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Nuclear lamins, known as type 5 intermediate fibers, are composed of lamin A, lamin C,
lamin B1, and lamin B2, which are encoded by LMNA and LMNB genes, respectively.
Importantly, mutations in nuclear lamins not only participate in lipid disorders but also in the
human diseases, such as lipodystrophy, metabolic-associated fatty liver disease, and
dilated cardiomyopathy. Among those diseases, the mechanism of lamin has been widely
discussed. Thereby, this review mainly focuses on the regulatory mechanism of the
mutations in the lamin gene in lipid alterations and the human diseases. Considering
the protean actions, targeting nuclear lamins may be a potent therapeutic avenue for lipid
metabolic disorders and human diseases in the future.
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INTRODUCTION

The nuclear lamina (NL) is fibrin network structure located in the lower layer of nuclear membrane,
which is primarily composed of lamin A, C, B1, and B2 in mammalian cells. Lamins A and C are
classified as type A encoded by LMNA while B1 and B2 as type B encoded by LMNB1 and LMNB2,
separately (Figure 1). As a major component of the nuclear lamina, lamin is responsible for
maintaining the nuclear shape, transducting signals, organizing chromatin, repairing DNA, and
pyroptosis (de Leeuw et al., 2018; Stiekema et al., 2020). In structure, lamin, which serves as a V-type
intermediate filaggrin (IFS), forms the main cytoskeleton of the nucleus. Like all IFS, a V-type IFS has
three components, mainly including an amino acid domain at the head, a helix domain at the center,
and a carboxy-terminal domain at the tail. Additionally, the unique characteristics of these
subcomponents mainly include a nuclear localization signal (NLS), IG folding domain, and
CaaX motif (C = cysteine, A = aliphatic residue, X = any residue) (Gruenbaum and Medalia,
2015; Dittmer and Misteli, 2011) (Figure 2). Surpringly, the CaaX motif is a vital post-translational
modification site for lipid metabolism (Kuchay et al., 2019). Therefore, considering the above
structure of lamin, lamin may be an indispensable part in maintaining lipid homeostasis.

Indeed, the structure of lamin is of great importance to lipid metabolism. The dysfunction of
lamin leads to numerous pathologies, mainly affecting the structure of the nuclear membrane, lipid
synthesis genes, transcription factors, degenerative pathology, fat distribution, malnutrition, and
aging (Östlund et al., 2020; Kim et al., 2018; Afonso et al., 2016; Ruiz de Eguino et al., 2012; Padiath
and Fu, 2010). So, the abnormity of lamin elicits a series of metabolic disorders, the most common of
which is lipodystrophy (Maraldi et al., 2011). The correlation between lamin and lipid metabolism
has been well elucidated. For instance, the overexpression (OE) of lamin B1 downregulates the
expression of lipid synthesis genes and the content of myelin-enriched lipids, ultimately increasing
the risk of autosomal dominant leukodystrophy (ADLD) (Östlund et al., 2020). Also, NF-κB is
activated by lamin A/C, subsequently boosting proinflammatory genes, such as Il6, Tnf, Ccl2, and
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Nos2, and finally promoting the development of obesity-induced
insulin resistance in adipose tissue macrophages (ATMs) (Kim
et al., 2018). As lamin always interferes with lipid metabolism, it is
plausible that lamin-mediated lipid disorders may be intimately
correlated with human diseases. Indeed, accumulating evidence
has demonstrated that the mutations in the lamin gene play an
important role on human diseases. Lamin genes are susceptible to

mutate, hundreds of which are correlated to the human diseases.
Furthermore, it is noteworthy that 17% of those diseases are
lipodystrophy. Lipodystrophy syndrome is a rare heterogeneous
disease characterized by systemic or partial fat atrophy with
metabolic complications, which include insulin resistance,
diabetes mellitus (DM), female hyperandrogenia, fatty liver,
and dyslipidemia. Then, numerous studies have shown that
lamin mutations are of great importance in human
lipodystrophy syndrome (Table 1). More specifically speaking,
lamin A/C mutation, prelamin A maturation, and lamin B
mutation or deregulation have been proven to be the reasons
or significant related factors of human lipodystrophy syndrome
(Guénantin et al., 2014; Laver et al., 2018). Since lamin is
associated with various lipid-related physiological alterations,
more emphasis should be placed on the mechanism of the
nuclear lamins in human diseases. Herein, this review
summarizes the molecular mechanisms of lamin mutation-
associated diseases concerning lipid metabolism.

