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Abstract: A k-nearest neighbor (k-NN) classification model was constructed for 118 RDT 

NEDO (Repeated Dose Toxicity New Energy and industrial technology Development 

Organization; currently known as the Hazard Evaluation Support System (HESS)) database 

chemicals, employing two acute toxicity (LD50)-based classes as a response and using  

a series of eight PaDEL software-derived fingerprints as predictor variables. A model 

developed using Estate type fingerprints correctly predicted the LD50 classes for 70 of 94 

training set chemicals and 19 of 24 test set chemicals. An individual category was formed for 

each of the chemicals by extracting its corresponding k-analogs that were identified by  

k-NN classification. These categories were used to perform the read-across study for 

prediction of the chronic toxicity, i.e., Lowest Observed Effect Levels (LOEL). We have 

successfully predicted the LOELs of 54 of 70 training set chemicals (77%) and 14 of  

19 test set chemicals (74%) to within an order of magnitude from their experimental LOEL 

values. Given the success thus far, we conclude that if the k-NN model predicts LD50 classes 

correctly for a certain chemical, then the k-analogs of such a chemical can be successfully 
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used for data gap filling for the LOEL. This model should support the in silico prediction of 

repeated dose toxicity. 

Keywords: k-nearest neighbor; classification model; Estate fingerprint; LD50; LOEL;  

read-across; category formation 

 

1. Introduction 

The multiple target effect of toxicants is a significant hurdle for pharmaceutical research and for 

elucidating toxicity mechanisms [1]. Off-target toxicities are a particular challenge as they are commonly 

not readily predicted [2]. The extent to which such a target is influenced by a toxicant is also dependent 

upon its effective concentration [3]. 

Generally, an LD50 experiment uses a range of toxicant doses spanning from moderate to high when 

administered to a set of organisms (of the same species and strain). Several mechanisms take place in 

such an event including off-target and non-specific effects like inflammation, mitochondrial toxicity, 

liver toxicity, oxidative stress, competitive inhibition of transporters and drug metabolizing enzymes, 

etc. Together, all of these effects contribute to the result (LD50). On the other hand, in chronic toxicity 

experiments, the smallest dose administered every day for the time periods of 28 days, 91 days or  

two years that causes any detectable effect is known as the Lowest Observable Effect Level (LOEL).  

In order to derive an LOEL value, many effects (such as inflammation, hypothermia, locomotor activity, 

etc.) and levels of indicators (such as liver enzymes, choline esterase, albumin/globulin ratio, etc.) are 

recorded in the test animals. As LD50 and LOEL can both be influenced by multiple toxicity mechanisms, 

we have, in this study, attempted to utilize LD50 values for the prediction of LOEL values. 

It is established that chemicals similar in molecular structure often have similar modes of action and 

thus exhibit similar properties [4]. This fundamental concept has been used to predict biological effects 

of chemicals by clustering them on the basis of their structural similarity; such a method of prediction is 

known as “read-across”. Thus, clustering a group of similar chemicals with a well categorized biological 

profile and then using them to predict biological effects of query chemicals is a powerful approach [5–8] 

and such a query chemical, along with its similar chemicals, could be considered as  

a category.  

At present, there is no predefined basis for the acceptance or exclusion of a given chemical from  

a category [9]. Moreover, there are as yet no standard statistical tests for validation of such a category. 

To overcome these drawbacks, we used the “k-nearest neighbor (k-NN)” method to build a classification 

model that identified k neighbors for every chemical in dataset. The training and test set chemicals were 

considered as “queries” and their corresponding k-neighbors were considered as “analogs”; accordingly, 

a query together with its k-analogs was considered as a single category. The robustness of this 

classification model was tested using statistical validation tests. To perform the read-across study, we 

decided to use categories formed by k-NN classification models, for the following reasons: (1) the 

optimal validation parameters shall confirm that the categories formed through k-NN classification are 

robust enough to identify structurally similar k-analogs and (2) further validation of these categories shall 

be performed through the prediction of a class for each of the query (if such a prediction is correct). 

https://docs.google.com/document/d/1g7N0_XxVlqlO5Im_ROq8O5-YH01nV1cz5FtdxiT9wz8/edit#heading=h.4d34og8
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https://docs.google.com/document/d/1g7N0_XxVlqlO5Im_ROq8O5-YH01nV1cz5FtdxiT9wz8/edit#heading=h.4d34og8
https://docs.google.com/document/d/1g7N0_XxVlqlO5Im_ROq8O5-YH01nV1cz5FtdxiT9wz8/edit#heading=h.4d34og8
https://docs.google.com/document/d/1g7N0_XxVlqlO5Im_ROq8O5-YH01nV1cz5FtdxiT9wz8/edit#heading=h.4d34og8
https://docs.google.com/document/d/1g7N0_XxVlqlO5Im_ROq8O5-YH01nV1cz5FtdxiT9wz8/edit#heading=h.4d34og8
https://docs.google.com/document/d/1g7N0_XxVlqlO5Im_ROq8O5-YH01nV1cz5FtdxiT9wz8/edit#heading=h.4d34og8
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The 3R principle, i.e., to reduce, refine and replace, has been widely accepted as an ethical framework 

for conducting animal experiments for the purpose of research [10]. In response to this, many in vitro 

and in silico methods have been adopted to reduce the use of animal experiments in the last few decades. 

