R and upper bound τ

Ensure: A(n) ∈ ℤτ
In × R

, with n ∈ {1, … , d}, λ ∈ ℤ+
R

 1: Initialize A(n), λ

 2: while convergence criterion is not met do

 3:  for n = 1, … , d do

 4:   M(n) X(n)A⊙
( − n)

  // MTTKRP

 5:   Compute C(−n) as in Relation (15)

 6:   [A(n), λ] = SUSTain_Update_Factor(A(n), M(n), C(−n), λ, R, τ)

 7:  end for

 8: end while

3.3 Interpretation for phenotyping

Given the EHRs of a certain cohort, we form a patient-by-diagnoses matrix X, whose X(i, j) 
cell is the number of encounters of patient i where encounter diagnosis j was recorded. In 

that case, the patient membership vector U (i, :) of SUSTainM provides the distinct levels of 

frequency of each one of the R phenotypes throughout the medical history of the i-th patient. 

Likewise, each column V (:, r) indicates the frequency levels of each medical feature w.r.t. 

the r-th phenotype. Table 1 summarizes a phenotype example that accounts for the largest 

share of heart failure patients. Finally, due to the integer box (i.e., {0, … , τ}) constraints 

employed on the factor matrices, we can interpret the integer λ(r) values as scaling up the 

input encounter counts for the r-th phenotype. Thus, phenotypes with higher λ(r) values are 

expected to describe more persistent medical conditions, with higher number of associated 

encounters.

The above interpretation can be extended to the tensor case. Consider a tensor X whose 

X i, j, k  cell defines the count of encounters of patient i where medication k was ordered for 

the patient with diagnosis j as the order indication. Factorizing this tensor using SUSTainT 

yields a patient factor A(1) which can be interpreted similarly to the U factor in the matrix 

case. Also, the factor matrices A(2), A(3) corresponding to diagnosis and medication or 

procedure phenotypes can be interpreted similarly to the V factor in the matrix case. The 

same applies to the λ(r) model values.

4 EXPERIMENTS

4.1 Setup

4.1.1 Description of datasets.—Table 3 summarizes statistics for the datasets used.
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Sutter:  This dataset corresponds to EHRs from Sutter Palo Alto Medical Foundation 

(PAMF) Clinics. The patients are 50 to 80 years old adults chosen for a heart failure study 

[11]. To form a patient-by-diagnosis matrix input, we extracted the number of encounter 

records with a specific diagnosis for each patient. To form a patient-diagnosis-medication 

tensor input, we used the medication orders, reflecting the ordered medications and the 

indicated diagnosis. We adopt standard medical concept groupers to group the available 

ICD-9 diagnosis codes [45] into Clinical Classification Software (CCS) [1] diagnostic 

categories (level 4). We also group the normalized drug names (i.e., combining all branded 

names and the generic name for a medication) based on unique therapeutic subclasses using 

the Anatomical Therapeutic Chemical Classification System [39].

CMS:  We used a publicly-available CMS Linkable 2008–2010 Medicare Data 

Entrepreneurs’ Synthetic Public Use File (DE-SynPUF)2 that contains three years of claim 

records synthesized (i.e., to protect privacy) from 5% of the 2008 Medicare population. 

CMS creates twenty 5% subsamples of the claims data. We used the carrier claims data 

available from DE-SynPUF for the patients belonging to Samples 1 & 2. We increase the 

number of samples (i.e., number of patients) considered for the experiments related to 

assessing scalability. We used the diagnostic code information to build the input matrix and 

the diagnoses and procedures recorded to build the input tensor. In particular, we group the 

available ICD-9 diagnosis codes [45] into CCS [1] diagnostic categories (level 4) and use the 

CCS flat code grouper [1] to transform the CPT procedure codes available into procedure 

categories.

4.1.2 Baselines.—Below, we describe our efforts to design competitive baseline 

methods producing the target models in Problems 2 and 12, for the matrix and the tensor 

cases respectively.

Round:  This baseline rounds the factor matrices from nonnegative matrix/tensor 

factorization. In the matrix case, we used the implementation of Nonnegative Matrix 

Factorization (NMF) [27, 28] and projected all the entries of the resulting factor matrices to 

ℤτ. We also set λ to an all-ones vector as NMF typically does not have the diagonal matrix 

Λ. A typical issue of naively rounding NMF solutions is that values that are lower than 0.5 

are rounded to 0, so a potentially large part of model information can be lost.