FIGURE 1 | The subtypes and roles of lamin. Lamin A/C, lamin B1, and lamin B2 are the fibrin network structures located at the lower layer of the inner nuclear
membrane. Lamin is responsible for maintaining the nuclear shape, participating in signal transduction, organizing chromatin, repairing DNA, and inducing apoptosis.
The mutation of LMN genes affect lipid dystrophy in various human diseases. INM: inner nuclear membrane; ONM: outer nuclear membrane.

FIGURE 2 | The structure of lamin. Nuclear lamins contain three
domains: a head domain, a coiled-coil rod domain, and an Ig-like fold domain.

TABLE 1 | Nuclear lamina-related diseases about genetic lipodystrophy syndromes.

Lipodystrophy type Genetic mutation Clinical phenotype

Familial partial lipodystrophy type 2 (FPLD2) LMNA (151660 AD) Gradual loss of fat from the limbs and trunk, “cushingoid” appearance due to neck and face
sparing, muscular dystrophy, dilated cardiomyopathy

Hutchinson–Gilford progeria syndrome (HGPS) LMNA (176670 AD) Generalized loss of subcutaneous fat, progeroid features
Mandibuloacral dysplasia with lipodystrophy
(MAD type A)

LMNA (248370 AR) Mandibular and clavicular hypoplasia, acro-osteolysis. Distal and truncal lipoatrophy, progeroid
features

Mandibuloacral dysplasia with lipodystrophy
(MAD type B)

ZMPSTE24
(608612 AR)

Mandibular and clavicular hypoplasia, acro-osteolysis. More generalized loss of fat, premature
renal failure, progeroid features

Atypical Werner syndrome (AWS) LMNA (150330 AR) Partial or generalized loss of subcutaneous fat, progeroid features
Adult-onset demyelinating leukodystrophy
(ADLD)

LMNB1 (169500 AD) Downregulates the expression of genes associated with lipid synthesis, which in turn leads to a
decrease in myelin-rich lipids

Acquired partial lipodystrophy (APL) LMNB2 (608709 AD) Gradual symmetrical subcutaneous fat loss, starting in the face and progressing down the upper
part of the body. Subcutaneous fat in the lower abdomen and legs is significantly reduced, while
fat storage in the gluteal area and lower limbs tends to be retained or increased
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THE REGULATORY MECHANISMS IN
HUMAN DISEASES BY MUTATION OF
LAMIN GENES
In the human disease spectrum, hundreds of mutations in the
LMNA gene have been identified and are associated with more
than a dozen human diseases, especially including lipodystrophy
(Gonzalo et al., 2017). Lipodystrophy is a series of heterogeneous
diseases characterized by the loss of selective adipose tissue or loss
of functional adipose cells, thus leading to dyslipidemia and
heterotopic steatosis (Hafidi et al., 2019). Specifically speaking,
autosomal dominant mutations in LMNA genes are strongly
correlated with familial partial lipodystrophy type 2 (FPLD
type 2) (Hegele et al., 2000; Jéru et al., 2017). Additionally, the
autosomal recessive mutation of LMNA gene is related to
mandibuloacral dysplasia (MAD), which causes changes in
lipid metabolism (Bagias et al., 2020). Besides, the mutation of
LMN gene also elicits a dozen of diseases, including FPLD,
Hutchinson–Gilford progeria syndrome (HGPS), metabolic
associated fatty liver disease (MAFLD), MAD, dilated
cardiomyopathy (DCM), autosomal dominant leukodystrophy
(ADLD), acquired partial lipodystrophy (APL),
Barraquer–Simons (BSS) syndrome, atypical Werner syndrome
(WS), limb girdle muscular dystrophy type 1b (LGMD1B), and
the autosomal dominant form of Emery–Dreifuss muscular
dystrophy (AD-EDMD). In recent years, the regulatory
mechanism of lamin mutation has been gradually elucidated.
However, the understanding of the regulatory mechanism of
mutated lamin in human diseases is not entirely clear, which
is still being explored. The study on the regulatory mechanism of
lamin mutation is helpful to reveal the importance of lamin in
human diseases.

LAMINA/C MUTATION-RELATED
DISEASES
TheMutation of LMNA Increases Prelamin A
Accumulation
FPLD2, a large genetic and phenotypic variation first reported in
the 1970s, is characterized by the progressive loss of subcutaneous
adipose tissue in the limbs and trunk, accumulation of fat in the
face and neck, and severe metabolic disorders, including insulin
resistance, glucose intolerance, diabetes, dyslipidemia, and
steatohepatitis (Dunnigan et al., 1974; Köbberling et al., 1975;
Krawiec et al., 2016). Interestingly, LMNA R482W and R482Q
are common pathogenic variants in FPLD type 2 (Özen et al.,
2020). FPLD andHGPS both belong to premature aging diseases
and exhibit a significant loss of subcutaneous adipose tissue.
More intriguingly, the pathogenesis of HGPS is caused by the
LMNA mutation, preventing the conversion of prelamin A to
mature lamin A, thereby leading to the accumulation of
prelamin A. Later, a large number of studies reported the
pathogenesis of lipodystrophy in FPLD roots in the
accumulation of prelamin A by mutated LMNA, which is
similar to the pathogenesis of HGPS (Capanni et al., 2005;
Bidault et al., 2013; Afonso et al., 2016).

