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Enhancing chemical synthesis research
with NLP: Word embeddings for chemical reagent
identification—A case study on nano-FeCu

Dingding Cao1,2 and Mieow Kee Chan1,3,*

SUMMARY

Nanoparticle synthesis is complex, influenced bymultiple variables including reagent selection. This study
introduces a specialized corpus focused on ‘‘Fe, Cu, synthesis’’ to train a domain-specific word embedding
model using natural language processing (NLP) in an unsupervised environment. Evaluation metrics
included average cosine similarity, visual analysis via t-distributed stochastic neighbor embedding
(t-SNE), synonym analysis, and analogy reasoning analysis. Results indicate a strong correlation between
learning rate and cosine similarity, with enhanced chemical specificity in the tailored model compared to
general models. The framework facilitates rapid identification of potential reagents for nano-FeCu synthe-
sis, enhancing precision in nanomaterial research. This innovative approach offers a data-driven pathway
for chemical material synthesis, demonstrating significant interdisciplinary applications.

INTRODUCTION

Over recent years, nanotechnology research has grown exponentially due to its unique properties such as super-paramagnetism and excel-

lent catalytic reactivity in addressing the complex challenges across various disciplines. As an emerging interdisciplinary field, it encompasses

physics,1 chemistry,2 and biology3 for its applications in medicine, energy, and materials science.4 In the medical field, nanomedicine offers a

reliable way to improve the efficiency and precision of drug delivery and significantly improve therapeutic outcomes.5 In the energy field,

nanomaterials demonstrated large electrochemical active surfaces and distinctive optical and electronic characteristics. These are crucial

for the development of next-generation energy storage applications.6

In nanomaterials, nano-FeCu is a particularly interesting bimetallic nanomaterial that exhibits a unique combination of high catalytic per-

formance and reactive activity. The excellent catalytic performance of nano-FeCu is primarily attributed to its increased surface area which

allows efficient electron transfer.7 Nano-FeCu bimetallic nanoparticles exhibit high potential in wastewater treatment, pollutant degradation,

and heavymetal ion removal.8 Previous studies done byChan et al. demonstrated that nano-FeCu removed ammonia via the oxidation-reduc-

tion process9,10 and organic matter was removed by the combination effect of adsorption and reductive reactions.11,12

Nano-FeCu can be synthesized using two primary approaches, which are top-down and bottom-up methods.13 The top-down approach

starts with bulk materials, reducing them to the nanoscale using techniques such as lithography or etching, allowing for precise control over

the nanoparticles’ size and shape. On the other hand, the bottom-up approach synthesis of nano-FeCu particles from atomic or molecular

precursors through chemical reactions, such as the simultaneous reduction of iron (III) and copper (II) salts in the presence of a reducing agent

like sodium borohydride.14 This results in well-defined chemical compositions and the potential for self-assembly into complex structures.13

However, the main challenge is to obtain the desired size and shape of nano-FeCu, which requires precise control of the synthesis con-

ditions. The synthesis method, temperature, duration, and selection of chemicals are crucial in the chemical reductionmethod.9 These factors

influence themorphology, size, and properties of nanoparticles. Temperature affects the kinetics of particle growth, whereminor fluctuations

in temperature result in significant disparities in particle size. Meanwhile, the choice of chemical reagents directly affects the chemical struc-

ture and functionality of nanoparticles.15 Additionally, Retana et al. (2020) found that the presence of complexing agents such as trisodium

citrate and EDTA affected the properties of iron nanoparticles.16 Given the variety of chemical materials and experimental conditions, it is

important for material scientists to develop a reliable technique for nanoparticle synthesis.

Owing to the diversity of synthesis methods, researchers often encounter difficulties in identifying ideal chemical reagents and synthesis

conditions. A tedious trial-and-error exploratory approach is required to determine the right synthesis methods for a novel bimetallic nano-

particle pairing for a new application.17 Despite the numerous studies reported by the researchers on nanoparticle synthesis methods, the

current methodology continues to depend on heuristic and empirical approaches and lacks effective design guidelines.18 It is desired to
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develop a rapid and cost-effective guide to assist the researchers in identifying the most appropriate chemical reagents for a specific

application.

In recent years, the development in artificial intelligence (AI), especially in natural language processing (NLP) and large-scale model archi-

tecture has shown remarkable enhancement due to the advances in computing power and algorithms.19 The unveiling of ChatGPT byOpenAI

marks the commencement of a new era in AI-driven large languagemodels (LLMs).20 Text mining methods within the general domain of NLP

havemade substantial progress in recent years, where it is able to understand and analyze a wide variety of textual data with high efficiency.21

There has been a significant expansion of NLP technologies in chemistry and materials science research.22 For instance, NLP-enabled extrac-

tion of chemical reactions and material properties from vast scientific literature significantly accelerates data aggregation and research pro-

cesses in these fields.23 Named entity recognition (NER) is a fundamental method inNLP that can be used to extract information frommaterial

science literature, assisting researchers to obtain knowledge from the pool of scientific publications accurately and rapidly.24 For instance,

applying NER techniques can enable the automated extraction of data concerning nanomaterials, such as their synthesis methods, proper-

ties, and applications.25

Creating domain-specific datasets is a critical step in applying AI-related technologies to the field of chemistry. However, creating a nano-

material synthesis conditions query system that organizes data such as the choice of chemical reagents, synthesis duration, temperature var-

iations, and synthesis methods, from published papers is a magnificent task. This is because the chemical reagents for nano-synthesis, the

methods, and the properties of nanomaterials are normally presented in unstructured form in the scientific literature. Manual extraction of

such data is labor-intensive and impractical.26 Efforts were made by adopting NER to extract information from research papers; however, its

accuracy is questionable. This is due to the complex notation in chemical formulas, ambiguity in authors’ descriptions or methodologies of re-

action processes, lack of extraction of entity relationships, and errors in automated or manual annotation. The cumulative errors frommultiple

conditions eventually lead to poor practicality of the system, limiting the advancement of NLP technology in the field of material synthesis.27