In the case of repeated dose toxicity studies, the use of in vitro methods has been  

not validated to date [11]. In repeated dose toxicity studies, an endpoint can represent a multitude of 

biological effects that take place through different mechanisms, occur in different organ tissues, and 

progress with different time frames. Accordingly, this poses a challenge for quantitative structure-activity 

relationship (QSAR) modelers and can explain why very few attempts have been made so far to model 

this endpoint [12]. In this study, we have made an attempt to construct a better model for the prediction 

of repeated dose toxicity. 

The LOEL and LD50 values are typically measured in milligrams per kilograms per day, i.e., 

milligrams of chemical per kilogram of body weight administered per day. We assumed that if lethal 

doses (LD50) are in the same range (e.g., LD50 of query and corresponding k-analogs in the range of  

1 to 2000 mg/kg/day or in other similar range) or within an order of magnitude in a certain chemical 

category, it can be possible to predict LOEL of query using LOELs of its k-analogs within that category. 

To test this hypothesis, we decided to construct k-NN classification models using two classes that are 

based on the magnitudes of LD50 values and use them as response variables. We then derived k-analogs 

for the chemicals (queries) within the Repeated Dose Toxicity New Energy and industrial technology 

Development Organization i.e., RDT NEDO database. When this classification model predicts the 

correct class of a query, its category can be considered qualified for the further task of read-across study. 

In the read-across study, LOEL values of queries from the qualified categories will be calculated by 

taking arithmetic means of LOELs of their respective k-analogs. 

2. Results and Discussion 

The RDT NEDO database documented 235 effects (refer to Table S1), 41 organ tissues were 

examined and 11 examination items were recorded on six strains of rats of both genders. The database 

was then screened for “Examination item-LOEL”, “Effect-Total effect”, “Organ tissue-Whole body”, 

“Organism-Rat”, “Gender-Male”, “Strain-Crj:CD(SD)” and “Route-Oral (gavage)”.  

2.1. k-NN Classification 

A classification model is a mathematical relationship between a set of fingerprints and response 

variables. The k-nearest neighbor (k-NN) method is a standard and sensitive classification  

technique [13–18]. The k-NN algorithm is based on the k-nearest neighbors classification rule described 

by Hart et al. [19]. In this algorithm, a class of each query is predicted based on the majority class of its 

closest k-neighbors (e.g., for the category where k = 3, if two of the three analogs are from class 2, then 

predicted class for the query is class 2). The closest neighbors are identified on the basis of distance 

matrix. Several methods of distance calculations between queries on the basis of binary data (here, 

fingerprints) exist to date [20]. We have selected the “Jaccard-Tanimoto” distance method for the 

calculation of distance matrices [21].  

Using the k-NN method, we constructed eight classification models for the respective fingerprint 

types. Statistical parameters of those models are given in Table 1. After examination of the Non-Error 
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Rate (NER), sensitivity, specificity and class error, we observed that the optimal k-NN classification 

model was built from Estate fingerprints. The model consisted of 79 Estate fingerprints, was associated 

with NERcv of 0.74 for the internal set and of 0.81 for the external test set. Selection by fivefold cross 

validation identified an optimal value of k as equal to 3. 

Table 1. Parameters of eight k-NN classification models. 