Conversely, Tu et al. (2016) doubted that most of the mutated
sites of LMNA mutation in FPLD are not located in the key
sequence for lamin A processing. In addition to this, some of
these commercial antibodies bind nonspecifically to other
proteins. To reconfirm the mechanisms involved, the
monoclonal antibodies against prelamin A made by Tu were
used for four subjects with LMNA mutations in lipodystrophy.
Surprisingly, no evidence of prelamin A accumulation was found.
As a result, Tu et al. suggested that the missense mutations of
LMNA in FPLD cannot lead to an accumulation of prelamin A.

Meanwhile, a growing number of studies have shown that the
function of lamin not only at the cellular level but also in disease
states is controlled by the PTMs of proteins, including
phosphorylation (Machowska et al., 2015), SUMOylation
(Moriuchi et al., 2016), glycosylation (Snider and Omary,
2014), farnesylation (Farnsworth et al., 1989), methylation
(Rao et al., 2019), o-glcNAcylation (Alfaro et al., 2012; Wang
et al., 2012; Simon et al., 2018), succinylation (Weinert et al.,
2013), and ubiquitination (Wagner et al., 2011; Povlsen et al.,
2012). Farnesylation is special among many PTMs in the
regulation of prelamin A. Specifically speaking, pre-LMNA
(the precursor of mature LMNA) and B-type LMN are a
fannification on the cysteine residues of carboxy-terminal-
Caax motifs (Weber et al., 1989). Moreover, the three terminal
amino acids on type A and type B LMN were subjected to zinc
metalloproteinases (ZMPSTE24; prelamin A) or RAS-converting
enzyme 1 (Rce1; LMNB1 and B2) and cleaved by methylated α
-carboxyl groups (Winter-Vann and Casey, 2005). Interestingly,
LMNC is not able to be fannized due to lack of the -Caax motif
(Goldberg et al., 2008; Adam et al., 2013; Jung et al., 2013).
Therefore, ZMPSTE24 is essential for prelamin A to become a
mature lamin A. Afonso et al. (2016) discovered that the
expression of ZMPSTE24 decreases in FPLD cells, but it is not
clear why LMNA/C missense mutation affected the expression of
ZMPSTE24. Therefore, for lipid dystrophy caused by LMNA
mutation in FPLD, does LMNA mutation cause prelamin A
accumulation? If there is an accumulation of prelamin A, is it
caused by LMNA mutation that reduces the expression of
ZMPSTE24?

In short, there is much evidence that the accumulation of
prelamin A by mutated LMNA causes FPLD and HGPS. Since
prelamin A has a paradoxical role in the occurrence and
development of FPLD and HGPS, the relevant regulatory
mechanism of LMNA mutation remains to be further explored.

The Mutated Lamin Elicits Dynamic
Recombination of Nuclear Layer Networks
The rupture of lamina is an early event and a prerequisite of
lipogenesis and lipocyte differentiation. To understand the
underlying regulatory networks, Verstraeten et al. (2011) have
found broken lamina, the loss of lamin, and emerin proteins at the
10th day of fat cell differentiation. Eight days after that, the
proportion of cells expressing lamins increase while lamin A/C
protein levels remain low in the whole. Thus, the re-expression of
lamin subtypes increases the plasticity of nuclear membrane to
indentations under lipid stress, ultimately causing a reorganization
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of the cellular infrastructure. Moreover, progerin, a farnylated
protein resulting from LMNA mutation, can harden the nucleus
and reduce the reorganization, finally wiping the differentiation of
lipocytes. Lipid accumulation happens, while low progerin
expresses (Najdi et al., 2021). In short, targeting progerin may
be an effective method to improve lipid disorders.

TheMutation of LMNA Enhances Lipophagy
Lipophagy is mainly manifested as the interaction of the
autophagosome membrane with LC3. Then, the lipid droplets
(LDs) are selectively delivered to the lysis chamber for
degradation by the autophagic protein (Singh and Cuervo,
2012; Wang, 2016; Kloska et al., 2020; Shin, 2020). In a recent
study, Chad A. Cowan et al. (Friesen and Cowan, 2018)
discovered that in lipolysis, the proportion of LC3-II and LC3-
I, the level of ATG7 protein significantly stimulates LMNA
R482W mutant cells, thereby indicating that autophagosome
formation increases in FPLD2 adipocytes. As described above,
reduced fat production, increased lipolysis, and increased
autophagy may be intimately related to the lipid abnormalities
of FPLD2. As a result, LMNA mutation promotes lipophagy,
while the deeper connection between the lamin gene and
lipophagy needs more exploration.