Word embedding is a technique in NLP that transforms words into a continuous vector space, capturing the inherent semantic relation-

ships. This approach leverages the text information from both the syntactic and semantics context of the training data. By analyzing word co-

occurrences in a text corpus, it computes the vectors for each word based on the co-occurrence of words in a text corpus.28 It can effectively

learn the semantic relationships between words from large or specialized unstructured textual data, thereby capturing the implicit semantics

of thosewords. Typically, embeddingmodels are trained in an unsupervised or self-supervisedmanner,meaning that there is no need to label

the dataset in advance. It also addressed the issue of limited available annotated data for training.29 Word embeddings led to significant

improvements in many downstream tasks, such as speech recognition,30 machine translation,31 and text spelling disambiguation.32 They

also have wide applications in part-of-speech tagging and sentiment analysis.33

Word embeddingmodels can be trained using different algorithms. Currently, commonly used word vector models includeWord2Vec, as

proposed by Mikolov et al.,34 global vectors for word representation (GloVe) introduced by Stanford University,35 bidirectional encoder rep-

resentations from transformers (BERT),36 and generative pre-trained transformer (GPT)37 promoted by Google AI and OpenAI. Each of these

models adopts different network structures and optimization strategies. Word2Vec, trained by shallow neural networks, is adept at capturing

semantic and syntactic relationships, but its drawback is that it considers only word-level information, overlooks polysemy, and neglects

phrase or sentence-level information. GloVe trains by factorizing the word co-occurrence matrix and can effectively capture linear relation-

ships between words. However, it requires the storage and processing of large word co-occurrence matrices. BERT, characterized by its

deep, bidirectional transformer structure, considers the contextual information of words but requires extensive computational resources

and has a long pre-training time.

FastText is a framework proposed by the Facebook research team for text classification and word embedding.38 The FastText model fo-

cuses primarily on subword information, allowing the model to better account for morphological variations within languages. By providing

embeddings for each subword of a word, FastText can more flexibly handle rare or novel vocabulary. Given its subword-level representation,

FastText can generate vectors for any word, including the new words.39 The architecture of FastText is concise and efficient, particularly suit-

able for large textual data and exceptionally effective in performing text classification.40 In addition, its versatile embedding mechanism al-

lows FastText models to capture rich semantic information and contextual nuances within texts.

In this study, FastTextmodel was chosen for training as it provides a comprehensive and accurate representation of chemical vocabulary. A

corpus related to the three key terms ‘‘Fe, Cu, synthesis’’ was proposed for unsupervised training of word vectors, and a chemical word

embedding model for a specific scientific field (Fe, Cu, synthesis) was developed by NLP technology. The finding was compared with

OpenAI’s text-embedding-ada-002 word embedding model, based on the transformer architecture and with the BERT model. This research

combines traditional experimental research which involved hands-on laboratory work and empirical analysis with modern machine learning

techniques, to provide information on potential chemical reagents for the synthesis of nano-FeCu particles.

RESULTS AND DISCUSSION
Dataset analysis

Figure 1 shows the Schematic of the experiment workflow. Figure 2 presents an analysis of the sentence length and word frequency in the

Chem_Dataset. The occurrence of each element from the periodic table in the dataset is depicted in Figure 2A. The figures clearly showed

that the occurrence of iron and copper significantly exceeded the other elements. Following closely in the frequency are carbon, oxygen, and

hydrogen, consistent with their prevalence in actual chemical reactions.41 The statistical findings validate the specialization and credibility of

the developed dataset, Chem_Dataset, particularly in the domain of iron and copper.
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Figure 2B illustrates the length of each sentence in the Chem_Dataset Approximately 95% of sentences were less than 100 words, and it

displayed a normal distribution. This finding is in agreement with Gennaro et al.,42 where appropriate sentence length provides rich contex-

tual information, aiding the capture of semantic relations between words, and thereby aiding in good understanding and processing of text

Figure 1. Schematic of experiment workflow

(A–D) Workflow of (A) data collection, (B) data preprocessing, (C) model training, and (D) evaluation metrics.

Figure 2. Analysis of sentence length and elemental occurrence within the Chem_Dataset

(A) Elemental occurrence distribution.

(B) Sentence length distribution.
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data in NLP applications. The data collected in this study could be used for embeddingmodel training and other upstreamNLP tasks such as

chemical word classification, relationship extraction, and NER.

Analysis of average cosine similarity

Figure 3 depicts a Pearson correlation coefficient analysis between the hyperparameters involved in the grid search and the average cosine

similarity. It is observed that the learning rate exhibits a strong correlation with average cosine similarity (r = 0.8962). This could be attributed

to the learning rate’s pivotal role in controlling the convergence speed of the model during training.43 The impact of the remaining param-

eters on average cosine similarity is negligible (r < 0.1). The details of the data can be found in Data S12 (Average Cosine Similarity

Results.xlsx).

Based on the analytical outcomes of grid search model results, higher scores within a determined range on the positive dataset (D1 and

D2) signify superiormodel performance, owing to the considerable correlational significance of these character pairs. For instance, one pair in

D1 is [‘ethanol’, ‘methanol’], and another in D2 is [‘lignin’, ‘cellulose’]. However, when the model achieves excessively high scores, such as

those greater than 0.99, it may be indicative of overfitting (refer to Data S12 Model ID: 1, 10, 15, 18.). Based on the dataset and common

knowledge, ‘‘ethanol’’ is inherently ‘‘ethanol,’’ and despite demonstrating similar characteristics to ‘‘methanol,’’ it is implausible for their cor-

relation to exceed 0.99.44

Conversely, lower scores within a certain range on the negative dataset (D3 and D4) are preferable as these character pairs might not

possess any chemical correlation. For instance, a pair in D3 is [‘sodium chloride’, ‘petroleum’], and in D4 is [‘ethanol’, ‘eagle’]. The manifes-

tation of overfitting characteristics by the model will also reflect abnormally high scores, greater than 0.95, on the negative dataset (refer to

Data S12 Model ID: 1, 10, 15, 18.). Based on the dataset, a correlation greater than 0.95 between ‘‘ethanol’’ and ‘‘eagle’’ indicates that the

model has overfitted and no longer holds practical application value as a chemical word vector model.45

Table 1 shows the average cosine similarity test results of different models on the constructed positive datasets D1 and D2, and negative

datasets D3 and D4. The FastText-Base model exhibits the lowest average cosine similarity scores on positive datasets D1 and D2, at 0.6940

and 0.5717, respectively. The ChemFastText-Tuned model achieves the highest scores on positive datasets D1 and D2, reaching 0.9556 and

0.8583 respectively, surpassing the GPT-ada-002 model’s performance of 0.8996 on dataset D1. From the perspective of the dataset, the

FastText-Base model serves as the baseline model and is trained only on the Wikipedia 2017, UMBC web base corpus, and statmt.org

news dataset, without training on the Chem_Dataset, as a result, it reflects the lowest scores on the test sets.