In the tensor case, we used the CP-ALS algorithm as in the Tensor Toolbox [4], adjusted to 

impose non-negativity constraints [28] on the factor matrices. Also, in contrast to the NMF 

case, CP-ALS produces a λ vector of nonnegative real values. In order to alleviate the effect 

of zeroing out values less than 0.5 we compute the cube root of the λ vector element-wise 

and form a vector λ . Then, we absorb this scaling in the factor matrices by multiplying 

A(n)diag(λ), ∀n = 1, …, d  where d is the input tensor’s order. Finally, we set λ to an all-

ones vector and project all the entries of the resulting factor matrices to ℤτ.

2These data can be downloaded from https://www.cms.gov/Research-Statistics-Data-and-Systems/Downloadable-Public-Use-Files/
SynPUFs/DE_Syn_PUF.html
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Scale-and-round:  We design a more sophisticated scale-and-rounding heuristic which 

scales the factor matrices of the real-valued solutions before performing the rounding. This 

step further alleviates the problem of zeroing out values less than 0.5.

In the matrix case, we define the scaling factor γ2(j) = τ/max(V (:, j)). Then, 

V (: , j) = round γ2(j)V (: , j) . Similarly, we define γ1(j) = τ/max(U (:, j)). Then, 

U(: , j) = round γ1(j)U(: , j) . Those steps scale-up the maximum value of factor matrix 

column to reach the upper bound τ. Then, this excess scaling is absorbed into λ as: λ = 

round(1/γ1γ2).

In the tensor case, we absorb the scaling of the λ output of the real-valued solution into the 

factor matrices as in “Round”, and extend the Scale-and-round matrix approach accordingly.

AILS: Alternating Integer Least Squares approach:  We used the Integer Least Squares 

(ILS) with box constraints approach which is proposed in [6, 49]. This approach was 

recently unified within an Integer Matrix Factorization framework [15]. We exploit the 

redundancy among ILS problems targeting the same factor matrix, so that the QR 

factorization in the reduction phase is only computed once. Note that solving general ILS 

problems is NP-hard [15], which is reflected in the runtime of this method in the 

experiments. We enabled the extraction of the integer λ values through an ILS by noticing 

that vectorizing the original problem as

min vec U Λ V T − vec(X) F
2 ∣ Λ ∈ ℤ+R × R

can be transformed to [7]: min (V ⊙ U)λ − vec(X) F
2 ∣ λ ∈ ℤ+

R  which gives the ILS to solve 

for. Note that we attempted to extend this approach for tensor input; however, the 

materialization of the Khatri-Rao product of all the factor matrices failed due to out of 

memory problems even for the smallest target rank for both of the datasets used. To illustrate 

the magnitude of this issue, the size needed for the Khatri-Rao product of all factor matrices 

for Sutter data and R = 5 is: 248347 * 552 * 555 * 5 * 8 bytes ≈ 3 Terabytes.

4.1.3 Evaluation metrics.—We evaluate the methods under comparison in terms of the 

trade-off between execution time and accuracy for various target ranks considered (R = {5, 

10, 20, 40}). Accuracy is measured in terms of fit: 1 − X − X F / X F , where X the re-

constructed through the model factors (this extends trivially to the tensor case); fit can be 

considered as the the proportion of data explained by the model.

4.1.4 Initialization details.—In all experiments, when we compare SUSTain and AILS, 

we provide them with the same initialization.

Regarding the accuracy-time trade-off evaluation, we initialize with several schemes and for 

each method we choose the one providing the highest fit. The schemes are the following: a) 

round heuristic, b) scale-and-round heuristic, c) random: random initialization with integers 

within the required range and λ set to all-ones vector, d) random & sampling: random 
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initialization of the patients factor and sampling from the input data to populate the rest of 

the factors. In the matrix case, we initialize each j-th column of V by random sampling of 

input patient vectors and scaling them to lie on ℤτ if needed. In the tensor case, for each 

sampled slice X i, : , : , we populate each j-th component of A(2), A(3) by sampling the row 

and column of X i, : , :  with the maximum sum. Note that when we measure execution time 

for each approach, we do take into account the time spent for its initialization.

In the scalability evaluation, we initialize each method with the random & sampling scheme 

(d) described above; this provided better starting points than using pure random 

initialization. For this experiment, we ignore the initialization time, since we want to focus 

on the methods’ scalability behavior.

