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vector machine classifier

Yingran Shen1, Chandra Goparaju2, Yang Yang1, Benson A. Babu3, Weiming Gai2, Harvey Pass2,  
Gening Jiang1

1Department of Thoracic Surgery, Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China; 2Division of Cardiothoracic Surgery, 

New York University Langone Medical Center, New York, NY, USA; 3Good Samaritan Hospital, Westchester Medical Center Network, Valhalla, 

NY, USA

Contributions: (I) Conception and design: H Pass; (II) Administrative support: H Pass, G Jiang; (III) Provision of study materials or patients: H Pass; (IV) 

Collection and assembly of data: Y Shen, Y Yang, W Gai; (V) Data analysis and interpretation: Y Shen, Y Yang, C Goparaju; (VI) Manuscript writing: 

All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Harvey Pass, MD. Division of Cardiothoracic Surgery, New York University Langone Medical Center, 530 First Avenue, New 

York, NY 10016, USA. Email: harvey.pass@med.nyu.edu; Gening Jiang, MD. Department of Thoracic Surgery, Tongji University Affiliated Shanghai 

Pulmonary Hospital, 507 Zhengmin Road, Shanghai 200433, China. Email: jgnwp@aliyun.com.

Background: Immune microenvironment plays a critical role in cancer from onset to relapse. Machine 
learning (ML) algorithm can facilitate the analysis of lab and clinical data to predict lung cancer recurrence. 
Prompt detection and intervention are crucial for long-term survival in lung cancer relapse. Our study aimed 
to evaluate the clinical and genomic prognosticators for lung cancer recurrence by comparing the predictive 
accuracy of four ML models.
Methods: A total of 41 early-stage lung cancer patients who underwent surgery between June 2007 and 
October 2014 at New York University Langone Medical Center were included (with recurrence, n=16; 
without recurrence, n=25). All patients had tumor tissue and buffy coat collected at the time of resection. 
The CIBERSORT algorithm quantified tumor-infiltrating immune cells (TIICs). Protein-protein interaction 
(PPI) network and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted 
to unearth potential molecular drivers of tumor progression. The data was split into training (75%) and 
validation sets (25%). Ensemble linear kernel support vector machine (SVM) ML models were developed 
using optimized clinical and genomic features to predict tumor recurrence.
Results: Activated natural killer (NK) cells, M0 macrophages, and M1 macrophages showed a positive 
correlation with progression. Conversely, T CD4+ memory resting cells were negatively correlated. 
In the PPI network, TNF and IL6 emerged as prominent hub genes. Prediction models integrating 
clinicopathological prognostic factors, tumor gene expression (45 genes), and buffy coat gene expression (47 
genes) yielded varying receiver operating characteristic (ROC)-area under the curves (AUCs): 62.7%, 65.4%, 
and 59.7% in the training set, 58.3%, 83.3%, and 75.0% in the validation set, respectively. Notably, merging 
gene expression with clinical data in a linear SVM model led to a significant accuracy boost, with an AUC of 
92.0% in training and 91.7% in validation.
Conclusions: Using ML algorithm, immune gene expression data from tumor tissue and buffy coat may 
enhance the precision of lung cancer recurrence prediction.
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Introduction