However, despite not being specifically trained on the Chem_Dataset, the GPT-ada-002 model still manages to exhibit commendable

scores on D1 and D2. This can be attributed to the GPT-ada-002 word embedding model being trained on a more extensive and diversified

dataset.46 Furthermore, the ChemFastText-Tunedmodel, by approximatively training on theWikipedia 2017, UMBCwebbase corpus, statmt.

org news dataset, and Chem_Dataset, achieves the best average cosine similarity scores. This highlights the enhancing capability of special-

ized datasets on the model and the necessity for the construction of professional datasets.47

Moreover, the performances of the ChemFastText-Opt and ChemFastText-Tuned models reveal that when scores on the positive dataset

(D1 and D2) increase, the scores on the negative dataset (D3 and D4) also rise. This is indeed plausible as the amount of training data in-

creases.48 For instance, two terms, even if unrelated from a chemical perspective, may exhibit certain relatedness if the training corpus con-

sists of fairy tales.

The employment of diverse training corpora in pre-training phases has been quantitatively shown to contribute to an improvement in

model robustness.49 However, it could be difficult to collect diverse data in a niche research area. This study showed that the fine-tuned

model, ChemFastText-Tuned, surpassing the ChemFastText-Opt model (D1–D4) and GPT-ada-002 model (D1) in terms of average cosine

similarity scores. This indicated that in highly specialized fields, well-performing word vector models can still be trained through fine-tuning

when the training data are in the absence of diversity.

Figure 3. Correlational analysis of grid search parameters and average cosine similarity

The figure illustrates the Pearson correlation coefficient analysis between various hyperparameters and average cosine similarity.
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As shown in Table 2, the performance of the ChemFastText-Tuned model across various datasets illustrates the specific impacts of the

range and quality of training data on model effectiveness. Specifically, after training on a specialized chemical dataset (Chem_Dataset),

the model achieved high average cosine similarity scores of 0.9556 and 0.8583 on chemically related datasets D1 and D2, respectively, show-

casing its capability to identify and align relevant chemical terms.50

When the model’s training data included a broader range of chemical knowledge and some noise (ChemEnhanced_Dataset), its

scores slightly decreased to 0.9528 and 0.8506 on D1 and D2, respectively, indicating that the introduction of more contextual and

background information slightly affected the model’s ability to process chemical terms. With even more noise in the training dataset

(NoiseSimulated_Dataset), the scores on D1 and D2 further dropped to 0.9515 and 0.8480, respectively, further confirming the negative

impact of increased noise on themodel’s accuracy in identifying chemical terms. However, the increase in noise somewhat helped the model

to distinguish completely unrelated terms, as shown by the scores dropping to 0.7770 and 0.7258 on D3 and D4, respectively, suggesting that

the model’s ability to differentiate chemically unrelated terms might have been enhanced. These results emphasize the importance of care-

fully selecting and optimizing training data in chemical NLP applications. To enhance the model’s generalizability and reduce overfitting, the

introduction of a certain amount of noise is beneficial, but excessive noise can weaken the model’s performance within its specialty area.

Effective data management and model training strategies should aim to find the optimal balance between these factors, ensuring that

the model can precisely process specialized terms while being adaptable to a broader range of applications.51

As shown in Table 3, the performance of the BERT-Tunedmodel across different datasets at various learning rateswas evaluated.When the

BERTmodel was adjusted at a high learning rate of 13 10�3 across different datasets, it scored 1.0000 on all datasets (D1–D4), indicating the

model’s inability to effectively differentiate between datasets, which may be due to undertraining leading to model underfitting. High scores

on chemically related datasets (D1 and D2) and unrelated datasets (D3 and D4) demonstrate that the model was unable to correctly evaluate

the differences between chemically related and unrelated word pairs, thus failing to provide practicality for chemical reagent identification.

At lower learning rates (13 10�4 and 13 10�5), the average cosine similarity scores of the BERT-Tunedmodel decreased sequentially from

D1 to D4. Specifically, for Chem_Dataset, the scores decreased from 0.8531 in D1 to 0.7083 in D4 at a learning rate of 13 10�4, reflecting the

model’s improved ability to discriminate term relevance based on chemical context. This pattern remained consistent as the learning rate

decreased, highlighting the impact of learning rate adjustments on model sensitivity and specificity.52

Comparing these results with the performance of theChemFastText-Tuned onChem_Datasetmodel, which achieved scores of 0.9556 and

0.8583 in D1 and D2 respectively, it is evident that the BERT-Tuned model may require careful optimization to match the specificity achieved

by FastText. The inherent differences in model architecture (BERT’s deep bidirectionality gives it greater contextual awareness) suggest that

while BERT might offer deeper semantic insights, it is also more susceptible to overfitting, hence the need for careful adjustment of hyper-

parameters to optimize performance.53

As analyzed in Figure 4, the memory and CPU utilization during the training of fine-tuned FastText and BERT models under the

Chem_Dataset were compared. It was observed that the fine-tuning of the FastTextmodel required less than 150min, whereas the fine-tuning

of the BERTmodel required nearly ten times longer under equivalent resource conditions. This indicates that under CPU conditions, the cost

Table 1. Comparative evaluation of average cosine similarity scores across validation sets (D1–D4) for different models

Model name

Average cosine similarity scores

D1 D2 D3 D4

FastText-Base 0.6940 0.5717 0.2115 0.0907

ChemFastText-Opt 0.9240 0.7635 0.6623 0.6135

ChemFastText-Tuned on Chem_Dataset 0.9556 0.8583 0.7947 0.7536

GPT-ada-002 0.8996 0.8584 0.7986 0.7840

Average cosine similarity scores for FastText-Base, ChemFastText-Opt, ChemFastText-Tuned, and GPT-ada-002 models on positive (D1 and D2) and negative

(D3 and D4) datasets.

Table 2. Comparison of average cosine similarity scores across different datasets for ChemFastText-Tuned models

Model name

Average cosine similarity scores

D1 D2 D3 D4

ChemFastText-Tuned on Chem_Dataset 0.9556 0.8583 0.7947 0.7536

ChemFastText-Tuned on

ChemEnhanced_Dataset

0.9528 0.8506 0.7801 0.7384

ChemFastText-Tuned on

NoiseSimulated_Dataset

0.9515 0.8480 0.7770 0.7258

Average cosine similarity scores for ChemFastText-Tuned models trained on Chem_Dataset, ChemEnhanced_Dataset, and NoiseSimulated_Dataset on data-

sets D1-D4.
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of fine-tuning FastText was significantly lower than that of the BERT model. Moreover, the utilization of hardware resources was higher for

FastText, with CPU usage reaching up to 80%, compared to an average utilization of 60% for the BERT model.