4.1.5 Implementation details.—We used MatlabR2017b for our implementations, 

along with functionalities for sparse tensors from the “Tensor Toolbox” [4] and for 

nonnegative matrix factorization from the “nonnegfac-matlab” [27] toolbox. The ILS solver 

we use for the AILS baseline is included in the state-of-the-art MILES software [10].

The zero-lock problem refers to the case when a single column is zeroed out, thus zeroing 

out an entire rank-1 component of the solution. To avoid that in our scheme, we add the 

smallest perturbation possible (+1) to a randomly-chosen coordinate of the vector zeroed 

out.

In both SUSTain and AILS, we break the iterations when the successive difference of the 

objective drops below 1e − 4. Finally, the parameter τ is set to 5 driven by discussions with 

medical experts and similarity to many medical scoring systems.

4.1.6 Hardware.—We conducted our experiments on a server running Ubuntu 14.04 with 

1TB of RAM and four Intel E5–4620 v4 CPU’s with a maximum clock frequency of 

2.10GHz. Each of the processors contains 10 cores with 2 threads each.

4.2 Matrix case experiments

Accuracy-Time trade-off: In Figure 1, we showcase the accuracy-time trade-off 

regarding the Sutter PAMF dataset. SUSTainM is at least 60× faster (R = 40) than the most 

accurate baseline (AILS). For R = 5, SUSTainM achieves 425× speedup over AILS: as 

compared to the ≈ 22 minutes spent by AILS, our approach executes in ≈ 3 seconds for the 

same level of accuracy. Even for R = {10, 20} SUSTainM achieves 98× and 110× faster 

computations than AILS. At the same time, SUSTainM achieves up to 16% higher fit than 

the scale-and-round heuristic, operating on comparable running times. Note that for R = 5, 

our approach is even faster (and more accurate) than the scale-and-round baseline as well, 

since initializing with random factors provided a better final fit than initializing with the 

scale-and-round result. We also remark that the naive round heuristic achieves a fit of zero, 

which is a by-product of zeroing out the majority of the model factor elements.

In Figure 2, we provide the results of the same experiment regarding the CMS dataset. For 

the same level of accuracy, SUSTainM is at least an order of magnitude faster than AILS, 
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and up to 38× faster for R = 20. It also achieves up to 14% higher fit over the scale-and-

rounding heuristic for comparable execution time.

Scaling for larger number of patients: In Table 4, for fixed R = 10, we measure a 

single iteration’s time for increasing subsets of CMS patients. The NMF execution time is 

considered for Round and Scale-and-round heuristics, since their post-processing cost is 

negligible. SUSTainM can execute very fast (a single iteration in ≈ 3 seconds) even for ≈ 
985 thousand patients.

4.3 Tensor case experiments

Accuracy-Time trade-off: In Figure 3, we provide the fit-time trade-off for varying target 

rank of our input tensor datasets. As discussed in Section 4.1.2, the extension of AILS 

approach to tensors cannot scale for any dataset or target rank considered. Overall, 

SUSTainT achieves up to 9% and 12% increase in fit over the scale- and-round heuristic 

w.r.t. the Sutter PAMF and CMS datasets respectively. Note that the fit of the scale-and-

round approach decreases for successively increasing target rank values (e.g., transitioning 

from R = 20 to R = 40 for CMS data). This indicates that heuristic approaches which simply 

post-process real-valued solutions may not fully exploit the available target rank.

Scaling for larger number of patients: In Table 5, we report the time spent for one 

iteration of increasingly larger subset of patients considered from the CMS data, with fixed 

target rank (R = 10). The time measured for the heuristic approaches corresponds to the 

execution time of CP-ALS, since the post-processing cost is negligible. We observe that 

SUSTainT achieves linear scale-up w.r.t. increasing number of patients. We also remark that 

the dominant cost in both SUSTainT and the CP-ALS is the MTTKRP computation, which 

explains the comparable running time.

4.4 Case study on Phenotyping HF patients

Cardiovascular disease (CVD) is the leading cause of death worldwide and heart failure 

(HF) is a dominant cause of morbidity and mortality. HF is traditionally characterized by 

reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF). But, recent 

evidence suggests that HF is more heterogeneous than is reflected by ejection fraction. We 

used SUSTain to explore this heterogeneity in an incident HF cohort.