The Lamin A/C Activates Liver Growth
Hormone Receptor Signals
MAFLD, a clinicopathological syndrome, is characterized by an
excessive deposition of fat in liver cells caused by non-alcohol and
other clear liver damage factors and is closely related to metabolic
stress liver injury (Mantovani and Dalbeni, 2020). Recently,
Vargas et al. (Mahdi et al., 2020) indicated that a case of
MAFLD patient was derived from the D300N LMNA
mutation of FPLD, which surprisingly suggested that the
mutation of the lamin gene may progress to steatosis,
therefore eliciting MAFLD. Accordingly, the subsequent
genetic testing and the risk of MAFLD should be taken
seriously in FPLD-diagnosed patients. Beyond that, the change
of lamin protein may also contribute to the occurrence and
development of MAFLD. Recent research reported that the
specific lamin A/C deficiency of hepatocellular in mice induces
spontaneous liver injury and increases the susceptibility to
steatohepatitis fed with high-fat diets in mice (Kwan et al.,
2017). Considering the fact mentioned above, it is plausible
that lamin protein is intimately correlated with MAFLD.

Indeed, the regulatory mechanism of lamin in MAFLD has
been gradually elucidated. Nevertheless, the understanding of the
regulatory mechanism remains unclear. It has been found that the
deficiency of lamin A/C upregulates stat1 mRNA and protein
levels and blocks the phosphorylation of Janus kinase 2 (JAK2),
transcription activator (Stat 5) and extracellular regulated protein
kinases (ERKs) mediated by the liver growth hormone (GH)
receptor signal, thus downregulating the expression of stat5-
dependent male-specific genes, ultimately promoting excessive
fatty acids, inflammation, and fibrosis in hepatocytes and
exacerbating the progression of MAFLD (Kwan et al., 2017)
(Figure 3).

In general, the mutation of the LMNA gene induces MAFLD.
Similarly, the GH signal pathway and stat1 mediated by lamin
A/C play protective roles in delaying MAFLD progression.
Nevertheless, the regulatory mechanism of lamin in MAFLD
remains to be further studied.

Prelamin A Segregates SREBP1 at Nuclear
Margin
MAD, an extremely rare autosomal recessive disorder, is mainly
manifested as bone abnormalities, premature aging, and
lipodystrophy (Bagias et al., 2020). Growing evidence suggests
that the lamin mutation may be a vital part in the lipid changes of
MAD. Firstly, a study hinted that a single amino acid substitution
in laminin A/C causes MAD (Novelli et al., 2002). In addition, the
two defects in MAD are the mutation of LMNA or ZMPSTE24
genes and are named as type A or B MAD, respectively.
Intriguingly, it has been found that the different types of
MAD also cause various fat changes. Specifically speaking,
type A MAD (MADA) loses fat in the extremities, while fat
deposits in the neck and trunk are normal or excessive; type B
MAD (MADB) forms subcutaneous fat loss that resulted from a
typical mutation in the ZMPSTE24 gene (Cenni et al., 2018). The
above evidence shows that the mutated lamin is intimately
correlated with lipid disorders in MAD. Moreover, some
studies have demonstrated that the regulatory mechanism of
prelamin A plays an important role in MAD.

Indeed, some studies have demonstrated that prelamin A plays
an important role in regulating lipid homeostasis. Lattanzi et al.
(Capanni et al., 2005) reported that prelamin A accumulated in
Dunnigan familial partial lipodystrophy, mandibuloacral dysplasia,
and atypical Werner syndrome, which are three laminopathies
characterized by lipodystrophic phenotypes. Furthermore,
prelamin A precursors specifically accumulate in dystrophic cells
and lipodystrophic cells and colocalize with cholesterol regulatory
element binding protein 1 (SREBP1) (SREBP1: The key regulators of
lipidmetabolism, involved in adipocyte differentiation, are expressed
at high levels in adipose tissue, and stimulates the expression of a
variety of adipogenic genes, including FAS,acetyl-CoA carboxylase,
stearoyl-coenzyme A desaturase1, and lipoprotein lipase (Li et al.,
2016). Lattanzi et al. also suggested that not mature lamin A/C but
rather prelamin A interacts with SREBP1. The mechanism is that
prelamin A isolates SREBP1 at the nuclear border, thereby declining
the activation of peroxisome proliferator activated receptor gamma
(PPAR gamma) via inhibiting active SREBP1, thus impairing pre-
adipocyte differentiation (Capanni et al., 2005).