Regarding memory usage, the fine-tuned FastText occupied five times the memory compared to the fine-tuned BERT, whose memory

usage was notably lower and maintained a relatively stable curve throughout the training period. This indicates that despite BERT’s high

computational complexity, its memory consumption was optimized, possibly due to more efficient batch processing and memory manage-

ment strategies implemented in its execution.

It is noteworthy that the use of graphics processing units (GPUs) could significantly shorten the training time of the BERT model, as the

parallel computing capabilities of GPUs can accelerate the training process of the BERTmodel substantially. However, considering the impact

of computational resource requirements, this study focused on the lighter model, FastText.54

Visual analysis of t-SNE

To effectively evaluate and compare the performances of different word embeddingmodels, this section utilizes nano-FeCu as a case study to

validate the classification capabilities of models. The selection of chemical reagents was strategically aligned with the common components

used in the bottom-up synthesis of nano-FeCu.55 This methodical choice ensures the evaluation and assessment carried out are reflective of

real-world applications and are thus, highly relevant, and contextual to the synthesis process of nano-FeCu.56

Figures 5A–5D depicts the t-SNE visual classification results of chemicals generated by FastText-Base, GPT-ada-002, ChemFastText-

Opt, and ChemFastText-Tuned word embedding models. The chemical word vector distribution created by the FastText-Base model is

relatively scattered, as shown in Figure 5A. This implied that this model has difficulty distinctly categorizing different types of chemicals.

Similarly, the image presented in Figure 5B showed that the GPT-ada-002 model manages to effectively cluster chemicals, but it still dem-

onstrates limited capability in distinguishing the properties of different chemical reagents. This could be observed by the intermediate

blue and yellow color distribution Figure 5B. This is because both FastText-Base and GPT-ada-002 models were not trained on the special-

ized chemical datasets (Chem_Dataset). This implied that a large-scale generic object model such as FastText-Base and GPT-ada-002 may

Table 3. Comparative performance of BERT-Tuned Models across different datasets at various learning rates

Learning Rates Model name

Average cosine similarity scores

D1 D2 D3 D4

1 3 10�3 BERT-Tuned on Chem_Dataset 1.0000 1.0000 1.0000 1.0000

1 3 10�4 0.8531 0.7935 0.7238 0.7083

1 3 10�5 0.8545 0.7913 0.7224 0.6634

1 3 10�3 BERT-Tuned on ChemEnhanced_Dataset 1.0000 1.0000 1.0000 1.0000

1 3 10�4 0.8667 0.7966 0.7449 0.7037

1 3 10�5 0.8536 0.7886 0.7161 0.6525

1 3 10�3 BERT-Tuned on NoiseSimulated_Dataset 1.0000 1.0000 1.0000 1.0000

1 3 10�4 0.8463 0.7768 0.7083 0.6829

1 3 10�5 0.8537 0.7860 0.7113 0.6387

Average cosine similarity scores for BERT-Tuned models trained on Chem_Dataset, ChemEnhanced_Dataset, and NoiseSimulated_Dataset at different learning

rates.

Figure 4. Comparison of CPU and memory utilization for fine-tuned FastText and BERT-Tuned models during training

(A) CPU usage over time shows higher utilization for Fine-Tuned FastText compared to BERT. (B) Memory usage over time indicates FastText occupies more

memory than BERT.

ll
OPEN ACCESS

6 iScience 27, 110780, October 18, 2024

iScience
Article



have difficulty in understanding and processing of chemical-related vocabulary and concepts due to limited training on chemical-related

database.57

In Figures 5C and 5D, the models ChemFastText-Opt and ChemFastText-Tuned exhibit excellent clustering capabilities and effectively

distinguish between copper salts and iron salts. This can be seen from the color distribution in Figures 5C and 5D where the colors are

more focused in a particular area. Notably, some reducing agents and chelating agents are clustered together, which was indicated by

the overlapping of red and green color areas in Figures 5C and 5D. This occurrencemay be attributed to the relatively low frequency of these

termswithin the original dataset, resulting in insufficient learning and optimization during the training phase. Consequently, the positioning of

these chemical terms within the word vector space is imprecise. This phenomenon implies the importance of incorporating extensive and

diverse training data when constructing word embedding models to ensure a more refined and accurate representation of terms.58

Synonym analysis

In this section, keywords such as hydrothermal method and FeSO4, presented in Table 4 are selected, and potential pertinent information is

explored through nearest neighbor searches with k = 250. The key findings are tabulated in Table 4.

The FastText-Base model has difficulty extracting useful information/words for the keyword ‘‘hydrothermal method.’’ This implies that the

basic FastText model was inadequate for capturing the relations between intricate chemical terminologies within the chemical domain

(Chem_Dataset). Meanwhile, both the ChemFastText-Opt and ChemFastText-Tuned models successfully identified various synthesis tech-

niques related to the hydrothermal method, such as ‘‘solvothermal,’’ ‘‘gel-hydrothermal,’’ and ‘‘co-hydrothermal.’’ This denotes the models’

ability to recognize synthesis methods analogous to the hydrothermal method, reflecting their broad comprehension of the contextual back-

ground related to hydrothermal synthesis techniques.

Figure 5. Analysis of word embeddings, t-SNE visualization of various types of chemical reagents using different models

(A) FastText-Base.

(B) GPT-ada-002.

(C and D) ChemFastText-Opt and (D) ChemFastText-Tuned. Visualization of t-SNE results for chemical reagents using (A) FastText-Base, (B) GPT-ada-002, (C)

ChemFastText-Opt, and (D) ChemFastText-Tuned models, illustrating the clustering capabilities of each model.
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Some terms like ‘‘aluminothermic,’’ ‘‘superthermal,’’ and ‘‘thermocatalysis’’ are associated with thermal reactions or high-temperature con-

ditions, suggesting the possibility of their utilization under conditions similar to the ‘‘hydrothermalmethod.’’ Notably, the term ‘‘solvothermal’’

provided by ChemFastText-Tuned displays an environment similar to the hydrothermal method, with a variance in the solvent used, high-

lighting the model’s acute perception of subtle differences. This indicated the importance of training models with the relevant dataset which

was tailored to the chemical field in this study.