Cohort and data selection: We select only the HF case patients from the Sutter PAMF 

dataset. For each incident HF case, we extracted data in the 12-months before and the 12-

months after the initial HF diagnosis date, which resulted in 70, 531 clinical encounters. We 

used all the data modalities available, i.e., medication orders and indications and encounter 

diagnoses. The size of the resulting (patient-by-diagnosis-by-medication) tensor is 3, 497 × 

396 × 367; the tensor contains a total of 92, 662 non-zero elements.

Choosing the number of phenotypes: We use the stability-driven criterion introduced 

in [51]. The intuition behind this criterion is in promoting a target rank for which several 

runs with different initial points return reproducible factors. We choose the diagnosis factor 

matrix as the factor under assessment. Let D1 and D2 be the diagnosis factor matrix for 2 
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different runs with the same target rank. Then, the cross-correlation matrix C ∈ ℝR × R is 

computed between the columns of D1, D2 and the dissimilarity between them is computed as 

[51]:

diss D1, D2 = 1
2R 2R − ∑

j = 1

R
max1 ≤ k ≤ RC(k, j) − ∑

k = 1

R
max1 ≤ j ≤ RC(k, j)

Note that when D1 can be transformed to D2 by column permutation, then diss(D1, D2) = 0. 

If B is the number of repetitions for each target rank, then the following relation computes 

the average dissimilarity over B(B − 1)/2 pairs of resulting factors:

Y (R) = 2
B(B − 1) ∑

1 ≤ b < b′ ≤ B
diss Db, Db′

We used the “staNMF” toolbox3 to compute the above score for each target rank on the 

range {5, … , 20}. The input to SUSTainT were B = 20 initial points of the round heuristic. 

R = 15 phenotypes were selected based on the above criterion. For the target rank chosen, 

we pick the solution yielding the highest fit.

SUSTain provides concise and accurate solutions: We observed that besides 

preserving the input data properties and providing a natural interpretation for medical 

experts, SUSTain implicitly imposes sparse factors. To assess the factors’ conciseness, we 

compare their fit with the achieved fit of the real-valued model (NN CP-ALS), which is 

post-processed to achieve factor sparsity (as would be done by a practitioner). For each of 

the feature factors (diagnosis and medication) of the real-valued model, we only consider the 

top-k elements for each column (i.e., most important elements of each phenotype). For the 

patient factor, we consider the top-k elements for each row (i.e., most important phenotypes 

for each patient). In each case, the value of k is chosen so that the sparsity level is close to 

the one achieved by SUSTainT . We provide the results in Table 6, where we notice that for 

the same level of sparsity, SUSTainT achieves ≈ 8.6% increase in fit. Thus, the integer 

factors of SUSTainT decompose the input more accurately for the same level of sparsity than 

the real-valued counterpart.

Phenotype discovery: In Table 1 and Table 7, we provide representative phenotypes 

extracted through our method. A subset of annotations provided by the cardiologist are as 

follows: hyperlipidemia (the one in Table 1), HF with reduced LVEF (HFrEF), hypertension 

(HTN), HTN which is more difficult to control, persistent and chronic atrial fibrillation, 

depression, diabetes, comorbidities of aging, prior pulmonary embolism. Overall, 13 out of 

15 phenotype candidates were annotated as clinically meaningful phenotypes related to heart 

failure.

3https://github.com/bdgp/staNMF
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5 RELATED WORK

Discrete factorization-based approaches:

Dong et al. [15] proposed an Integer Matrix Factorization framework via solving Integer 

Least Squares subproblems. As we experimentally evaluated, this approach is orders of 

magnitude slower than SUSTain while achieving the same level of accuracy. Kolda and 

O’Leary [30, 40] proposed a Semidiscrete Matrix Decomposition into factors containing 

ternary values ({−1, 0, 1}). Despite its demonstrated success for compression purposes, a 

direct application of this approach would introduce negative values into the factors, thus 

hurting interpretability for nonnegative input. Finally, several prior works target binary 

factorization (e.g., [32, 33, 36–38, 44, 53]). In contrast to strictly binary factors, SUSTain 

captures the quantity embedded in the input data, which reveals important information (e.g., 

relative phenotype prevalence and associated feature frequencies).

Unsupervised Phenotyping:

Extensive prior work applies factorization techniques for unsupervised phenotyping (e.g., 

[19, 21, 22, 24, 41, 42, 50]). However, no work considered extracting scoring-based 

phenotypes to facilitate their interpretation by domain experts.