Entry Fingerprint NER k 
Sensitivity Specificity 

Class 1 Class 2 Class 1 Class 2 

1 CDK 

Fitting 0.69 9 0.77 0.61 0.61 0.77 

CV 0.76 9 0.84 0.68 0.68 0.84 

External 0.74 9 0.79 0.70 0.70 0.79 

2 Estate 

Fitting 0.75 3 0.73 0.76 0.76 0.73 

CV 0.74 3 0.77 0.71 0.71 0.77 

External 0.81 3 0.71 0.90 0.90 0.71 

3 Extended CDK 

Fitting 0.70 9 0.80 0.61 0.61 0.80 

CV 0.74 9 0.80 0.68 0.68 0.80 

External 0.79 9 0.79 0.80 0.80 0.79 

4 Graph 

Fitting 0.68 3 0.75 0.61 0.61 0.75 

CV 0.70 3 0.79 0.61 0.61 0.79 

External 0.76 3 0.71 0.80 0.80 0.71 

5 Klekoth-Roth 

Fitting 0.68 10 0.70 0.66 0.66 0.70 

CV 0.77 10 0.77 0.76 0.76 0.77 

External 0.72 10 0.64 0.80 0.80 0.64 

6 MACCS 

Fitting 0.76 7 0.79 0.74 0.74 0.79 

CV 0.73 7 0.77 0.68 0.68 0.77 

External 0.72 7 0.64 0.80 0.80 0.64 

7 Pubchem 

Fitting 0.77 1 0.80 0.74 0.74 0.80 

CV 0.73 1 0.77 0.68 0.68 0.77 

External 0.77 1 0.64 0.90 0.90 0.64 

8 Substructure 

Fitting 0.68 5 0.73 0.63 0.63 0.73 

CV 0.66 5 0.80 0.53 0.53 0.80 

External 0.71 5 0.71 0.70 0.70 0.71 

The sensitivity of a model represents its ability to correctly recognize a class for a given chemical 

(query) while specificity characterizes an ability of a particular class to decline chemicals (queries) of 

all other classes. The Estate fingerprint-based k-NN model has demonstrated a 77% success rate in 

predicting toxic queries (class 1) and 71% for non-harmful queries (class 2) for the training set. Similarly, 

this model could predict the toxic queries (class 1) and the non-harmful queries (class 2) with specificity 

rates of 0.71 and 0.77, respectively. A class error of 0.26 was associated with the training set queries of 

both the classes (i.e., class 1 and 2). For the test set, the Estate fingerprint-based k-NN model has 

demonstrated a sensitivity rate of 0.71 and 0.90, and a specificity rate of 0.90 and 0.71 for class 1 and 2 

queries, respectively. The class errors associated with this model were 0.19 for  

the queries of both the classes (i.e., class 1 and 2). This model was able to correctly classify 70 of  

94 training set queries and 19 of 24 test set queries. More details are provided in Tables S3 and S4. 



Int. J. Mol. Sci. 2015, 16 11663 

 

 

Thus, we have confirmed that the Estate fingerprint-based model is the most statistically robust, 

justifying its use in read-across studies. 

2.2. Read-Across for LOEL Prediction 

The LOEL predictions of all training set and test set queries are shown in Tables 2 and 3, respectively, 

along with the LOELs of their corresponding k-nearest neighbors. The ratio of actual and predicted 

LOELs has been calculated and is referred to as fold difference (Fold_diff). 

Table 2. Summary of predicted lowest observed effect levels (LOELs) of all training  

set queries obtained by arithmetic means of LOELs of corresponding k-nearest analogs  

(3 analogs) from Estate fingerprint based k-NN model. 

Entry 
LOEL 

Fold_diff 
Query Analog 1 Analog 2 Analog 3 Predicted 

1 30 50 625 1.2 225.40 7.51 

2 50 30 625 1.2 218.73 4.37 

3 200 100 750 150 333.33 1.67 

4 10 10 250 30 96.67 9.67 

5 30 20 30 30 26.67 1.12 

6 70 300 20 20 113.33 1.62 

7 5 150 200 6 118.67 23.73 

8 100 200 750 200 383.33 3.83 

9 150 200 100 30 110.00 1.36 

10 1000 1000 11 100 370.33 2.70 

11 30 1000 100 150 416.67 13.89 

12 0.75 5 6 50 20.33 27.11 

13 30 20 200 10 76.67 2.56 

14 3130 1000 100 600 566.67 1.84 

15 100 300 750 40 363.33 3.63 

16 10 10 250 30 96.67 9.67 

17 30 60 60 50 56.67 1.89 

18 1000 30 1000 1000 676.67 1.47 

19 60 30 60 50 46.67 1.29 

20 600 3130 160 62.5 1117.50 1.86 

21 20 30 200 10 80.00 4.00 

22 750 1000 100 200 433.33 1.73 

23 25 30 250 10 96.67 3.87 

24 200 300 100 750 383.33 1.92 

25 1000 3130 100 100 1110.00 1.11 

26 250 200 3130 70 1133.33 4.53 

27 200 30 20 200 83.33 2.40 

28 300 200 200 100 166.67 1.80 

29 160 600 1000 1000 866.67 5.42 

30 350 1000 625 625 750.00 2.14 

31 60 200 750 40 330.00 5.50 

32 100 240 250 10 166.67 1.67 
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Table 2. Cont. 