In conclusion, the lamin mutation leads to lipid changes in
MAD. Also, prelamin A interacts with SREBP1, thus affecting the
actions of pre-adipocytes. However, the understanding of the
lipid-regulated mechanism of lamin is not entirely clear, which is
still being explored.

Prelamin A and Sp1 Effects on
Adipogenesis
To investigate the effect of lamin on transcriptional factors,
research shows that lipodystrophy can not only result from
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lamin mutation but also from the use of human
immunodeficiency virus protease inhibitors (PIs). Under PI
treatment in human mesenchymal stem cells (hMSC),
impaired adipogenesis is due to an interaction between
accumulated prelamin A and Sp1 transcription factors, finally
altering extracellular matrix gene expression (Ruiz de Eguino
et al., 2012). In general, the interaction between prelamin A and
Sp1 excacerbates LMNA-linked lipostrophy. Nevertheless, the
regulatory mechanism between lamin and transcriptional
factors in human diseases remains to be further studied.

The Activation of Tumor Protein 53
DCM is characterized by a progressive conduction system
disease, arrhythmia, and systolic impairment (Captur et al.,
2018). It has been studied that cyclin-dependent kinase
inhibitor 2A (CDKN2A), a downstream target of the E2F
pathway, is responsible for activation. LMNA D300N,
associated with DCM, results from E2F/DNA damage/TP53
activation. This axis can be a potential intervention target for
DCM in laminopathies (Augusto et al., 2020). Furthermore, the
impaired crosstalk between endothelial cells (ECs) and
cardiomyocytes (CMs) can contribute to the pathogenesis of
LMNA-related DCM (Sayed et al., 2020). The other sites of
cardiac involvement in DCM contain missense lamin A/C
mutation (Arg60Gly) (Porcu et al., 2021).

LAMINB1 MUTATION-RELATED DISEASES

Lamin B1 Downregulates Lipid Synthesis
Genes
ADLD is a slow-progressing but fatal neurological disorder in
40–50-year-old adults, usually accompanied by symptoms of
autonomic nervous dysfunction, followed by ataxia and
cognitive impairment and even the loss of myelin sheath in
the central nervous system (CNS) (Chrast et al., 2011; Giorgio

et al., 2015). Interestingly, ADLD is the only disease associated
with the lamin B1 gene (Padiath, 2019). Otherwise, the
pathogenesis of ADLD is overexpressed lamin B1 protein
levels due to LMNB1 gene replication or upstream deletion
(Takamori et al., 2018). In addition, lamin B1 OE targets
oligodendrocytes, thus decreasing the production of myelin
sheaths in the CNS. Furthermore, Rolyan et al. also discovered
that lamin B1 OE mouses exhibit severe demyelination, axon
damage, and neuron loss due to the decreased gene expression of
lipid synthesis pathways that play an important role in myelin
regulation, ultimately depleting myelin-rich lipids (Rolyan et al.,
2015). Indeed, the myelin genes required for oligodendrocyte
maturation are sensitively influenced by the nuclear membrane
(Lin et al., 2011). However, another study indicated that increased
lamin B1 alters the chromatin associated with the region of the
nuclear layer, therefore affecting the structure of the nuclear
membrane and myelin-related genes (Padiath and Fu, 2010).

In conclusion, the expression of lamin B1 exacerbates ADLD.
Despite considerable studies that are accessible, more
experiments are necessitated about the lipid-related effects
of lamin.

LAMINB2 MUTATION-RELATED DISEASES

Overactivation of the Complement System
Mutations in the LMNB2 have been associated with APL, also
known as BSS syndrome, which usually begins in childhood or
adolescence. Fat loss in BSS is typically characterized by gradual
symmetrical subcutaneous fat loss, starting in the face and
progressing down the upper part of the body. The
subcutaneous fat in the lower abdomen and legs is
significantly reduced, while fat storage in the gluteal area and
lower limbs tends to be retained or increased (Hegele et al., 2006;
Oliveira et al., 2016). CORVILLO et al. analyzed clinical,
immunological, and histological events in an 11-year-old girl

FIGURE 3 | The regulatory mechanism of lamin in alleviation of MAFLD. The deficiency of lamin A/C upregulates stat1 mRNA and protein levels and blocks JAK2,
Stat 5, and ERK mediated by the liver GH receptor signal, thus downregulating the expression of stat5-dependent male-specific genes, ultimately promoting excessive
fatty acids, inflammation, and fibrosis in hepatocytes and exacerbating the progression of MAFLD.
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with BSS during a 5-year follow-up, and their results suggest that
the overactivation of the complement system in adipose tissue
may be responsible for fat loss in BSS patients (Corvillo et al.,
2020).