The GPT-ada-002 model also identified synthesis and treatment methods related to the hydrothermal method in its neighboring word

options, such as ‘‘hydrolysis’’ and ‘‘hydrometallurgical,’’ revealing its ability to recognize processes involvingwater related to the hydrothermal

method. This model also recognized several methods related to chemical treatment, synthesis, and separation, like ‘‘electrothermal,’’ ‘‘gasi-

fication,’’ ‘‘photocatalysis,’’ and ‘‘hydrogenation.’’ These techniques are not synonymous with the hydrothermal method, but they are some of

the key methods for chemical treatment and synthesis. This indicates that the performance of the ChemFastText-Tunedmodel is comparable

with the GPT-ada-002 model on the keyword ‘‘hydrothermal method.’’ Proper training data are vital to enhance the performance of the word

embedding model.59

Table 4. Assessment of chemical term similarities and relationships in embedding models

Selected keywords Model name

Top-250 nearest neighbors (ranked in descending order, with meaningless

characters manually removed and normalized, and the selected

meaningful words are displayed below)

hydrothermal method FastText-Base No meaningful words were located.

ChemFastText-Opt gel-hydrothermal; solvo-hydrothermal; co-hydrothermal; hydro-thermal;

gel method; precipitation method; mechanosynthesized; aluminothermic;

thermocatalysis; hydrometallurgy

ChemFastText-Tuned Solvothermal; gel-hydrothermal; co-hydrothermal; hygrothermal;

mechanosynthesized; aluminothermic; superthermal;

precipitation method; thermolysis; gel method

GPT-ada-002 Gel-hydrothermal; Solvo-hydrothermal; Hydrolysis; Hydrometallurgical;

Electrothermal; Pyrohydrometallurgy; Hydrotreatment; Electrolysis;

Solvothermal; Gasification; Photocatalysis; Hydrogenation; Distillation

FeSO4 FastText-Base FeCl2; FeCl3; FeCl; FeCO3; Fe2; Fe3; FeOOH; Fe2O3; FeS; FeS2;

ChemFastText-Opt FeO4; FeK2O4; FeMn2O4; Fe3S4; FeN2O6; Fe2LiO4; FeS4; FeO4P;

ChemFastText-Tuned FeCl3; FePO4; FeSO4; Fe2O3; Fe3O8P2; Fe2LiO4; Fe2S3; FeO;

Fe (NO3)3; Fe (OH)2; Fe(acac)3

GPT-ada-002 FeSO4$7H2O; Fe2O3; Fe3O4; FeO; Fe2O3$SiO2; Fe (OH)2; Fe2O4Si; Fe2LiO4; FeS

CuCl2 FastText-Base CuCl; CuSO4; CuI; Cu2; CuBr; CuS; CuII; 2Cu; CuO

ChemFastText-Opt CuSO4; Cu (OTf)2; Cu (NO3)2; CuCO3; Cu (OH)2; Cu (OAC)2; CuF2; Cu4O3; CuO; CuS3

ChemFastText-Tuned Cu (OTf)2; Cu (Im)2; CuNO3; CuCO3; Cu (OH)2; CuF2; CuSO4;

Cu (OAc)2; CuF3; CuMnO2; CuO2

GPT-ada-002 CuCl; CuCl2$H2O; CuCl2$4H2O; CuCl2$6H2O; Cu (II)Cl; Cu(ntb)Cl;

CuL2Cl; Cu (II)L1Cl; CuO

NaBH4 FastText-Base LiAlH4; SnCl2; borohydride; Na2SO3; LiBH4; SmI2; dithionite;

2-propanol; N2H4; H3PO3; HCOOH

ChemFastText-Opt NH3; N2H4; C2H5; H2; N2O5;

ChemFastText-Tuned LiAlH4; NaN3; NH4; N2H4; NaHSO3; NaClO3;

GPT-ada-002 AlH4Na; NaH; sodiumborohydride; borohydride; NH3; NaOH;

EDTA FastText-Base EGTA; BAPTA; 1,10-phenanthroline; 8-hydroxyquinoline; ethylenediamine;

Chelex; Desferal; calcein; ionomycin

ChemFastText-Opt EDDHA; EDDA; TMS-EDTA; K2EDTA; Ethylenediamine; EGTA;

TEPA; TETA; Diaminetetraacetic acid; ED3A; DTPA; DOTA;

ChemFastText-Tuned EDDHA; EDDA; TMS-EDTA; K2EDTA; Ethylenediamine; EGTA; TEPA;

TETA; EDAA; EDPA; DTPA; DO3A-AMBA; H4EDTA; Gd-EOB-DTPA

GPT-ada-002 EDTA-Na; Na2EDTA; EDTA-2Na; H4EDTA; EGTA; ethylenediamine;

DTPA; DTPA-Zn, DTPA-Fe; diethylenetriamine; CDTA; HEDP

Top-250 nearest neighbors for selected keywords identified by FastText-Base, ChemFastText-Opt, ChemFastText-Tuned, and GPT-ada-002 models.
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For the ChemFastText-Opt, ChemFastText-Tuned, and GPT-ada-002, all evaluated words produced results of substantial relevance

across the three models. Moreover, not only were synonyms discovered, but also reagents exhibiting analogous chemical properties

were identified. For instance, multiple iron salts were found in the term ‘‘FeSO4,’’ and various copper salts were detected in

‘‘CuCl2.’’ These findings suggest that the method of seeking synonyms serves as a viable approach for identifying chemically analogous

reagents.60,61 In the identification of FeSO4, FastText-Base primarily displays various chemical forms related to iron, such as FeCl3 and

Fe2O3, highlighting different valence states of iron and its compounds with other elements. Additionally, the ChemFastText-Tuned

seems to offer a more extensive and pertinent range of synonyms, likely attributed to the model undergoing more meticulous chem-

ical-specific tuning. Taking ‘CuCl2’’ as an example, both ChemFastText-Opt and ChemFastText-Tuned accurately present Cu-related

compounds.

However, ChemFastText-Tuned offers more specific compounds, such as Cu (Im)2 and CuMnO2, showing its enhanced specialization.

GPT-ada-002, on the other hand, goes a step further, offering specific hydrated forms like FeSO4$7H2O, demonstrating its profound under-

standing of the chemical structure of substances. In the case of ‘‘EDTA,’’ all four models provided other chelating agents similar in chemical

structure or function. TheChemFastText-Tunedmodel excels in this regard, listing not only commonEDTA-related compounds but also iden-

tifying more complex chemical derivatives like DO3A-AMBA and Gd-EOB-DTPA, demonstrating higher sensitivity and depth of knowledge.

This reveals that model fine-tuning can amplify its recognition capabilities for complex systems.

Similarly, the GPT-ada-002 model also exhibits commendable performance in certain aspects. In the identification of FeSO4, FastText-

Base primarily displays various chemical forms related to iron, such as FeCl3 and Fe2O3, highlighting different valence states of iron and

its compounds with other elements. GPT-ada-002, on the other hand, goes a step further, offering specific hydrated forms like

FeSO4$7H2O, demonstrating its profound understanding of the chemical structure of substances.