Entry 
LOEL 

Fold_diff 
Query Analog 1 Analog 2 Analog 3 Predicted 

33 100 200 100 1000 433.33 4.33 

34 30 30 30 100 53.33 1.78 

35 3130 2500 10 350 953.33 1.09 

36 1000 1000 11 30 347.00 2.88 

37 40 30 60 60 50.00 1.25 

38 100 40 20 30 30.00 1.11 

39 1000 750 100 100 316.67 1.05 

40 300 70 20 250 113.33 2.65 

41 200 150 100 30 93.33 2.14 

42 30 100 300 200 200.00 6.67 

43 30 30 20 30 26.67 1.12 

44 5 10 3130 2500 1880.00 376.00 

45 40 100 300 1000 466.67 11.67 

46 2 20 30 30 26.67 13.33 

47 1.2 30 625 500 385.00 320.83 

48 240 100 250 10 120.00 2 

49 6 11 100 150 87.00 14.50 

50 250 100 240 40 126.67 1.97 

51 11 1000 6 1000 668.67 60.79 

52 2 30 1000 30 353.33 176.67 

53 62.5 6 600 3130 1245.33 19.93 

54 100 1000 1000 300 766.67 7.67 

55 40 200 100 150 150.00 3.75 

56 10 200 100 200 166.67 16.67 

57 20 70 300 1000 456.67 22.83 

58 200 300 100 100 166.67 1.20 

59 300 100 1000 40 380.00 1.27 

60 100 1000 30 1000 676.67 6.77 

61 30 30 1000 0.78 343.59 11.45 

62 20 70 20 300 130.00 6.50 

63 20 30 30 100 53.33 2.67 

64 30 100 150 30 93.33 3.11 

65 500 250 1.2 10 87.07 1.91 

66 200 781 40 60 293.67 1.47 

67 1000 1000 100 240 446.67 2.23 

68 625 1.2 30 60 30.40 6.85 

69 10 2500 3130 1000 2210.00 221.00 

70 2500 10 3130 1000 1380.00 1.81 

71 100 100 150 30 93.33 1.07 

72 60 30 60 50 46.67 1.29 

73 50 30 60 60 50.00 1.00 

74 1000 350 1000 30 460.00 2.17 

75 625 625 625 350 533.33 1.17 
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Table 2. Cont. 

Entry 
LOEL 

Fold_diff 
Query Analog 1 Analog 2 Analog 3 Predicted 

76 0.78 350 625 625 533.33 683.76 

77 40 100 240 250 196.67 4.92 

78 5 5 10 3130 1048.33 209.67 

79 30 1.2 625 500 375.40 12.51 

80 250 20 100 500 206.67 1.21 

81 2 30 60 60 50.00 25.00 

82 250 10 100 240 116.67 2.14 

83 30 10 10 250 90.00 3.00 

84 20 100 100 750 316.67 15.83 

85 6 62.5 3130 70 1087.50 181.25 

86 60 781 200 350 443.67 7.39 

87 6 625 625 15 421.67 70.28 

88 30 30 60 60 50.00 1.67 

89 100 625 625 15 421.67 4.22 

90 100 150 30 200 126.67 1.27 

91 781 60 200 30 96.67 2.69 

92 625 625 625 350 533.33 1.17 

93 15 100 625 6 243.67 16.24 

94 625 625 625 350 533.33 1.17 

Table 3. Summary of predicted LOELs of all test set queries from the Estate  

fingerprint-based k-NN model. 

Sr. Query Analog-1 LOEL Analog-2 Analog-3 Predicted Fold_diff 

1 30 30 30 20 26.67 1.13 

2 30 30 1000 6 345.33 11.51 

3 1.5 200 5 0.75 68.58 45.72 

4 1250 750 1000 100 616.67 2.03 

5 50 781 60 250 363.67 7.27 

6 0.1 30 10 10 16.67 166.67 

7 1000 1000 1000 11 670.33 1.49 

8 20 150 200 6 118.67 5.93 

9 20 5 10 5 6.67 3.00 

10 100 250 100 500 283.33 2.83 

11 110 1000 1000 11 670.33 6.09 

12 1000 1000 100 750 616.67 1.62 

13 33 30 10 10 16.67 1.98 

14 30 3130 2500 200 1943.33 64.78 

15 10 781 60 30 290.33 29.03 

16 300 100 300 40 146.67 2.05 

17 2 30 30 10 23.33 11.67 

18 200 350 1000 1000 783.33 3.92 

19 125 10 250 40 100.00 1.25 

20 50 1000 100 30 376.67 7.53 
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Table 3. Cont. 

Sr. Query Analog-1 LOEL Analog-2 Analog-3 Predicted Fold_diff 

21 100 350 625 6 327.00 3.27 

22 10 6 15 10 10.33 1.03 

23 150 1000 750 200 650.00 4.33 

24 4 6 625 625 418.67 104.67 

In the case of internal prediction, a comparison of the predicted LOELs for queries with their 

experimental LOELs revealed that 71 of the 94 queries from the training set have a fold difference less 

than a factor of 10 (refer to Table 2). A fold difference of more than 100 was observed in only seven 

cases. Comparison of all queries with their associated nearest three analogs suggests that most often the 

structural similarity, as reflected in the 79 Estate fingerprints for each query, results in a similar 

biological response (refer to Tables S5 and S6). Moreover, we have sorted all queries based on correct 

class prediction by the Estate fingerprints based k-NN model (refer Table S3 for predicted class 

information); accordingly, two types of categories were identified: (1) Qualified category (in this 

category, the query class was correctly predicted); and (2) Non-qualified category (in this category, the 

query class was wrongly predicted). 

The Estate fingerprint-based model has found 70 queries in the qualified type and 24 queries in the 

non-qualified type of category (Table 4). 

Table 4. Training set queries sorted (in qualified and non-qualified categories) based on  

its k-NN model-based predicted class, and further divided based upon order of  

magnitude difference. 

Fold_diff# Number of Queries 
Total 

 Qualified Category Non-Qualified Category 

<10 54 17 71 

10–100 12 4 16 

>100 4 3 7 

Total 70 24 94 

# over of magnitude, fold differences (Fold_diff) < 10, 10–100 and >100. 

The comparison of the predicted LOELs and the experimental LOELs of queries showed that  

54 of the 70 queries from the qualified type of category and 17 of the 24 queries from the non-qualified 

type of category have less than one order of magnitude difference (fold_diff < 10).  

The LOEL values for 17 of 24 external test set queries were predicted within a factor of 10 from that 

of the experimental values. Only two of the 24 queries were predicted to have LOEL values that differed 

by more than 100-fold (Table 3). 

Additionally, we have performed an analysis of categories by sorting queries into the two types of 

categories, i.e., qualified types and non-qualified types. The comparison of the predicted and 

experimental LOEL of test set queries has shown that 14 of the 19 queries (74%) from the qualified type 

of category and 3 of the 5 queries (60%) from the non-qualified type of category have a fold difference 

less than 10 (Table 5). 
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Table 5. Test set query categorization (qualified and non-qualified) based on k-NN  

model-based predicted class, and further divided based upon order of magnitude difference. 

Fold_diff# 
Number of Queries 

Total 
Qualified Category Non-Qualified Category 

<10 14 3 17 

10–100 4 1 5 

>100 1 1 2 

Total 19 5 24 

# over of magnitude, fold differences (Fold_diff) <10, 10–100 and >100. 

The 77% (54 of the 70 queries) success rate for training set queries and 74% (14 of the 19 queries) 

success rate for test set queries, shows that our approach is capable of finding qualified categories from 

the k-NN classification method to perform a read-across study for a LOEL prediction within an order of 

magnitude. 

Our study revealed that the Estate fingerprint-based k-NN classification model performed well 

predicting LD50 classes for training and test set queries. The model has predicted correct classes of 89 

of 118 queries from the training and the test sets. Moreover, our results showed that if the LD50 query 

class was predicted correctly by the classification method, then it is more likely that its LOEL would be 

predicted to within an order of magnitude. Our study well establishes that 68 of 89 (76%) queries (of 

training and test sets) from the qualified type of category were found to have their LOEL prediction with 

a fold difference of less than 10. 

 

Figure 1. Summary of LOEL prediction for the training set queries from the qualified category. 

Comparing the predictive power of this model for toxic queries (class 1) from the qualified categories 

revealed that 43 queries were predicted correctly (Figure 1). The LOEL prediction for 30 of 43 queries 

was within an order of magnitude. Of the remaining 13 queries, 10 had their LOELs predicted to within 

10–100-fold of the experimental value, and the remaining 3 had >100-fold difference. Out of these 13, 

ten queries (i.e., entries 7, 12, 46, 47, 49, 52, 57, 76, 81 and 87) (Table 2) were extrapolated. 

Extrapolation is the procedure in read-across where endpoint information from category members at one 

end of the category is used to predict the endpoint of those members at the other end. These ten queries 

had the lowest LOEL in their particular categories. Thus, their predicted LOEL was calculated using 

members of the other side (i.e., the higher LOEL side) in their respective categories, which resulted in 

values that were too large. The remaining three queries had their LOELs predicted between 10–20 times 
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the experimental values: for entries 61, 79 and 93 (Table 2) ≈ 11, 13 and 16, respectively. Among the 30 

queries whose LOELs were predicted within an order of magnitude, entry 55 (in Table 2) was 

extrapolated, but the LOEL differences among all its analogs were less than 10-fold, and, thus, this query 

was predicted within an order of magnitude.  

There were 27 queries in the qualified category that belonged to class 2. Only three queries were 

predicted with more than a 10-fold difference. The LOEL of entry 53 (in Table 2) was predicted to within 

a factor of 20 from the experimental value, while the remaining two queries, entries 56 and 69 (Table 

2), were extrapolated for their LOEL predictions. As their predicted LOELs were calculated using 

category analogs of higher LOELs, LOELs of both these entries were thus predicted with more than a 

10-fold difference. 

In the case of the test set, out of 19 qualified category queries, ten belonged to class 1 and nine were 

from class 2. Six out of ten toxic queries (class 1) and eight out of nine non-harmful (class 2) queries 

were predicted to within an order of magnitude. A total of five queries (four from class 1 and one from 

class 2) were predicted with more than 10-fold differences, three of them (i.e., entry 15, 17 and 24 (Table 

3)) were extrapolated and, thus, their LOELs were predicted with more than 10-fold difference. While 

the remaining two queries (i.e., entries 2 and 3 (Table 3)) were predicted with a fold difference of 12 and 

46, respectively. Further analysis of entry 3 revealed that, in this category, analog 3 (acrolein) is its own 

metabolite. The entry 3 and its metabolite (acrolein) act mainly by Michael addition to exhibit their 

toxicity (Table 6). While, analog 2 (triallyl isocynurate) forms iminium  

ion that acts by SN1 mechanism, whereas analog 1 (1,4-butanediol) forms active metabolite  

gamma-hydroxy butyric acid, which is CNS depressant. As per toxic hazard classification by Crammer 

(with extension) [22], the class of hazard for 1,4-butanediol is low while acrolein and triallyl isocynurate 

have been indicated in the high toxicity class. This explains why this category fails to predict LOEL of 

entry 3. Our study has correctly predicted entry 22 from test set (Table 6), where all three analogs act with 

similar mechanism of actions by forming reactive oxygen species [23,24]. The entry 24 was predicted 

wrongly as LOEL is extrapolated. 

2.3. Mechanistic Interpretation 

Our model has correctly predicted the classes of queries of specific structural scaffolds such as 

nitrobenzene, aniline, halogenated hydrocarbons from class 1 (toxic). The influence of substituent 

electronic effects is represented by the Estate fingerprints [25]. The Estate fingerprint “ddsN” represents 

the nitro group, “aaCH” represents aromatic carbons, fingerprint “sNH2”, “aaCH:, and “sCl” collectively 

represent aniline derivatives and fingerprints “ssCH2”, “sCH3”, “sF”, “sCl”, “sBr” and “sI” collectively 

represent halogenated hydrocarbons. The nitro aromatics and aniline derivatives are known to form 

reactive oxygen species (ROS) which can lead to oxidative stress and electrophilic adduct formation 

with tissue proteins [23]. Halogenated hydrocarbons act by SN2 electrophilic reaction to form adduct 

with DNA or proteins [26]. 

The correctly predicted class 2 queries are aliphatic alcohols and methacrylate esters. The Estate 

fingerprints “sOH”, “ssCH2”and “sCH3” collectively represent aliphatic alcohols and fingerprints 

“dCH2”, “dO” and “ssO” collectively represent methacrylate esters. Most of the alcohols are 

metabolized by the enzyme alcohol dehydrogenase to form either inactive or active metabolites. It has 
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been shown in the literature that LD50 of methacrylates was related to lipophilicity [27], and they act as 

Michael acceptors [28]. 

Table 6. Test set query categories with their 3 respective analogs. 

Entry Data Query Analog 1 Analog 2 Analog 3 LOEL Predicted Fold_diff 

3 Structure 
 

  

   

 LD50 64 1525 1000 26   

 LOEL 1.5 200 5 0.75 68.58 45.72 

22 Structure 
    

  

 LD50 400 640 535 256   

 LOEL 10 6 15 10 10.33 1.03 

24 Structure 

    

  

 LD50 953 640 891 1072   

 LOEL 4 6 625 625 418.67 104.67 

2.4. Comparison with Previously Published Models for Repeated Dose Toxicity Prediction 

Other models for repeated dose toxicity endpoints are listed in Table 7. Comparing our study results 

with previous published models for LOEL endpoints, our model has shown better predictive power than 

studies published by De Julian-Ortiz et al. [29], Mazzatorta et al. [30] and Gadaleta et al. [24]. The 

Sakuratani et al. [31] study had only categorized chemicals into 33 chemical categories, while in our 

study we formed new categories for each of the chemicals to facilitate better prediction of their LOELs. 

The study performed by Mumtaz et al. [32] used 234 chemicals for construction of the QSAR model, 

but authors did not confirm the predictive power of this model using an external test set, thus it is not 

possible to compare our results with this model. The Garcia-Domenech et al. [33] study has shown 

slightly better predictive power than our model, but authors have used Integrated Testing Strategy (ITS), 

which is computationally time expensive. Our study is advantageous in comparison  

to other previous studies, since we have used 2D fingerprints that are fast and easy to calculate by  

a freely available computer program [34]. Our study has also not incorporated any difficult methods of 

descriptor selection that would have made this task more cumbersome and time consuming. 

Furthermore, this is the novel category-approach that has taken into consideration the acute toxicity 

information (LD50 based classes) for predicting LOELs of queries in their respective categories. There 

are published models that have used acute toxicity data for the prediction of chronic toxicity data.  

Kenega [35] introduced the concept of acute/chronic ratios (ACRs). Subsequently, Rand et al. [36] 

derived ACRs by dividing the acute measure for a particular organism by its chronic measure.  

Kumar et al. [37] have developed linear regression of LogLC50 against inverse of exposure time  

(log-inverse method), the intercept of the regression was then used to estimate chronic toxicity. All these 
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approaches only relied on biological endpoints and no theoretical information (description of chemicals) 

was taken into account for predicting chronic toxicity data. 

Table 7. Literature survey of QSAR models for prediction of repeated dose toxicity endpoint. 

Method 
Training Set 

Chemicals 

Test Set 

Chemicals 

Training Set 

Prediction 

Test Set 

Prediction 
Comment Reference 

Multivariate 

analysis 
234 none 

95% within 

factor of 5 
none 

No external 

prediction 
[32] 

MLR 234 none R2 = 0.52 none  [29] 

MLR 86 16 R2 = 0.79 R2 = 0.71  [33] 

PLS 445 none R2 = 0.54 none 
No external 

prediction 
[30] 

Read-across 500 none none none 
33 chemical 

categories formed 
[31] 

k-NN 254 179 q2 = 0.63 R2 = 0.54  [24] 

While in our study we have not directly used LD50 to predict LOELs of chemicals, we have instead 

formed LD50-based classes to identify k-neighbors for each chemical using k-NN method. Then, we have 

incorporated fingerprints that describe the molecular structure of chemicals. Subsequently, quantitative 

structural activity relationships were found among all the training set chemicals with the two classes 

(i.e., toxic and non-harmful) by means of k-NN algorithms. Finally, LOELs of chemicals have been 

calculated by taking arithmetic mean of LOELs of their respective k-analogs, provided that their LD50 

based classes have been correctly predicted.  

2.5. Toxicological Significance 

The significance of this study is supported by the notable relationship found between different 

mechanisms of acute (LD50) and chronic toxicity (LOEL), e.g., the acute toxicity effect of liver toxicity 

is well explained by some of the chronic toxicity effects such as liver serum indicator and liver 

hypertrophy. Similarly, the mitochondrial toxicity is explained by hypothermia; the kidney toxicity is 

explained by creatinine, chloride, and serum protein levels as well as urine volume; the locomotor 

activity is explained by choline esterase level, etc. 

It has been observed that the Estate fingerprints-based model has identified structurally similar  

k-analogs for queries. The comparison of their structures revealed that they could exhibit similar modes 

of actions, e.g., the category for entry 22 has revealed that the query along with three analogs could 

possibly form reactive oxygen species, and it is very likely that they will react towards similar receptors 

for exhibiting their toxic actions, while in some cases, our approach has failed to derive structurally 

similar k-analogs for the query. In those categories, all members do not follow similar modes of actions 

(e.g., entry 3), and thus LOEL predictions can’t be performed. 
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3. Experimental Section 

3.1. Software and Modules 

The classification_toolbox Matlab module developed at the Milano Chemometrics and  

QSAR Research Group, University of Milan, Italy [38] was employed for the development of  

k-NN classification model. The classification_toolbox Matlab module is freely available at: 

http://michem.disat.unimib.it/chm/download/classificationinfo.htm. 

3.2. Setting of the Dataset 

The New Energy and Industrial Technology Development Organization (NEDO) 2007–2010 

employed a database of chemicals for repeated dose toxicity endpoint in the development of the Hazard 

Evaluation Support System (HESS) integrated platform [39]. This database was incorporated in the 

OECD QSAR toolbox version 2.2 [40,41]. The 279 substances were retrieved from the RDT NEDO 

database using the OECD QSAR toolbox 2.2. These substances were each authenticated  

with respect to structure, IUPAC name and CAS registry number (RN). The SMILES notations of 

incorrectly assigned substances were corrected and missing SMILES notations were retrieved by using 

ChemSpider (http://www.chemspider.com/) [42], PubChem (http://pubchem.ncbi.nlm.nih.gov) [43] and 

SigmaAldrich (http://www.sigmaaldrich.com) [44]. Salts and mixtures were excluded from the dataset, 

as was a single chemical containing a fluorenone ring due to the lack of bulky polycyclic structures in 

our dataset. The resulting data set was comprised of 224 chemicals and their respective LOEL values 

(organism-rat, route-oral). 

Acute toxicity (LD50) values (organism-rat, route-oral) for 134 of the 224 chemicals were found using 

the Toxnet (http://toxnet.nlm.nih.gov/index.html) [45] web server. Among those 134 chemicals, 16 were 

found to have LOEL values larger than LD50 values and were thus discarded from the dataset, as this 

implied the presence of a fundamental problem with the data underlying these 16 particular chemicals. 

The LOEL values for 118 chemicals were obtained by assays of varied duration (such as 28, 42, 44, 46, 

49, 56, 90, 91 and 98 days, as summarized in Table S2). We included data from all assays for 

completeness. The selected 118 chemicals (refer to Table S2) were then classified into one of the two 

classes (toxic and non-harmful) using the Globally Harmonized Scheme (GHS) [46], see Table 8. These 

118 chemicals were randomly divided into a training set (94 chemicals, ≈80%) and test set (24 chemicals, 

≈20%) based on the principle of keeping 80% chemicals from each class in to a training and 20% 

chemicals from each class in to a test set. 

Table 8. Classifications of the 118 chemicals in the training and test sets prior to k-NN model 

construction. 

 Description 
LD50 

(mg/kg/day) 

Number of 

Entries 

Training 

Set Entries 

Test Set 

Entries 

Class 1 Highly toxic, toxic and harmful  ≤2000 70 56 14 

Class 2 Non-harmful  >2000 48 38 10 
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3.3. Fingerprint Calculations 

Eight types of fingerprints were employed for the development of classification models. These 

fingerprints were calculated using the PaDEL software [34]. The PaDEL software calculates fingerprints 

mainly using the Chemistry Development Kit [47]. In addition, it has incorporated additional fingerprints 

that include atom type electro-topological state descriptors, binary fingerprints and chemical 

substructures count identified by Klekotha and Roth. We considered eight types of fingerprints and those 

are: Estate (length-79), CDK (length-1024), Extended CDK (length-1024), CDK Graph (length-1024), 

Pubchem (length-881), MACCS (length-166), Substructural (length-307) and Klekotha-Roth (length-

4860). Each of the eight types of fingerprints was used separately to construct a classification model. 

3.4. Development of the Classification Model 

The “Jaccard-Tanimoto” distance method for calculation of distance matrices was employed for 

chemical classification [21]. In k-NN, the k stands for the number of neighbors to be considered. Thus, 

while applying k-NN algorithm, the optimal value of k needs to be determined. We have used cross 

validation to determine the optimal number of nearest neighbors (k), where a series of k values was 

assigned (from k = 1 to 10); based on lowest class error, an optimal k value was identified. The fivefold 

cross validation was implemented. Four groups were used for testing the class membership of the omitted 

group, where the class of the majority of k neighbors was assigned to the member of the omitted group. 

The k-NN method provided a final output for all eight types of fingerprints. All these models were later 

validated using the external test set. 

3.5. External Validation 

An external validation demonstrates the true predictability of a model. The test set of 24 chemicals, 

which were not considered for the model calibration, was used for an external validation of the model. 

Several validation parameters were studied to evaluate an optimum model such as non-error rate (NER), 

sensitivity, specificity and class error.  

3.6. Model Selection and Read-Across 

The parameters for the internal and external validations were used in order to identify the most robust 

model, which was used in subsequent read-across studies. We have considered all training and test set 

chemicals as “queries”. By applying the k-NN approach, k-neighbors were identified for every query; 

each was called as its “analog”. A particular query with its corresponding k-analogs was considered as 

a single category. To predict the LOELs of each query in its category, we took the arithmetic mean of 

the LOELs of all the k-neighbors of each query. 

4. Conclusions 

A recent report from the European Chemical Agency (ECHA) has highlighted the potential of the 

“read-across” method to fill toxicological information data gaps [48]. At present, there is no existing 

rule or criteria for the acceptance or elimination of analogs from a category that is needed for  



Int. J. Mol. Sci. 2015, 16 11673 

 

 

read-across studies. There are also no rules for the validation of a category [9] since LD50 data can  

be used in the setting of dose levels for chronic toxicity studies [49]. Both endpoints are also influenced 

by multiple mechanisms including off-target and non-specific effects. Thus, we suggest  

a new approach for supporting the acceptance of a category for the execution of read-across, i.e., if the 

classification model could predict correctly the class of query (toxic or non-harmful, based on LD50 

values) by means of a k-NN approach, then such a correctly predicted query and its corresponding  

k-analogs can be used to perform a read-across study for the prediction of LOEL of a query. 

Thus, we have successfully demonstrated the applicability of a read-across–k-NN coupled strategy 

for the prediction of repeated dose toxicity (LOEL) using acute toxicity (LD50) based classes.  

This approach should provide researchers with a tool to fill data gaps and allow the prediction of  

sub-chronic or chronic toxicity. This study should benefit computational toxicology, pharmacologists 

and risk assessors for carrying out read-across studies for the prediction of toxicological endpoints. 

Ultimately, this novel read-across–k-NN coupled strategy should contribute to a reduction in the number 

of animals used for chronic toxicity testing. 

Supplementary Materials 

Supplementary materials can be found at http://www.mdpi.com/1422-0067/16/05/11659/s1. 
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