THE REGULATORY MECHANISMS ARE
STILL UNCLEAR

WS or atypical WS is a rare autosomal recessive disorder caused
by inherited mutations in the WRN gene and LMNA gene,
respectively (Rossi et al., 2010; Wang et al., 2018). In atypical
WS associated with the R133L mutation of the LMNA gene, the
severity of metabolic complications is positively related to the
degree of lipodystrophy (Doh et al., 2009). In addition, Garg et al.
investigated the body fat distribution pattern and metabolic
abnormalities in two patients with atypical WS carrying R133L
heterozygous LMNA mutations. Both patients with LMNA
mutations had a unique distribution of body fat, with patient
1 having a fat loss limited to the distal portion of the limbs and an
increase in fat deposition in the trunk region, whereas patient 2
had a significant decrease in body fat. In summary, patients with
atypical Werner syndrome caused by R133L heterozygous LMNA
mutations may present with different types of lipodystrophies,
which may present with partial or total body fat loss. Partial
lipodystrophy can be further divided into two distinct patterns:
one involves the entire limb, mainly including familial partial
lipodystrophy, the Dunnigan type, and mandibular dysplasia,
while the other happens to involve only the distal limb region
(Muchir et al., 2000). However, the regulatory mechanism needs
to be further discovered.

Emery–Dreifuss muscular dystrophy (EDMD) is a severe
muscular disorder characterized by the early contracture of the
elbows, slowly progressive muscle weakness, and cardiomyopathy
with conduction block (Onishi et al., 2002). Lamin A/C defects
occur both in X-EDMD and AD-EDMD (Niebroj-Dobosz et al.,
2003). Lamin A is not only required for lamin B receptor (LBR)
retention but also for the localization of transcriptional RNA pol
II in muscle cells (Reichart et al., 2004).

Limb girdle muscular dystrophy (LGMD), a type of muscular
dystrophy (MD), is manifested as the progressive weakness of
muscles (Rajoria et al., 2021). Though the regulatory mechanism
is still unclear, a survey has reported that the lipid changes of
LGMD are similar to FPLD in skeletal muscle metabolism, mainly
exhibiting incomplete fatty acid oxidation and upregulated
ketogenesis, which may result from a common underlying
cause of muscular metabolic disorders (Boschmann et al.,
2010). Actually, LGMD1B is same as FPLD and EDMD
(Morris, 2001). Besides, LGMD1B and AD-EDMD are allelic
disorders (Muchir et al., 2000).

CONCLUSION

As a component of nucleus, lamin plays an important role in
maintaining nuclear shape, mechanical signaling, stabilizing
chromatin, regulating gene expression, and promoting cell

cycle progression. Here, we amply review the possible
mechanisms of innate or acquired lipid abnormalities caused
by lamin in the human diseases, mainly including increased
prelamin A accumulation, a dynamic recombination of nuclear
layer networks, enhanced lipophagy, activated liver growth
hormone receptor signals, segregated SREBP1 at the nuclear
margin, adipogenesis, lipid synthesis genes, overactivated
complement system, and activated TP53. Those are the targets
for lipid defects caused by lamin alterations. Nevertheless, the
regulatory mechanism of lamin in lipid metabolism and human
diseases remains to be further studied. As a result, targeting lamin
should be considered for treating human diseases, whichmay be a
promising disease-reversing strategy for patients.

PROSPECTION

Lipolysis and autophagy are two central catabolic pathways of
lipid decomposition (Zechner et al., 2017). Lipolysis depends on
the direct activation of lipase related to LDs, such as adipose
triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and
monoglyceryl lipase (MGL). In addition, LDs interact with ATGL
activators and inhibitors and then provide energy and basic
materials for the synthesis of cell membranes and hormones
in the body (Onal et al., 2017). Another lysosomal autophagy
pathway that plays an important role in lipid degradation is called
lipid autophagy, or lipophagy for short. Lipophagy requires cargo
identification accomplished by the interaction between the
autophagosome membrane with LC3. Subsequently, LDs are
selectively delivered to the lysis chamber for degradation by
the autophagic protein (Singh and Cuervo, 2012; Wang, 2016;
Kloska et al., 2020; Shin, 2020). Thus, the dysregulation of
lipophagy can lead to an abnormal deposition of lipids,
therefore seriously affecting cell function and dynamic balance,
ultimately resulting in cell death and a variety of diseases,
including non-alcoholic fatty liver disease, coronary heart
disease, and even cancer (Johnson and Stolzing, 2019).