Lung cancer is the leading cause of cancer death worldwide, 
and it is estimated to contribute 21% of the total cancer 
deaths in 2023 (1). The most common subtype of lung 
cancer is lung adenocarcinoma (LUAD), which accounts 
for about 50% of all lung cancer cases (2). Lung cancer 
is potentially curable if detected early and treated with 
surgery (3,4). However, the long-term post-resection 
survival rate for stage IA2–IIIC is only approximately 
17.8%, and recurrence develops in approximately 25% 
of patients, even when the tumor has been completely 
resected (5). Additionally, LUAD patients within the same 
stage have different patterns of disease progression (6). In 
recent studies, several clinicopathologic prognostic factors 
have shown correlation with tumor recurrence, such as 
tumor-node-metastasis (TNM) stage (7), size of non-
lepidic invasive pattern (8,9), histological subtype (10-12), 
lymphovascular invasion (LVI) (13), and visceral pleural 
invasion (VPI) (14). Based on these variables, recurrence 
prediction models have been built in recent studies. Yu  
et al. (15) constructed a nomogram model based on smoking, 
solid nodules, mucinous LUAD, and micropapillary 
component. The internal and external validation C-indexes 
of the nomogram were 0.822 [95% confidence interval 
(CI): 0.751–0.891] and 0.812, respectively. Genetic 
predisposition is also involved in tumor recurrence. Single 
nucleotide variants of MSH5, MMP9, and CYP2D6 were 
found significantly associated with early-stage LUAD 
presenting with ground-glass nodules (GGNs) (16). In a 
study by Janik et al., graph machine learning (ML) achieved 
68% accuracy for early-stage non-small cell lung cancer 
(NSCLC) (17). Incorporating clinical, pathological, and 
biological aspects into the prediction model, the predictive 

value of the model [receiver operating characteristic 
(ROC) curve area under the curve (AUC) =0.723] is better 
than that of single independent risk factors (18). Bacterial 
biomarkers also played a role in predicting the survival of 
lung cancer patients. The relative abundances of bacteria 
were significantly different between the recurrence group 
and non-recurrence group (19).

Growing evidence emphasizes that the tumor immune 
microenvironment has a significant impact on tumor 
progression. Tumor-infiltrating immune cells (TIICs) have 
been found to be associated with prognosis in patients 
with early-stage LUAD (20). Nevertheless, few studies 
have investigated the link between TIICs and recurrence 
in NSCLC patients. In addition, the rapid development 
of molecular biology techniques including whole genome 
sequencing, as well as current bioinformatics methods 
have provided evidence of differentially expressed genes 
(DEGs) related to survival outcome (21). A gene expression 
deconvolution algorithm [Cell-type Identification 
by Estimating Relative Subsets of RNA Transcripts 
(CIBERSORT)] has been developed to computationally 
dissect the relative proportions of 22 TIIC subtypes (22). 
ML methods have been widely used in a variety of aspects 
in cancer research including imaging analysis, biomarker 
identification, and disease stage classification (23-25). These 
mathematical methods and powerful computing resources 
provide an opportunity to improve prediction accuracy of 
cancer susceptibility, recurrence, and survival.

In the present study, clinicopathological parameters, 
immune gene expression data of tumor tissues, and blood 
samples were used for analysis. The landscape of TIICs 
was estimated by CIBERSORT. A total of 4 support vector 
machine (SVM)-based models for the prediction of LUAD 
recurrence were proposed with calculation of accuracy, 
sensitivity, and specificity as well as the AUC. We present 
this article in accordance with the STARD reporting 
checklist (available at https://tlcr.amegroups.com/article/
view/10.21037/tlcr-23-473/rc).

Methods

Study population

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The 
Institutional Review Board (IRB) of New York University 
Langone Medical Center (New York, NY, USA) approved 
this single-institutional retrospective study (No. i8896_
CR24), and informed consent was obtained using IRB 
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approved protocol 8896 for collection and archiving of 
tissue and blood samples from patients with presumed or 
diagnosed lung cancer. Samples were prospectively collected 
from LUAD patients who were diagnosed and underwent 
surgery at New York University Langone Medical Center 
between June 2007 and October 2014. The inclusion 
criteria were as follows: (I) patients were pathologically 
confirmed as having LUAD after undergoing complete 
video-assisted thoracoscopic surgery (VATS) resection at 
New York University Langone Medical Center; (II) patients 
were diagnosed as early-stage NCSLC (stage IA–IIB); 
(III) patients had snap-frozen tumor tissue and buffy coat 
collected at the time of resection; (IV) patients were actively 
followed-up; and (V) the quantity and quality of extracted 
RNA met the criteria for NanoString experiment. A total 
of 41 patients were eligible for the study and were divided 
into a with recurrence group (n=16) and a without recurrence 
group (n=25) according to their follow-up information. 
Tissue and blood samples of these 41 patients were used for 
RNA extraction. The extracted RNA was then assessed by 
NanoString assay to profile the expression of immune genes.