HALS fitting algorithms:

Our fitting algorithms follow the intuition of Hierarchical Alternating Least Squares (HALS) 

framework [12] (aka rank-one residue iteration [23]), which enables formulating the solution 

for each k-th rank-1 component separately. However, plain HALS does not tackle the 

challenges involved with either imposing integer constraints or solving for the vector λ.

6 CONCLUSIONS

The accuracy and scalability of SUSTain on “native” integer data derives from two key 

insights. One is expected: just rounding or applying related transformations to real-valued 

solutions is inherently limited. The second may be more surprising: while discrete 

constraints might appear to make the problem more challenging, in fact, a careful 

organization of the problem into subparts can mitigate that complexity. In our case, we 

identify a problem partitioning of integer-constrained subproblems that leads to an optimal 

and efficient solution; and, we also define the order of alternating updates so as to enable 

reuse of shared intermediate results. Consequently, SUSTain outperforms several baselines 

on both synthetic (publicly-available) and real EHR data, showing either a better fit or 

orders-of-magnitude speedups at a comparable fit.

Moving forward, there are many other sources of integer values in real-world data. These 

include, for instance, ordinal values. Thus, whereas this paper targets event counts, 

extensions for other cases is a ripe target for future work.

Lastly, to enable reproducibility of our work, we open-source our implementations and make 

them publicly available at: https://github.com/kperros/SUSTain.
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CCS CONCEPTS

• Computing methodologies → Factorization methods; • Applied computing → Health 

informatics;
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Figure 1: 
Fit (range [0, 1]) vs time trade-off for varying target number of phenotypes R = {5, 10, 20, 

40}, on a patients-by-diagnoses matrix formed of ≈ 260K patients from Sutter Palo Alto 

Medical Foundation Clinics. SUSTainM is as accurate as the most accurate baseline (based 

on [6, 15, 49]), but up to 425× faster (R = 5: ≈ 3 seconds by SUSTainM vs. ≈ 22 minutes by 

AILS). Even for a larger target rank (e.g., R = 20), SUSTainM is 110× faster (≈ 4 minutes by 

SUSTainM vs. ≈ 7 hours by AILS). As compared to a carefully-designed heuristic that 

performs a scale-and-rounding of the real-valued solution, SUSTainM achieves up to 16% 

higher fit. In summary, SUSTainM dominates all other baselines in both time and fit.
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Figure 2: 
Fit (range [0, 1]) vs time trade-off for varying target number of phenotypes R = {5, 10, 20, 

40} for the CMS matrix input. SUSTainM is at least an order of magnitude faster than the 

most accurate baseline (up to 38× faster for R = 20), while achieving the same level of 

accuracy. Also, SUSTainM achieves up to 14% higher fit over scale-and-rounding heuristics.
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Figure 3: 
Fit (range [0, 1] vs time trade-off for varying target number phenotypes R = {5, 10, 20, 40} 

for the Sutter and the CMS tensor input. SUSTainT achieves up to 9% and 12% higher fit 

respectively over scale-and-rounding heuristics.
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Table 1:

Most prevalent phenotype (26% of patients) extracted via SUSTainT for a heart failure cohort. The r-th 

phenotype prevalence is measured through the patient membership vectors containing non-zero element in the 

r-th coordinate. The score of each feature indicates its relative frequency. The prefix for each feature indicates 

whether it corresponds to a medication (Rx) or a diagnosis (Dx). The cardiologist labeled the result as 

“hyperlipidemia” and confirmed that the two features are clinically connected to heart failure.

Hyperlipidemia Score

Rx_HMG CoA Reductase Inhibitors 3

Dx_Disorders of lipid metabolism 1
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Table 2:

Notations used throughout the paper.

Symbol Definition

X, X, x, x Tensor, matrix, vector, scalar

vec(X) Vectorization operator for matrix X

ΠC (x) Euclidean projection of x to a set C

X (:, i) Spans the entire i-th column of X

diag(x) Diagonal matrix with vector x on the diagonal

X(n) mode-n matricization of tensor X
A(n) factor matrix corresponding to mode n

∘ Outer product

⊗ Kronecker product

⊙ Khatri-Rao product

A⊙
( − n)

Khatri-Rao product of all the factor matrices expect A(n)

M(n) the MTTKRP corresponding to mode-n

* Hadamard (element-wise) product
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Table 3:

For each dataset used, we list its name, nature of input modes, their sizes and the approximate number of non-

zeros. Pat refers to patients, Dx to diagnoses, Rx to medications and Proc to procedures.

dataset modes size of modes #nnz (≈Millions)

Sutter-matrix Pat-Dx 259,999 × 576 5.7

Sutter-tensor Pat-Dx-Rx 248,347 × 552 × 555 5.4

CMS-matrix Pat-Dx 197,212 × 583 10.9

CMS-tensor Pat-Dx-Proc 197,143 × 583 × 239 23.4
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Table 4:

Running time (seconds) of one iteration for increasingly larger number of patients considered from the CMS 

data. Matrix case, R = 10.