Nuclear autophagy, a new type of selective autophagy, is
responsible for selectively removing damaged or unnecessary
nuclear substances in cells (Fu et al., 2018). Nuclear autophagy
happens in a variety of conditions, including starvation,
rapamycin-induced TORC1 inactivation, nuclear vacuolar
junction (NVJ) expansion, and nuclear fibrillary lamina defects
(Bo Otto and Thumm, 2020). In 2009, it was first reported that
LMNA/C is involved in the development of mammalian nuclear
autophagy. Additionally, some nuclear components exist in
perinuclear autophagosomes and lysosomes (Park et al., 2009).
Dou et al. also found a large amount of endogenous LC3 and a
small amount of lipidated LC3-II in the nucleus. Lamin B1
interacts with LC3 to induce nuclear autophagy, which may be
enhanced by lipidated LC3 (Dou et al., 2015) (Figure 4).
Additionally, the NEM1-spo7/Pah1 axis is very important in
the lipid synthesis axis. Meanwhile, this axis is also an
important factor to induce nuclear autophagy and correct the
localization of micronucleus autophagy factor NVJ1 and nuclear
autophagy receptor Atg39 (Rahman et al., 2018; Mirheydari et al.,
2020).
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Combined with the above literature, it is not difficult to find
that nuclear autophagy is significantly correlated with lipid
metabolism. For instance, lamin participates in the occurrence
and development of nuclear autophagy by interacting with LC3,
and the latter one is an essential factor in the process of lipophagy.
As a result, the nuclear autophagy and lipophagy involved in
laminmay be not independent of each other, although the specific
correlation mechanism and the relationship between lamin-
dependent nuclear autophagy and lipid metabolism deserve to
be further studied.

Apart from autophagy, apoptosis is another form of cell death.
Apoptosis is characterized by caspase activation, DNA cleavage,
and membrane surface modifications that enable apoptotic and
phagocytic cells to be recognized, as well as morphological
changes such as chromatin concentration and nuclear
fragmentation (Jung et al., 2020a). Importantly, lamin also
seems to act in the relationship between apoptosis and lipid
metabolism. In nonadipose tissues such as liver, heart, kidney,
muscle, and islet, the harmful effects caused by excessive
accumulation of fat on these organs or systems are called
lipotoxicity, which can induce programmed cell death, and
lipid apoptosis is the main cellular consequence of lipotoxicity
(Schaffer, 2016; Zhang et al., 2019). In all, the involvement of
lamins in nuclear autophagy and apoptosis is also a promising
point for lipodystrophy and deserves to be further explored in the
future.

Chromatin concentration is a nuclear modification
characteristic of the active apoptotic phase that follows DNA
cleavage and the hydrolysis of certain nuclear proteins by
proteases in the caspase family. The cysteine aspartate protease
family (caspase) is the main factor affecting protein hydrolysis in
the process of apoptosis. The apoptotic caspase can be divided
into two types: the initiation of caspase, including caspase-8, -9,
and -10, and the execution of caspase, including caspase-3, -6, and
-7. Caspase-3 and caspase-6 are responsible for the cleavage of
nuclear proteins PARP and lamin, respectively. Among many
apoptosis-related proteins, the hydrolysis of PARP by caspase-3 is
considered as an early indicator of apoptosis. The early cleavage
and rapid processing of lamin B by caspase-6 are regarded as a
marker of apoptosis (Villa et al., 1997; Buendia et al., 1999; Eron
et al., 2017; Jung et al., 2020b). Meanwhile, lamin A can also be

cleaved as a substrate of caspase-6. Studies have shown that
caspase-3 cleaves caspase-6 first in normal cell apoptosis, and
caspase-6 cleaves lamin A/C before apoptosis (Capo-Chichi et al.,
2018). Only when lamin A/C is cleaved by caspase-6 can
chromosomal DNA fully coagulate during apoptosis (Yan
et al., 2021) (Figure 5). Lamin plays a key role in apoptosis,
while the specific mechanism of the involvement of lamin in lipid
apoptosis remains to be further studied. For instance, if
adipocytes show apoptosis in lipodystrophy, then silencing
caspase may prevent its interference with lamin expression,
subsequently ameliorating lipid defects.

In MAD, we review the interaction between prelamin A and
SREBP1, suggesting that prelamin A sequestrates SREBP1 at the
nuclear border and restricts the translocation of some
transcription factors into the nucleus, thereby reducing the
pool of normally activated active SREBP1 and leading to the
dysdifferentiation of adipocytes (Capanni et al., 2005).
Meanwhile, it has been reported that SREBP1c (one of the
subtypes of SREBP1) modified by SUMO1 (small ubiquitin-
like modifier, also named SUMOylation, is a crucial post-
translational modification that exhibits a strong effect on DNA
repair, transcriptional regulation, protein stability, and cell cycle
progression) can repress the transcriptional activity of SREBP1c
and inhibits lipid production (Pichler et al., 2017; Zeng et al.,
2020). Similarly, several lamin A domains can also be modified by
SUMOylation. Two typical mutations cause lipid dystrophy
(LMNA P.g465d and P.K486N), while only the atypical
FPLD2-related p. r482W mutation shows a decrease in lamin
A sumoylation. This may provide an alternative mechanism for
these atypical lipodystrophies (Simon et al., 2013).

The distribution of adipose tissue is not entirely alike in
various types of lipodystrophy. Moreover, the special
distribution is an ongoing research. Additionally, the major

FIGURE 4 | The interaction between LC3 and lamin B1 may induce
nuclear autophagy. LC3 transports autophagy membrane and substrate via
binding to lamin B1 in the nucleus.

FIGURE 5 | The early cleavage of lamin B by caspase-6 is regarded as a
marker of apoptosis. Lamin A can also be a substrate of caspase-6. In
apoptosis, caspase-6 is cleaved by caspase-3, thus cleaving lamin A/C,
ultimately activating the apoptosis.
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foregone mutated genes in lipid disorders encode proteins
forming lipid droplets (Meehan et al., 2016). However, not
only the connections between genetic mutation and fat loss
but also the cure strategies still need to be discovered.
Metreleptin, a recombinant analog of human leptin, is the
only drug approved for the treatment of metabolic
complications associated with lipodystrophy. This compound
is used for the replacement of lipodystrophy accompanied
by leptin deficiency without HIV infection (Chevalier et al.,
2021). Nonetheless, except for Japan, no country authorizes
metreleptin as a drug for lipid issues. Worse, it is not entirely
clear whether metreleptin is a benefit or not to lipodystrophy
syndrome with normal leptin levels (Oral et al., 2019). Worse still,
various complications in the treatment of lipodystrophy have
shown to us all. Notably, the most common of which includes
weight loss, abdominal pain, hypoglycemia, fatigue, headache,
a loss of appetite, injection site reactions (bruising and
hives), anti-leptin antibodies, T-cell lymphoma, and infection
(Tchang et al., 2015). Even so, metreleptin treatment powerfully
alleviates metabolic abnormalities such as hyperglycemia,
hypertriglyceridemia, increased hepatic fat content, and
elevated liver enzymes alanine transaminase and aspartate
transaminase and corrects the hyperphagia of leptin deficiency
in patients with generalized lipodystrophy (Akinci and Akinci,
2015).

Considering that there is no efficient and safe drug for curing
lipodystrophy, targeting relevant mechanisms regulated by
lamina may be a promising strategy. The perturbations in
mutated lamin are closely associated with the lipid issues, and
an understanding of the contribution and influence of lamins in
human diseases poses an exciting area for scientific discovery.
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GLOSSARY

ADLD autosomal dominant leukodystrophy

AD-EDMD autosomal dominant form of Emery–Dreifuss muscular
dystrophy

APL acquired partial lipodystrophy

ATGL adipose triglyceride lipase

BSS Barraquer–Simons syndrome

CDKN2A cyclin-dependent kinase inhibitor 2A

CNS central nervous system

CMs cardiomyocytes

DM diabetes mellitus

DCM dilated cardiomyopathy

ECs endothelial cells

EDMD Emery–Dreifuss muscular dystrophy

ERK extracellular regulated protein kinase

GH growth hormone

HSL hormone-sensitive lipase

hMSC human mesenchymal stem cell

HGPS Hutchinson–Gilford progeria syndrome

IFS intermediate filaggrin

INM inner nuclear membrane

JAK2 Janus kinase 2

LGMD limb girdle muscular dystrophy

LGMD1B limb girdle muscular dystrophy type 1b

LD lipid droplet

LBR lamin B receptor

MADA type A mandibuloacral dysplasia

MADB type B mandibuloacral dysplasia

MAD mandibular sacral dysplasia

MAFLD metabolic associated fatty liver disease

MD muscular dystrophy

MGL monoglyceryl lipase

NLS nuclear localization signal

NVJ nuclear vacuolar junction

ONM outer nuclear membrane

OE overexpression

PPAR gamma peroxisome proliferator activated receptor gamma

PI protease inhibitor

PTMs post-translational modification

SUMOylation small ubiquitin-like modifier

Stat5 transcription activator

SREBP1 cholesterol regulatory element binding protein 1

WS Werner syndrome

ZMPSTE24 zinc metalloproteinase
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