RNA extraction

Tissue RNA was extracted from frozen tumor tissue using 
the RNeasy Mini Kit (Qiagen, Hilden, Germany). Buffy 
coat RNA was extracted using Quick-RNA Kits (ZYMO 
Research, Irvine, CA, USA). A total of 125 ng of RNA 
was used for the NanoString immunoncology assay. RNA 
quantity and quality were assessed by Nanodrop One© 
(Thermo Fisher Scientific, Waltham, MA, USA).

Immune profiling

We used NanoString technology to profile 730 immune 
oncogenes. The hybridization reaction involved 5 μL  
(25 ng/μL) of sample RNA, 3 μL of Reporter CodeSet, 5 μL  
of hybridization buffer, and 2 μL of Capture ProbeSet. 
The mixture was incubated at 65 ℃ for 16–20 hours. After 
hybridization, the samples were transferred to a gene-
specific probes-coated cartridge using nCounter Prep 
Station (NanoString, Seattle, WA, USA) and then scanned 
for gene expression using a NanoString Digital Analyzer at 
high fields of visualization (550 FOV).

Quantification of gene expression values

The gene expression data were checked for quality control 

(QC) and normalized using the nSolver 3.0 software 
(NanoString). Any QC failed samples were removed from 
the analysis. The gene expression counts were normalized to 
the internal housekeeping genes to correct any differences 
in physiological experimental conditions and background 
signal across the runs. The list of the housekeeping genes 
was provided in Table S1. The corrected gene expression 
counts were used for the following TIICs evaluation and 
model construction.

Evaluation of TIICs

CIBERSORT is an analytical tool used to quantify the 
abundance of specific cell types in a mixed cell population 
using a gene expression-based approach. In this study, we 
used the LM22 signature file which was based on 547 genes 
to define the 22 subtypes of TIICs, including T cells, B 
cells, natural killer (NK) cells, macrophages, dendritic cells, 
monocytes, mast cells, eosinophils, neutrophils, and plasma 
cells. Using the median of the proportion of each cell 
subtype, we divided the patients into high- and low-density 
groups. The association of TIICs and corresponding overall 
survival (OS) was analyzed by Kaplan-Meier (KM) curves 
using the log-rank test.

Integration of the protein-protein interaction (PPI) 
network and KEGG enrichment analysis of DEGs

The Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) version 10.0 (https://string-db.org/) 
was used for the exploration of potential DEG interactions 
at the protein level. Hub genes were identified using the 
Cytohubba plugin of cytoscape. Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway analysis was 
conducted using the R clusterProfiler package to identify 
DEGs at the biologically functional level. P<0.05 was 
considered to indicate a statistically significant difference.

SVM with recursive feature elimination (SVM-RFE) data 
analysis

The entire research design is shown in Figure S1. To pre-
select the DEGs, DESeq2 was used to model the dispersion 
of the gene expression data on the mean first, and then 
reduce the influence of outliers. After that, a Bayesian 
inference approach was used to estimate the dispersion 
of each gene and generate posterior probabilities and 
false discovery rates for DEGs. ML methods could be 

https://cdn.amegroups.cn/static/public/TLCR-23-473-Supplementary.pdf
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used in both biomarkers’ discovery and disease category 
classification. In this study, we implemented supervised 
disease classification using SVM with the linear kernel 
(SVM-Linear). Each type of data (clinical data, gene 
expression data of tumor tissue, and buffy coat) of 
progressors and non-progressors were randomly distributed 
into a training set (75%) and a validation set (25%). First, 
we used the data from the training set to train the models, 
then we applied the trained models to the validation dataset 
to further confirm the accuracy, specificity, and sensitivity. 
For the model training iterations, we employed a 25-fold 
cross-validation approach with folds resampled 15 times.

For each split of the expression data, the top 45 genes 
from tumor tissue and top 47 genes from buffy coat were 
selected according to the rank generated by Bayesian 
inference. The SVM-Linear model was trained on 9-fold 
and then tested on the remaining folds. Each model 
evaluated the importance of the input genes separately, and 
the final evaluation score was calculated by the contribution 
of each gene to the model. For each feature selection 
iteration, features with the least absolute model weights 
and contributions were eliminated. ROC curve was plotted 
using the pROC package in R, and AUC, sensitivity, and 
specificity were computed. Ninety-five percent CIs for 
sensitivity, specificity, and AUC were computed using 
bootstrapping techniques with the boot package in R. The 
final list of gene and clinical variables had the minimum 
number of features which maintained an AUC within 
1% of the AUC achieved by the original 45 genes from 
the solid tissue samples and 47 genes from the buffy coat 
panel. Independent validation datasets were used to test the 
validity of the generated classifiers.

Results

Characteristics of the study participants

The clinical and demographic variables of 41 LUAD 
patients are listed in Table 1. Patients with recurrence had 
larger tumor size (2.9 vs. 2.0 cm, P=0.003) and more VPI 
(56.3% vs. 16.0%, P=0.007), but age, gender, and smoking 
history were not significantly different. The proportion of 
micropapillary/solid subtype (50.0% vs. 36.0%), positive 
lymph node (18.8% vs. 8.0%), stage IIB disease (25.0% vs. 
8.0%), and segmentectomy (12.5% vs. 8.0%) tended to be 
higher in patients with recurrence, and although there were 
less lymph nodes resected (>9 lymph nodes resected: 25.0% 
vs. 48.0%) in this group, all of them were not statistically 

significant.
During a follow-up period with a median length of 

67.1 months, there were 10 patients with locoregional 
recurrence, and 6 patients with systemic recurrence. The 
frequency of recurrence was 39%. A total of 10 patients 
died during the follow-up.

The distribution of TIICs in progressors and non-
progressors and their prognostic value in LUAD

Figure 1A summarizes the composition of 22 TIICs in 
the 41 included patients. The relative abundances of 
TIICs according to the progression status of patients 
were evaluated by t-test (Figure 1B). Recruitment of 
T CD4+ memory resting cells, activated NK cells, M0 
macrophages, and M1 macrophages was higher in patients 
with progression than in those without progression 
(P<0.001, P=0.0089, P<0.001, and P=0.0016, respectively). 
Meanwhile, higher recruitment of M2 macrophages and 
mast cells resting were identified in patients without 
progression (both P<0.001).

We analyzed the correlation between immune cell 
infiltrates and corresponding OS among the enrolled 
patients. Only TIICs with a proportion of ≥5% and a 
significant difference between progressors and non-
progressors were included in the analysis. Using the median 
percentage as a cut-off value for each type of TIIC, patients 
were divided into low and high groups accordingly. We 
found that a higher proportion of M2 macrophages was 
associated with a better prognosis (mean OS time, 3,675 vs. 
2,179 days, P=0.048). There were no differences between 
the low proportion and high proportion of the other TIICs 
(Figure 2).

Clinical parameter-based ML classifier

The clinical prognostic variables include age, gender, race, 
smoking history, tumor size, histology, LVI, VPI, positive 
lymph nodes, extent of resection, and number of resected 
lymph nodes. The ranking of these top 12 variables is 
shown in Figure 3A. An SVM-Linear model built with these 
clinical data showed low prediction accuracy. The AUC 
for the training set was 62.7% (95% CI: 56.3–69.1%), and 
the AUC for the validation set was 58.3% (95% CI: 17.9–
98.8%) (Figure 3B). It was indicated that using these clinical 
parameters to predict the recurrence of LUAD is far from 
ideal (Table 2).
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Table 1 Demographic and clinical characteristics of the 41 included patients

Characteristics With recurrence (n=16) Without recurrence (n=25) P value

Age (years), median (IQR) 69.5 (62.8–79.5) 65.0 (59.5–71.0) 0.133

Gender, n (%) 0.565

Male 6 (37.5) 6 (24.0)

Female 10 (62.5) 19 (76.0)

Smoking, n (%) 0.754

≤25 pack-year 11 (68.8) 16 (64.0)

>25 pack-year 5 (31.3) 9 (36.0)

Tumor size (cm), median (IQR) 2.9 (2.03–3.43) 2.0 (1.50–2.50) 0.003

Histology, n (%) 0.375

Lepedic/acinar/papillary 8 (50.0) 16 (64.0)

Micropapillary/solid 8 (50.0) 9 (36.0)

VPI, n (%) 0.007

No 7 (43.8) 21 (84.0)

Yes 9 (56.3) 4 (16.0)

Positive lymph node, n (%) 0.591

No 13 (81.3) 23 (92.0)

Yes 3 (18.8) 2 (8.0)

Stage, n (%) 0.294

IA/IB 12 (75.0) 23 (92.0)

IIB 4 (25.0) 2 (8.0)

Surgical procedure, n (%) 1.000

Lobectomy/pneumonectomy 14 (87.5) 23 (92.0)

Segmentectomy 2 (12.5) 2 (8.0)

Lymph nodes resected, n (%) 0.141

≤9 12 (75.0) 13 (52.0)

>9 4 (25.0) 12 (48.0)

IQR, interquartile range; VPI, visceral pleural invasion.

Hub genes and KEGG pathway analysis

A total of 92 differential expression genes were screened 
out by Bayesian inference. In a PPI network containing 
89 nodes and 663 edges, ten hub genes (TNF, IL6, CD8A, 
GZMB, CXCL8, TBX21, PRF1, KLRK1, IRF4, and CD247) 
were identified. Among them, the score of TNF and IL6 
were more than 60 (Table S2). KEGG pathway analysis 
revealed ‘Cytokine-cytokine receptor interaction’, ‘Natural 
killer cell mediated cytotoxicity’, ‘NF-kappa B signaling 
pathway’, ‘T cell receptor signaling pathway’, ‘Toll-like 

receptor signaling pathway’, ‘PI3K-Akt signaling pathway’, 
‘JAK-STAT signaling pathway’, ‘TNF signaling pathway’, 
‘NOD-like receptor signaling pathway’ and ‘FoxO signaling 
pathway’ were enriched significantly (Figure S2).

ML classifiers based on gene expression data

In total, 730 immune genes were tested. To address the 
issue of data overfitting and to test the generality of the 
classification model, we split the data into a training set 

https://cdn.amegroups.cn/static/public/TLCR-23-473-Supplementary.pdf
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(75%) for analysis and a validation set (25%) for validation. 
The gene expression profiles from the training set were used 
to train the ML classifier to predict the risk of recurrence. 
We applied an SVM-RFE and 25-fold cross-validation to 
rank the features based on their performance to classify 
progressive and non-progressive cancer. The lower ranking 
genes were removed. Eventually, a set of the top 45 genes 
from tumor tissue and a set of the top 47 genes from buffy 
coat demonstrated the optimized model fitting. Figure 4 
lists all these top genes according to their contribution to 
the models.

The following analyses were carried out with the 45-
gene classifier and 47-gene classifier respectively. As shown 
in Figure 5A,5B, the SVM-Linear classifier based on tumor 
tissue expression data showed an AUC of 65.4% (95% CI: 
59.2–71.5%), the SVM-Linear classifier based on buffy 
coat data showed an AUC of 59.7% (95% CI: 52.8–66.5%). 
Similar accuracies were found in the two validation sets: the 
AUC for tumor tissue was 83.3% (95% CI: 55.7–100.0%) 
and the AUC for buffy coat was 75.0% (95% CI: 42.1–
100.0%). The two models showed good accuracies for 
distinguishing progressors from non-progressors (Table 2).
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Figure 2 KM curves show different OS in the high and low groups of six types of TIICs. Survival differences were evaluated using log-rank 
test. (A) T CD4+ memory resting cells. (B) Activated NK cells. (C) M0 macrophages. (D) M1 macrophages. (E) M2 macrophages. (F) Mast 
cell resting. NK, natural killer; KM, Kaplan-Meier; OS, overall survival; TIIC, tumor-infiltrating immune cell.

Figure 3 Clinical SVM-Linear models. (A) Top 12 clinical features. (B) SVM-Linear ROC based on clinical data. LVI, lymphovascular 
invasion; AUC, area under the curve; SVM-Linear, SVM with the linear kernel; SVM, support vector machine; ROC, receiver operating 
characteristic.
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Table 2 Performance of SVM-Linear ML models with different input datasets

Dataset
Performance 
metric

Tumor gene 
expression

Blood gene 
expression

Clinical Tumor + clinical Blood + clinical All combined

Training Accuracy (%) 37.4 67.0 67.0 82.4 87.9 91.2

Sensitivity (%) 81.1 90.5 86.3 78.4 88.4 89.5

Specificity (%) 7.5 23.3 24.2 55.8 65.0 62.5

AUC (%) 65.4 59.7 62.7 68.6 84.2 92.0

95% CI (%) 59.2–71.5 52.8–66.5 56.3–69.1 62.4–74.7 79.8–88.5 89.0–95.0

Validation Accuracy (%) 60.0 60.0 50.0 70.0 70.0 90.0

Sensitivity (%) 0.0 0.0 0.0 75.0 50.0 75.0

Specificity (%) 100.0 100.0 83.3 66.7 83.3 100.0

PPV (%) NA NA 0.0 60.0 66.7 100.0

NPV (%) 60.0 60.0 55.6 80.0 71.4 85.7

SVM-Linear, SVM with the linear kernel; SVM, support vector machine; ML, machine learning; AUC, area under the curve; CI, confidence 
interval; PPV, positive predictive value; NA, not applicable; NPV, negative predictive value.
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Figure 4 Ranking of variable importance within two SVM-Linear models. (A) Top 45 genes from tumor tissue. (B) Top 47 genes from buffy 
coat. SVM-Linear, SVM with the linear kernel; SVM, support vector machine.

Combo-classifier (combination of clinical variables and/or 
gene expression data)

In order to improve prediction accuracy, we combined 
clinical data with gene expression data from both tumor 
tissue and buffy coat (Table 2). The final combo-classifier 
showed a significant increase in accuracy, sensitivity, and 
specificity. The AUC in the training set reached 92.0% (95% 

CI: 89.0–95.0%), whereas that in the validation set reached 
91.7% (95% CI: 72.3–100.0%) (Figure 5C).

Discussion

Lung cancer is the leading cause of cancer-related death, 
with dismal 5-year survival rates (1). Even patients in the 
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early stage of disease exhibit wide variation in prognosis, 
and some develop tumor recurrence and die of the 
disease despite curative surgical resection (26). Factors 
associated with recurrence include histological, clinical, and 
population-based characteristics (27,28). However, these 
parameters do not provide sufficient information for making 
robust decisions for treatment. Increasing evidence indicates 
that the immune profile of the tumor microenvironment 
plays a major role in the development and progression of 
cancer (20,29). Karasaki et al. (30) assessed the expression 
of genes related to cancer immunity and constructed three 
immunogram patterns, which can be used as integrated 
biomarkers. The cellular composition of infiltrating 
immune cells in lung cancer tissue has also been found to 
be related to tumor progression and prognosis (31). In this 
study, we quantified the expression level of 730 immune 
genes in both tumor tissue and buffy coat first. Then, the 
top 45 genes from tumor tissue and top 47 genes from buffy 
coat were selected to build recurrence prediction classifiers. 
Prediction accuracy was compared between different 
classifiers, among which the combo-classifier had the best 
prediction accuracy, achieving 91.2% in the training set and 
90.0% in the validation set.

We analyzed the composition of TIICs and identified 
a higher abundance of M0 and M1 macrophages in 
progressive patients and a higher abundance of M2 
macrophages in non-progressive patients. Our findings 
contrast with the results from other studies. Dong et al. (32) 
demonstrated that M0 macrophages had a higher infiltration 

level in the metastatic group and might differentiate into 
M2 macrophages (33). M2 is the main subtype macrophage 
in advanced lung cancer, and related with resistance to 
osimertinib (34). However, whether it is the same in 
early-stage LUAD remains unclear. Furthermore, the 
phagocytic activity of macrophage is suppressed by the 
interaction between CD24 on tumor cells and Siglec-10 on 
macrophages (35). In addition to phagocytosis, macrophages 
also play a critical role in inflammation. M2 macrophages 
function to promote angiogenesis, tissue remodeling, and 
repair, altogether shifting the immune response to an anti-
inflammatory response (36). Phu et al. (37) observed that 
M2 macrophage serve to control inflammation in the liver 
and adipose tissue of obese mice.

As a popular mathematical tool, ML can improve the 
accuracy of cancer prediction by 15–20% (23). In the 
present study, by using an SVM-Linear algorithm, we 
established an optimized combo-classifier for predicting 
recurrence in surgically treated early-stage LUAD patients. 
The accuracy, specificity, and sensitivity of this combo-
classifier based on the training set were 91.2%, 62.5%, 
and 89.5% respectively, and the AUC was 92.0% in the 
training set and 91.7% in the validation set. There is a big 
jump in the performance of the individual classifiers and 
the combo-classifier. AUC for the clinical model was 58.3% 
in the validation set. AUC for the gene models was 83.3% 
(tumor tissue) and 75.0% (buffy coat) respectively. The 
clinical model based mostly on the staging system, which 
is too broad to predict prognosis precisely and help guide 
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Figure 5 Performance of the classifiers from the training samples (75%) and validation samples (25%). (A) SVM-Linear ROC based on 
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treatment. While more and more evidence show that gene-
related biomarkers improve prediction accuracy. Expression 
of genes changes throughout the development of cancer, 
it provides more information than clinical features. Forty-
five genes from tumor tissue and 47 genes from buffy coat 
consisted all gene features for the combo-model, which 
included sufficient information. Compared with Huang  
et al.’s (38) integrated deep learning evaluation score (AUC 
=81.7%), our combo-classifier showed better prediction 
accuracy. However, the specificity of circulating tumor 
DNA (ctDNA) detection in Gale et al.’s (39) study was 
98.7%, which is far better than ours (62.5%). indicating 
that the combo-classifier still needs further investigation 
and development.

According to the gene expression data, we identified 
MR1, BCL6, and CCL13 as the top 3 genes which were 
significantly differentially expressed in tumor tissue between 
patients with and without recurrence. TBX21, IL-17RB, 
and GZMB were identified as the top 3 genes in buffy coat. 
Most of these immune genes had been shown to have a role 
in cancer in previous studies. MR1 is a non-polymorphic 
major histocompatibility complex (MHC) I-like protein 
which can be recognized by T cell receptor (TCR). Cancer 
cells carrying the surface molecule MR1 can thus be killed 
by MR1 T cells (40). This offers a new front of targets for 
adoptive T cell immunotherapy (41). BCL6 is a critical 
protooncogene that regulates the growth of B-lymphocytes. 
It also promotes tumor progression and contributes to 
malignant behavior in lymphomas, breast cancer, gastric 
cancer, ovarian cancer, NSCLC, and glioblastoma (42,43). 
In NSCLC patients, BCL6 is amplified in 40% of squamous 
cell carcinomas [197/501, The Cancer Genome Atlas 
(TCGA)] and in 2.2% of adenocarcinomas (5/230, TCGA). 
The major role of BLC6 in NSCLC could be mediating 
the repression of DNA damage genes and sustaining 
genomic instability (44). MCP-4, also called CCL13, is a 
ligand for 3 different G protein coupled receptors, CCR2, 
CCR3, and CCR5. Yang et al. (45) assessed the serum level 
of chemokines in NSCLC patients and found the levels of 
GCP-2, IL-18-BPa, and MCP-4 were significantly higher in 
patients than in the healthy volunteers. Okugawa et al. (46)  
also assessed the serum levels of MCP-4 in colorectal cancer 
patients and found that elevated MCP-4 was a significant 
and independent prognostic factor of disease-free 
survival and OS. The type 1 T helper (Th1) cell-specific 
transcription factor TBX21 was found to maintain cancer 
stemness. Zhao et al.’s (47) study of LUAD showed that 
the TBX21-IL-4 pathway could promote tumor initiation, 

tumor growth, and expression of stemness markers. It 
could be used to construct a prognostic model that could 
distinguish LUAD patients with high or low risk of survival. 
IL-17B is a member of the IL-17 family, and it is lowly 
expressed in various tissues. The overexpression of IL-17RB 
was found to be strongly correlated with postoperative 
metastasis in pancreatic cancer patients (48). It upregulates 
cell stemness through activating the AKT/β-catenin 
pathway in gastric cancer (49). In colorectal cancers, long-
term ablation of IL-17RB expressing cancer stem cells 
strongly suppressed the tumor growth in vivo (50). GZMB 
is stored in secretory granules of cytotoxic T lymphocytes 
(CTLs) and NK cells and used by these two types of cells 
to eliminate harmful target cells including allogeneic, 
virally infected, and tumor cells (51). In melanoma, GZMB 
expression in myeloid-derived suppressor cells (MDSCs) is 
another means to promote tumor growth (52). In NSCLC 
cells, RocA has been shown to inhibit autophagy and restore 
the level of NK cell-derived GZMB, therefore increasing 
their susceptibility to NK cell-mediated killing (53).

This study had some limitations. Further studies are 
needed to confirm the combo-recurrence classifier we 
identified in the present study based on the following 
factors: (I) the sample size is quite small, only 41 samples 
were included, which may not be sufficient to draw a 
firm conclusion; (II) too many genes were included in the 
combo-classifier, which may make it inconvenient and 
costly in clinical application. Thus, future development of 
a simpler combination of genes which does not sacrifice 
accuracy would be preferable; and (III) we haven’t test our 
models in a test group of patients to prove its prediction 
accuracy. Moreover, the supervised ML method also 
has a few but well-known limitations. One is the lack of 
interpretability, which means a suitable explanation of how 
the predicted results were related to the genes and clinical 
factors. Another limitation is the lack of repeatability. As 
it was apparent in this study, there is a lack high-quality, 
accurate, and sufficient data to train the ML models. 
The prediction relies on the weight of selected genes and 
subjectively observed clinical variables. However, the clinical 
variable may vary according to different measurement 
methods and subjective choices, and the NanoString data 
also relies on the platform and analysis pipeline used for the 
data processing.

Conclusions

Early-stage LUAD patients are diverse with varying risk of 
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recurrence. A novel combo-ML classifier was built based 
on both clinicopathological parameters and gene expression 
features, and it was shown to outperform the standard 
clinical classifier in accuracy, specificity, and sensitivity.
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