NaBH4 is a widely used reducing agent. From the results, it can be observed that FastText-Base provides a series of reducing agents similar

in chemical properties to NaBH4, such as LiAlH4 and dithionite. ChemFastText-Tuned goes further, recognizing compounds with similar elec-

tronegativity or those that might play a role in reactions, such as NaN3 and NaHSO3. GPT-ada-002 introduces the core structure of borohy-

dride, proving its commendable chemical discernment. In conclusion, the chemical word embeddingmodels can capture the latent relation-

ships and properties between chemical reagents, displaying them as the closest neighbors in high-dimensional space. This synonym analysis

not only displays the capabilities of different models but also provides chemists with a tool for swiftly locating substances or methods related

to a given chemical substance or method. This holds immense potential value in literature searches, new material designs, or predictions of

chemical reactions.

Analogy reasoning analysis

In the analysis presented in Table 5, the performance of the ChemFastText-Tuned model on the D5 Dataset for Analogy Reasoning was

displayed across different datasets. It was observed that the overall top-50 accuracy remained below 10%, which may be attributed to the

specialization of the model when fine-tuned using a dataset specific to a particular domain.62,63 This specialization, while enhancing the

model’s performance for certain tasks or data types, also resulted in the sacrifice of its general capabilities. Notably, the accuracy improved

from 7.08 to 7.96 when additional chemically relevant knowledge was incorporated. This outcome underscores the importance of mixing

training data. By retaining specialized datasets and integrating broader general data, the model can maintain its expertise while also

learning and understanding a wider range of contexts and applications. Furthermore, when the model was fine-tuned using the

NoiseSimulated Dataset, the accuracy decreased to 5.31. This decrease was mainly because the D5 test set predominantly pertained

to chemical and general knowledge, with less involvement of musical knowledge. It is important to note that BERT is primarily designed

to handle contextual word vectors rather than static word meanings. For analogy tasks, models like GloVe or Word2Vec might perform

better as they provide more consistent spatial properties to support analogical reasoning. In this study, the use of BERT-Tuned did not

yield meaningful content for Analogy Reasoning. Research by Ascari et al.,64 supports these observations, noting that while BERT excels

in tasks requiring deep semantic understanding, it often struggles with analogical reasoning due to the variability introduced by context-

specific embeddings.

Table 5. Model performance on D5 dataset (Top-50 accuracy %)

Model Name Top-50 accuracy (%)

ChemFastText-Tuned on Chem_Dataset 7.08

ChemFastText-Tuned on

ChemEnhanced_Dataset

7.96

ChemFastText-Tuned on

NoiseSimulated_Dataset

5.31

BERT-Tuned Not applicable

Top-50 accuracy percentages for analogy reasoning analysis using ChemFastText-Tuned models trained on Chem_Dataset, ChemEnhanced_Dataset, and

NoiseSimulated_Dataset, along with BERT-Tuned model results.
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Conclusion

This research combines NLP technology and specialized knowledge in the field of chemistry, establishing a specialized corpus focused on

‘‘Fe, Cu, synthesis’’ and training domain-specific word embeddingmodels in an unsupervised environment. This provides a novel, data-driven

strategy and perspective for research in the field of chemical synthesis. Several words embedding models, including FastText-Base,

ChemFastText-Opt, ChemFastText-Tuned, BERT-Tuned, and GPT-ada-002, were thoroughly evaluated to explore the relationships and sim-

ilarities between chemical terminologies. The results illustrate thatmodels trained and tunedwith specialized chemical knowledge, especially

the ChemFastText-Tunedmodel, exhibit exceptional performance in exploring chemical terminologies and identifying related chemical pro-

cesses. Thismodel can not only identify compounds with similar chemical attributes and functions but also present a broader range of specific

and relevant compounds, demonstrating profound chemical knowledge and refined chemical insights. The methodology used in this

research provides a cross-disciplinary approach, enabling chemists to quickly locate chemical reagents or methods related to a given chem-

ical substance or method, with immense potential value for literature searches, new material design, and more. Although this study primarily

focuses on identifying chemical reagents related to FeCu synthesis, the methodological framework and technical workflow can be readily

adapted to other material synthesis domains.

Limitations and future work

This study focuses on training chemical word embedding models to recommend reagents with similar chemical properties. FeCu bimetallic

nanoparticle is selected as the case study and limited to the keywords of the material and synthesis method. Similar approach can be done to

other material or chemical process.

One limitation of this study stems from the construction of the corpus, where the quality of the training data derived from PDF files de-

pends on the accuracy of data extraction during the data processing phase.

However, predefined filtering criteria could be added to process the collected articles to enhance data quality and model reliability.

FastText is selected as the baseline rather than BERT for comparison purpose in this study due to its computational efficiency and accept-

able accuracy.More other architectures could be considered in the future work, in addition to FastText tominimize potential bias due to struc-

ture architecture.

The accuracy of the models was evaluated in terms of cosine similarity and synonym analysis, which are specifically designed to test the

efficacy of the word embeddings in a chemical context. In future work, more downstream tasks such as text classification, NER, and questions

and answer approach are recommended for comprehensive evaluation of word embedding models.
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STAR+METHODS

KEY RESOURCES TABLE

METHOD DETAILS

The methodology which comprises (a) Data Collection, (b) Data Preprocessing, (c) Model Training, and (d) Evaluation Metrics, is illustrated in

Figure 1. All models and data processing were trained and executed on a server, fortified with an AMD Ryzen 9 7950X3D 16-core CPU (32

threads) and 128GB of DDR5 ECCRAM. The versions of Python andConda usedwere 3.11.4 and 23.7.2 respectively. The versions of the other

required libraries are listed in Data S1 (requirements.txt).

FastText offers two distinct methodologies for deriving word representations: the Skipgram and Continuous Bag of Words (CBOW)

models, as depicted in Figure 1C. The Skipgrammodel is designed to predict a target word based on its surrounding words. Themodel com-

prises several key components: an input layer, where context words are encoded as one-hot vectors against a vocabulary of predefined size; a

projection layer, which transforms these sparse representations into dense, N-dimensional embeddings through multiplication with a weight

matrix; and an output layer, utilizing a softmax function to calculate the probability distribution across the vocabulary, with the aim of predict-

ing adjacent target words. The Skipgrammodel excels in capturing both semantic and syntactic aspects of words, fine-tuning its weights iter-

atively to increase the prediction accuracy of true target words within a given contextual window.