#patients (≈Thousands) 246 493 739 985

#nnz (≈Millions) 14 27 41 55

SUSTainM 0.71 0.95 1.66 2.82

Round / Scale-and-round 4.4 8.9 12.9 19.5

AILS 339 514 940 1254
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Table 5:

Running time (seconds) of one iteration for increasingly larger number of patients considered from the CMS 

data. Tensor case, R = 10.

#patients (≈Thousands) 246 493 739 985

#nnz (≈Millions) 29 58 88 117

SUSTainT 38.5 76.9 115 151

Round / Scale-and-round 39.6 78 117 157
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Table 6:

SUSTainT achieves ≈ 8.6% increase in fit than a Nonnegative CP-ALS model truncated to achieve the same 

level of sparsity. The result refers to the HF case study for R = 15.

method #nnz(A(1)) #nnz(A(2)) #nnz(A(3)) fit

SUSTainT 3, 438 54 88 0.261

NN CP-ALS 3, 497 60 90 0.175
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Table 7:

Representative phenotypes extracted by SUSTainT for our HF case study. The score of each feature indicates 

its relative frequency within the phenotype. The prefix for each feature indicates whether it corresponds to a 

medication (Rx) or a diagnosis (Dx). A cardiologist provided phenotype annotations and validated that: the 

top-most phenotype is aligned to guideline-based management of HF with reduced LVEF (HFrEF), the next 

one corresponds to typical hypertensive patients (common risk factor of HF) and the last one corresponds to 

hypertensive patients being more difficult to control.

HF with reduced LVEF (HFrEF) Score

Rx_Loop Diuretics 3

Dx_Congestive heart failure 1

Rx_ACE Inhibitors 1

Rx_Alpha-Beta Blockers 1

Rx_Potassium 1

Hypertension Score

Rx_ACE Inhibitors 3

Dx_Essential hypertension 1

Rx_Alpha-Beta Blockers 1

Rx_Beta Blockers Cardio-Selective 1

Rx_Calcium Channel Blockers 1

Rx_HMG CoA Reductase Inhibitors 1

Rx_Loop Diuretics 1

Rx_Thiazides and Thiazide-Like Diuretics 1

Hypertension (more difficult to control) Score

Rx_Angiotensin II Receptor Antagonists 2

Rx_Beta Blockers Cardio-Selective 2

Rx_Calcium Channel Blockers 2

Dx_Essential hypertension 1

Rx_Antiadrenergic Antihypertensives 1

Rx_Loop Diuretics 1

Rx_Potassium 1

KDD. Author manuscript; available in PMC 2021 March 06.


	Abstract
	INTRODUCTION
	Contributions:

	BACKGROUND
	THE SUSTAIN FRAMEWORK
	SUSTain for matrix input
	Model:
	Fitting Algorithm:


	Algorithm 1
	Algorithm 2
	SUSTain for tensor input
	Model:
	Fitting Algorithm:
	Computational Complexity:


	Algorithm 3
	Interpretation for phenotyping

	EXPERIMENTS
	Setup
	Description of datasets.
	Sutter:
	CMS:

	Baselines.
	Round:
	Scale-and-round:
	AILS: Alternating Integer Least Squares approach:

	Evaluation metrics.
	Initialization details.
	Implementation details.
	Hardware.

	Matrix case experiments
	Accuracy-Time trade-off:
	Scaling for larger number of patients:

	Tensor case experiments
	Accuracy-Time trade-off:
	Scaling for larger number of patients:

	Case study on Phenotyping HF patients
	Cohort and data selection:
	Choosing the number of phenotypes:
	SUSTain provides concise and accurate solutions:
	Phenotype discovery:


	RELATED WORK
	Discrete factorization-based approaches:
	Unsupervised Phenotyping:
	HALS fitting algorithms:

	CONCLUSIONS
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Table 1:
	Table 2:
	Table 3:
	Table 4:
	Table 5:
	Table 6:
	Table 7:

