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LETTER TO EDITOR

The oral KIF11 inhibitor 4SC-205 exhibits antitumor activity
and potentiates standard and targeted therapies in primary
and metastatic neuroblastomamodels

Dear Editor,
Neuroblastoma remains incurable for most patients

with high-risk disease.1 Perturbation of transcription fac-
tors (MYCN and PHOX2B), kinases (ALK, MEK), and cell
cycle regulators (CDK4/6, CHECK1), among other factors,
make neuroblastoma cells highly proliferative, which is
associated with poor patient outcomes.2,3 To circumvent
the limitations of the classical microtubule poisons such as
vinca alcaloyds used in the treatment of neuroblastoma,1
we sought to explore alternative mitotic regulators as new
therapeutic targets for high-risk neuroblastoma patients.
One of these mitotic spindle-specific proteins is kinesin
family member 11 (KIF11), also known as kinesin spindle
protein, kinesin-5, or Eg5, which is essential for bipolar
spindle formation andmitotic progression inhuman cells.4
Transcriptomic analyses showed that the expression of

multiple kinesins, including KIF11 was higher in the high-
risk neuroblastoma compared with low- and intermediate-
risk groups (Figures 1A and S1; Table S1). Overall sur-
vival was significantly poorer in patients with high KIF11
expression (Figure 1B–D; Table S2). KIF11 high expression
was identified as an independent prognostic factor of sur-
vival, together with risk assessment (HR= 3.051; Table S3)
and found to be higher in patients with amplification of
MYCN, 1p36 loss, or 17q23 gain (Figure 1E). At the protein
level, KIF11 expression was detected in the cytoplasm of
neuroblastic cells (Figure 1F) and showed higher expres-
sion compared to low- or intermediate-risk neuroblastoma
samples (p < 0.05) and in tumors with segmental chro-
mosome alterations such as 1p36, 11q deletion, and gain
of 17q23 (Table S4). Kaplan–Meier analysis confirmed that
high KIF11 protein expression was associated with shorter
event-free and overall survival (Figures 1G and H). While
there is a positive correlation between KIF11 and MYCN
mRNA expression levels, MYCN is neither sufficient, nor
necessary for KIF11 expression (Figure S2).
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According to functional genomics, neuroblastoma cells
seem to be one of the cell types that are more dependent
on the expression of KIF11 for survival being particularly
sensitive to its pharmacological inhibition.5 Concurring
with these observations, the silencing of KIF11 caused a
reduction in cell viability (Figure S3A-C) and a 3–4 fold
reduction in the growth of established neuroblastoma sub-
cutaneous xenografts (Figure 2A–C and S3D-R). KIF11
inhibitors have moved forward toward phase 1 and 2 clini-
cal trials in adult tumors,6,7 with very limited development
for childhood cancer. Herein, we provide a complete pre-
clinical characterization of the potent and highly selective
KIF11 inhibitor, 4SC-205 (Figure 2D), the first oral KIF11
inhibitor that has been evaluated in phase I clinical trials
in adult patients (NCT01065025). Compared to other KIF11
inhibitors, 4SC-205 can be administrated daily, thus being
able to hit the target in a more sustained manner. Neu-
roblastoma cells treated with 4SC-205 (Figure 2E; Table
S5) displayed all the expected phenotypic features resulting
from KIF11 inhibition such as the inability to form bipo-
lar spindles (Figures 2F and S4A), cell cycle arrest during
mitosis (Figure S4B-H), and induction of apoptosis (Fig-
ure S5), thereby confirming the high KIF11 specificity of
this compound. While similar effects were observed in 3D
spheroid cultures (Figure S6A-C), 4SC-205 did not affect
the viability of differentiated cells (Figure S6D-G).
When used in vivo, 4SC-205 treated mice showed a

remarkable shrinkage of the original SK-N-BE(2) subcu-
taneous xenograft (Figures 2G and 2H) or tumor growth
delay in SK-N-AS xenografts (Figures 2J, 2K, and Figure
S7). Increased phosphorylation of histone H3 and apop-
totic hallmarks (i.e., processing of PARP) confirmed that
the antitumor effect of 4SC-205 was comparable to that of
genetic KIF11 silencing in vivo (Figures 2I,L). Transcrip-
tomic analysis of the 4SC-205-treated tumors confirmed
the expected genetic changes of arrested cells in mitosis
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F IGURE 1 KIF11 expression is an independent prognostic factor of survival in neuroblastoma. (A) KIF11mRNA expression levels
comparing low-/intermediate- with high-risk neuroblastoma tumors (GSE62564, n = 498). (B-D) Kaplan–Meier overall survival curve in a
cohort of 498 patients based on KIF11mRNA expression (B) or stratified in low- and intermediate-risk (C) or high-risk (D) neuroblastoma
subcohorts. (E) KIF11mRNA expression in neuroblastoma patients with different genomic alterations (GSE3960, n = 101). (F) Representative
images of KIF11 immunohistochemistry in low-and high-risk neuroblastoma tissues. Scale bar indicates 50 μm. (G and H) Kaplan–Meier
curves of event-free survival (G) and overall survival (H) based on KIF11 protein expression
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F IGURE 2 Genetic and pharmacological inhibition of KIF11 reduces tumor growth in subcutaneous neuroblastoma xenografts. (A)
Analysis of tumor volume of SK-N-BE(2) cells transducedwith an inducible shKIF11 lentiviral construct comparing the effects of KIF11 silencing
(+Dox) versus control (-Dox). (B)Waterfall plot comparing the change in tumor volume at day 28 post-injection versus day 18, when doxycycline
was added into the drinking water. (C) Western blot analysis of excised tumors at termination of the experiment. Turbo-RFP (tRFP) reporter
expression was used as a control for shRNA transgene induction. (D) 4SC-205 chemical structure. (E) Dose-response curves of neuroblastoma
cell lines treatedwith increasing concentrations of 4SC-205 for 48 h. IC50 values are represented as the average of three independent experiments
± SEM. (F) Mitotic spindle immunofluorescence of SK-N-BE(2) cells transfected with siKIF11 or treated with 4SC-205 (25 nM) for 24 h. KIF11:
red, α-TUBULIN: green, DAPI: blue. Scale bar, 5 μm. (G) Individual tumor growth of xenografts derived from SK-N-BE(2) comparing vehicle
(n = 10) versus 40 mg/kg 4SC-205 (n = 10). (H) Waterfall plot comparing the change in tumor volume at day 16 post-treatment versus day 4. (I)
Western blot analysis of cell-cycle and apoptosis-related proteins in SK-N-BE(2) resected tumors. (J) Tumor growth of subcutaneous xenograft
derived from SK-N-AS treated with vehicle (n= 10) or 40mg/kg 4SC-205 (n= 10). (K) Tumor volume fold change at day 7 post-treatment versus
day 0. (L) Western blot analysis of resected tumors at the end of the experiment. (M) Gene set enrichment analysis of SK-N-BE(2) xenografts
treated with vehicle or 4SC-205. Graph represents normalized enrichment score (NES) values of enriched sets with p < 0.05. (N and O)
Heatmap representing top 20 differentially deregulated genes of G2/M checkpoint and E2F targets (N), andmTORC signaling-related genes (O)
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F IGURE 3 4SC-205 impairs PDOX growth and prolongs the survival of mice bearing neuroblastoma liver metastasis. (A) Schematic
representation of PDOX generation and characterization. (B) Immunohistochemistry of neuroblastoma markers in FFPE tumor sections from
the original tumor (upper panels) and after implantation inmice (lower panels). H&E: Hematoxylin and eosin staining. Scale bar represents 110
μm. (C and D) Chromosomal copy number variations (CNV) of the original tumor and after implantation inmice. Themost relevant molecular
pathogenic alterations found in the original tumor andPDOXare highlighted. (E) Schematic illustration of the treatment schedule.Mice bearing
PDOXwere treated for 3weekswith either vehicle (n= 7) or 4SC-205 (40mg/kg,n= 11). (F) Tumorweights at the end of the experiment. (G)Rep-
resentative picture of the dissected tumors (T: tumor; K: kidney). Scale bar: 1 cm. (H) Representative images of phosphorylated histoneH3. Scale
bar: 10 μm. (I). Quantification of phospho-histoneH3 positive cells in histological sections fromvehicle- and 4SC-205-treated tumors.Graph rep-
resents the average percentage of positive cells ± SEM from vehicle-or 4SC-205 (10 representative fields/tumor) -treated tumors (n = 5/group).
(J) Scheme of the experimental design. SK-N-BE(2) cells were injected into the tail vein, and 21 days later, mice were randomized into vehicle
(n= 13) and 40mg/kg 4SC-205 groups (n= 15). Themice received oral administration of 4SC-205 three times a week for five consecutive weeks.
(K) Scatter dot plots representing the average quantification of tumor bioluminescence ± SEM at the indicated days post-treatment. **p < 0.01,
two-tailed student’s t-test. (L) Representative images of luciferase activity in eightmice from the vehicle and 4SC-205 treatment groups at 28 days
posttreatment. (M) Kaplan–Meier survival curve of mice with neuroblastoma liver metastases treated with either vehicle or 40 mg/kg 4SC-205
for 5 weeks. Statistical differences were calculated using the Gehan–Breslow–Wilcoxon test. *p < 0.05, ***p < 0.001, two-tailed Student’s t-test
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F IGURE 4 4SC-205 potentiates the effect of chemotherapy and neuroblastoma-targeted therapies. (A) Scheme of the experimental
design for the combination of 4SC-205 and standard chemotherapies. Images are representative of crystal violet staining of SK-N-BE(2) cells
treated with CDDP (1000 nM), doxorubicin (15 nM), topotecan (10 nM), 4SC-205 (17.5 nM) and their corresponding combinations (Combo).
(B) Heatmaps showing the percentage of cellular fraction affected by drug combination treatments. (C) Graphs represent the average effect on
cell viability from three independent experiments ± SEM (n = 3/condition). (D) Combinatorial analysis performed using SynergyFinder 2.0
software. (E) Schematic representation of the experimental design combining 4SC-205 and neuroblastoma-targeted therapies. Representative
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and tumor cells with reduced proliferation or viability (Fig-
ure 2M–O). We next tested 4SC-205 in a patient-derived
orthotopic xenografts (PDOX) derived from a very high-
risk neuroblastoma patient. VH-NB608 PDOX retained
most of the histological and molecular features of the orig-
inal tumor (Figure 3A–D). 4SC-205-treated mice displayed
a 14.75-fold reduction in tumor weight compared to the
vehicle group (Figures 3E and 3F). Mice treated with 4SC-
205 presented small tumors located in the adrenal gland,
whereas vehicle-treated mice had large tumors with the
kidney completely surrounded by the tumor (Figure 3G).
Furthermore, 4SC-205 tumors had a larger fraction of cells
with phosphorylation of histone H3, thereby indicating a
specific targeting of KIF11 in these tumors, and suggest-
ing that tumors were still sensitive to the inhibitor after
3 weeks (Figure 3H,I).
Half of neuroblastoma patients present metastases at

the time of diagnosis.8 Therefore, we proceeded to test the
efficacy of 4SC-205 in a neuroblastoma liver metastasis
model. In response to treatment, a clear delay inmetastatic
outgrowth was observed in 4SC-205-treated mice (Fig-
ure 3J–L and S8). As a consequence, the median lifespan
of the animals was significantly expanded by ∼27% (Fig-
ure 3M; vehicle: 33 days vs. 4SC-205: 42 days). Noticeable,
4SC-205 administration minimally affected mice weight
(<10%) during the course of the treatment (Figure S9). To
achieve a better therapeutic effect and provide a rationale
for further development of 4SC-205 in clinical trials, we
combined 4SC-205 with chemotherapies, such as platine
derivatives (cisplatin), doxorubicin, and topotecan, which
are currently used as standard treatment for patients with
high-risk neuroblastoma. In all cases, the combination of
4SC-205 with the chemotherapies showed additive effects
(Figures 4A–D and S10A-C; Table S6). Pediatric precision
medicine programs have discovered a small number of
recurrent alterations such as ALK activating mutations or
hyperactivation of the ERK Pathway,9,10 which constitute
the basis for the development of targeted therapies against
high-risk neuroblastoma tumors. Thus, we combined 4SC-
205 with two ALK inhibitors (ceritinib and lorlatinib) or
with the MEK1/2 inhibitor selumetinib. The combination
of 4SC-205 with ALK or MEK inhibitors showed a ∼2–
3-fold reduction in cell proliferation compared with the

inhibitors alone,withmost of the combination doses show-
ing additive effects (Figures 4E–J and S10D-G; Table S7).
In summary, our study provides a rationale for the future

therapeutic integration in clinical trials of 4SC-205, an
structurally distinct oral KIF11 inhibitor that shows potent
antitumor activity in multiple preclinical neuroblastoma
models and sensitizes neuroblastoma cells to standard
chemotherapy and specific neuroblastoma-targeted thera-
pies.
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