Conversely, the CBOWmodel employs a reverse strategy for word representation. It endeavors to predict a target word from a cluster of

surrounding context words. This model features a multi-word input layer, with context words encoded as one-hot vectors. These vectors are

then combined in the projection layer to produce an averaged embedding, embodying the collective semantic field of the context. The

essence of the CBOW model is encapsulated in its output layer, which uses a softmax function to predict the target word, considering the

entire vocabulary as potential outputs.

DATA COLLECTION

During the data collection phase, information about Fe, Cu and Synthesis was extracted from the scientific literature. Initially, the Elsevier

application programming interface (API) was used to search for articles containing the keywords "Fe" and "Cu" in the title, abstract, or key-

words, with the additional requirement that the content contain the keyword "synthesis". The remaining filter criteria were left at their default

settings.67 A total of 11,563 results were generated from this process. Duplicate articles were removed manually and a total of 6,402 articles

were selected for data sources, as presented in Data S2, DOIs.txt. 4,071 articles were downloaded and labeled as data source 1. 2,331 articles

were accessible in abstract form due to the subscription limitation, and it was labeled as data source 2. Furthermore, 560 open-access journal

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Document S1-S15 This manuscript https://doi.org/10.5281/zenodo.13092715

Software and Algorithms

FastText Facebook AI Research https://fasttext.cc/

Python version 3.11.4 Python Software Foundation https://www.python.org

Conda version 23.7.2 Anaconda, Inc. https://www.anaconda.com/

ChemDataExtractor chemdataextractor.org65 http://chemdataextractor.org

t-SNE implementation scikit-learn66 https://scikit-learn.org/

pdfplumber Python library https://github.com/jsvine/pdfplumber

icu_tokenizer ICU project https://github.com/unicode-org/icu

Wordninja Python library https://github.com/keredson/wordninja

GPT-ada-002 OpenAI Accessed via OpenAI API

BERT-base-uncased Google AI Accessed via TensorFlow/Transformers

libraries

Complete codebase for this manuscript Developed in-house https://doi.org/10.5281/zenodo.13094694

Other

AMD Ryzen� 9 7950X3D Advanced Micro Devices, Inc. https://www.amd.com/en/products/

cpu/amd-ryzen-9-7950x3d
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articles were obtained using "chemical" and "classical music" as keywords, and were labeled as data source 3 (Data S14) and data source 4

(Data S15) respectively, aiming to cover a broader range of chemical knowledge and noise in the simulated datasets.

DATA PREPROCESSING

pdfplumber library was used to extract text fromData Source 1, whichwas thenmergedwith the text content fromData Source 2 to obtain the

raw text data, in the data preprocessing stage. A series of progressively refined filters were applied in the text preprocessing workflow, as

listed below to ensure the quality of the training data. All libraries and tools utilized in this research were listed in the ’data and code avail-

ability’ section.

(i) The text was processed using Vahe Tshitoyan’s materials science text processing tools, which standardized chemical element names.

This was to maintain data consistency and reduce the number of unique words. Selective lowercasing, removal of diacritics, and ad-

dressed valence states in chemical formulas were performed.

(ii) The icu_tokenizer library was used to tokenize and normalize the text. In addition, due to the variation of PDF versions, the extracted

text often encountered issues such as the merging of multiple words and the loss of spaces between them. Therefore, the Wordninja

library was used to identify words and separate contiguous words with spaces.

(iii) Sentences were separated by dots, with each line containing one sentence. Aminimumof 40 characters is defined as a sentence in this

study. If the number of characters in a sentence was less than 40, adjacent sentences were merged until the condition was met. Un-

related sentences, such as those containing "https://" and "http://", were removed.

(iv) Ultimately, a cleaned, comprehensive dataset related to Fe, Cu, and synthesis, labeled as Chem_Dataset (data source 1 and 2), was

obtained. It consisted of 758,650 lines of training data, with a total word and character count of 31,673,184 and a unique word and

character count of 833,394. Furthermore, a ChemEnhanced_Dataset (data source 1, 2, and 3) containing 823,776 lines of training

data, with a total word and character count of 34,183,912 and a unique word and character count of 885,491, was created. Similarly,

a NoiseSimulated_Dataset (data source 1, 2, and 4) containing 809,033 lines of training data, with a total word and character count of

33,720,459 and a unique word and character count of 891,987, was obtained.

CONSTRUCTION OF THE VALIDATION SETS

Four datasets were generated using ChatGPT-4 by requesting pairs of synonyms that are strongly/weakly related to chemical raw materials.

Manual screening was done by analyzing the relevance of pairs. A strongly chemistry-related positive test dataset (D1), such as [’ethanol’,

’methanol’] pair, was created. The list contained 690 pairs of chemical reagents or compounds. A weakly chemically related positive test data-

set (D2) was constructed, and it consisted of 165 pairs, such as [’lignite’, ’peat’]. A strongly chemically related negative test dataset (D3) was

formulated, and it consisted of 340 pairs, for instance [’sodium chloride’, ’petroleum’]. Lastly, a list of 340 pairs, which were weakly chemically

related negative test dataset (D4) was created. [’ethanol’, ’eagle’] was one of the examples in the D4 list. The complete lists for these datasets

can be found in Data S3–S6 (D1.txt, D2.txt, D3.txt, and D4.txt), respectively. Additionally, an analogy reasoning dataset (D5) was created to

validate the model’s performance. Generated by ChatGPT-4, this dataset includes 113 entries, such as [’water: liquid oxygen: gas’], and is

provided in Data S13.

TRAINING AND VALIDATION OF WORD EMBEDDINGS MODELS

First, a pre-trained version of the FastText model was selected in the public domain, namely wiki-news-300d-1M.vec. This 300-dimensional

model, referred to as FastText-Base, was trained on Wikipedia 2017, the UMBC webbase corpus, and the statmt.org dataset. It consisted

of 16B tokens.

Then, using a grid search strategy with the hyperparameters list in the below table, namely model types, learning rates, epochs, window

sizes, word-N-grams and minimum count and the self-developed Chem_Dataset, a total of 96 FastText word models was developed. Sub-

sequently, theD1-D4 validation sets were used to perform synonym tests on the word vectormodels to quantify themodel’s understanding of

the semantic relationships between words. The performance of the models was evaluated in terms of average cosine similarity, which is a

standard metric used to measure the similarity between two vectors, capturing the directional similarity in high-dimensional space.68

The formula 1-2 is as follows:

Cosine Similarity ðA;BÞ =
A$B

kAk kBk =

Pn
i = 1 AiBiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i = 1 A
2
i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i = 1 B

2
i

q (Equation 1)

Average Cosine Similarity =
1

N

XN

i = 1
Cosine Similarity ðAi;BiÞ (Equation 2)

where:

Ai and Bi are the individual vector pairs.

n is the dimensionality of the vectors A and B

N is the total number of vector pairs.
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Cosine similarity measures the cosine of the angle between two vectors. When two vectors are identical, their cosine similarity is 1. The

average of the total individual cosine similarity was calculated by using Equation 2.69

The statistical relationship that quantifies the strength anddirection of the linear correlation between variables, which are hyperparameters

listed in the below table and average cosine similarity were evaluated by Pearson correlation coefficient, Equation 3. Its values vary from�1 to

1, where 1 indicates a complete positive linear relationship, �1 indicates a complete negative linear relationship, and 0 denotes no linear

relationship.70

r =

Pn
i = 1ðxi � xÞðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i = 1 ðxi � xÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i = 1 ðyi � yÞ2
q (Equation 3)

where:

n represents the sample size.

xi and yi are the individual sample points indexed with i.

x and y represent the means of the samples respectively.

The best-performing model was identified from the highest average cosine similarity value and named as ChemFastText-Opt. The

FastText-Base model was then fine-tuned using the recorded optimal model parameters (ChemFastText-Opt) and the scientific literature da-

taset Chem_Dataset, resulting in themodel ChemFastText-Tuned. The embeddingmodel, text-embedding-ada-002was also adopted in this

study. It was accessed via the open API interface provided byOpenAI. It uses cl100k_base as the tokenizer, has amax input token of 8191, and

its output dimensions are 1536. This model is codenamed GPT-ada-002. Furthermore, fine-tuned Bert models based on the BERT-base-un-

cased pre-trained model (Fine-tuned on large text corpora, including BooksCorpus with over 800 million words from various books, and En-

glish Wikipedia, featuring around 2.5 billion words) were also trained on three datasets, with the hyperparameters listed in the below table.

Summary of model specifications and training details

Word Embedding Model

name HyperParameters Values Training Corpus

FastText-Base Default – Wikipedia 2017,

UMBC webbase, statmt.org

ChemFastText-Opt Model Types cbow, skipgram Chem_Dataset

Learning Rates 1 3 10�2, 1 3 10�3, 1 3 10�4

Epochs 30, 60

Window Sizes 5, 10

Word N-Grams 1, 2

Minimum Counts 1, 3

Others Min/Max Character N-Grams

Lengths:2/7

Dimensions: 300

Keep the other parameters as default.

ChemFastText-Tuned Optimal parameters based on

ChemFastText-Opt.

Model Types: cbow

Learning Rates: 1 3 10�3

Epochs: 60

Window Sizes: 10

Word N-Grams: 3

Minimum Counts: 2

Min/Max Character N-Grams

Lengths:2/7

Dimensions: 300

Fine-tuned on Chem_Dataset/

ChemEnhanced_Dataset/

NoiseSimulated_Dataset based on the

FastText-Base model.

GPT-ada-002 Default – Multiple Datasets

BERT-Tuned Learning Rates 1 3 10�3, 1 3 10�4, 1 3 10�5 Fine-tuned on Chem_Dataset/

ChemEnhanced_Dataset/

NoiseSimulated_Dataset based on the

BERT-base-uncased model.

Batch Size 16

Epochs 1

Optimizer AdamW

Weight Decay Default

This table provides an overview of the hyperparameters and training corpus for different word embeddingmodels, including FastText-Base, ChemFastText-Opt,

ChemFastText-Tuned, GPT-ada-002, and BERT-Tuned.
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t-Distributed stochastic neighbor embedding (t-SNE)

Four datasets, namely reducing agents, chelating agents, copper salts, and iron salts involved in the nanoFeCu synthesis process were pre-

pared according to the recommendation from ChatGPT4 (refer to Data S7–S10). In addition, the names of all chemical reagents in the

Chem_Dataset were extracted and presented as Data S11 using the code in the utils folder).

The central principle of t-SNE is to preserve the distances between similar points in both high-dimensional and low-dimensional spaces.

This is achieved by minimizing the Kullback-Leibler divergence between the high-dimensional and the corresponding low-dimensional rep-

resentations. By retaining both local and global structures of the original high-dimensional space, this technique captures multi-scale struc-

tures of data and effectively maps them into two or three dimensions. This facilitates a clear visualization of the inherent relationships within

the data and enables the visualization of the reduced high-dimensional data.71 In this study, the t-SNE algorithmwas configured as illustrated

in Table 2.

In comparison to principal component analysis (PCA), which is effective for identifying the global structure and principal components of

data, it often fails to capture the local relationships crucial for understanding complex datasets like those in chemical informatics.72 Spectral

embedding and locally linear embedding, although powerful in preserving local neighborhoods, might not effectively visualize the multi-

scale structures inherent in our data. Thus, t-SNE was selected in this study. To visualize the relationships among word vectors, t-SNE was

used to perform dimensionality reduction on high-dimensional word vectors.73 t-SNE dimensionality reduction was applied to map high-

dimensional data into two-dimensional space, and visual processing was performed on the list of chemicals (Data S7–S10). This allowed

the users to view and analyze the structure and patterns of the data. By comparing and analyzing the distribution and clustering of these re-

agents in two-dimensional space, a qualitative assessment of the performances of different models is conducted.

SYNONYM ANALYSIS

The synonym analysis was conducted to evaluate the ability of FastText-Base, ChemFastText-Opt, ChemFastText-Tuned, and GPT-ada-002

models to identify synonyms and related terms for selected chemical keywords. A set of keywordswas chosen, and nearest-neighbor searches

were performedwith a breadth of k = 250, To narrow down and extract meaningful recommendations from the Chem_Dataset. The identified

list of synonym terms was analyzed to assess the models’ understanding and correlation with chemical terminologies.

ANALOGY REASONING ANALYSIS

In the analogy reasoning analysis, the models’ capabilities to discern complex semantic relationships between terms were evaluated using

structured analogy tasks, formatted as ’A is to B as C is to?’. The ChemFastText-Tuned model was specifically assessed for top-50 accuracy,

which quantified its ability to accurately predict the target term within the top fifty guesses.74

Parameter settings for t-SNE implemented (using the Python scikit-learn package)

Parameter Value

n_components 2

learning_rate 120

early_exaggeration 12

perplexity 15

Parameter values for the t-SNE algorithm used in the study, including n_components, learning_rate, early_exaggeration, and perplexity.All other parameters are

retained at their default values.
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