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ABSTRACT: Inorganic metal halide solar cells made from perovskite
stand out for having outstanding efficiency, cheap cost, and simple
production processes and recently have generated attention as a
potential rival in photovoltaic technology. Particularly, lead-free
Ca;AsBr; inorganic materials have a lot of potential in the renewable
industry due to their excellent qualities, including thermal, electric,
optoelectronic, and elastic features. In this work, we thoroughly
analyzed the stress-driven structural, mechanical, electrical, and optical
properties of Ca;AsBr; utilizing first-principles theory. The unstressed
planar Ca;AsBr; compound’s bandgap results in 1.63 eV, confirming a
direct bandgap. The bandgap within this compound could have I
changed by applying hydrostatic stress; consequently, a semiconductor-
to-metallic transition transpired at SO GPa. Simulated X-ray diffraction
further demonstrated that it maintained its initial cubic form, even after external disruption. Additionally, it has been shown that an
increase in compressive stress causes a change of the absorption spectra and the dielectric function with a red shift of photon energy
at the lower energy region. Because of the material’s mechanical durability and increased degree of ductility, demonstrated by its
stress-triggered mechanical characteristics, the Ca;AsBr; material may be suitable for solar energy applications. The mechanical and
optoelectronic properties of Ca;AsBr;, which are pressure sensitive, could potentially be advantageous for future applications in
optical devices and photovoltaic cell architecture.
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1. INTRODUCTION

Environmental concerns around the world and rising demand
for energy, along with the continuous advancement in
technologies for renewable energy, encourage the use of
renewable energy sources. Solar energy is among the most
inexpensive and plentiful of all the long-term natural resources
currently. The solar photovoltaic (PV) technique is among the
most efficient methods to harness the power of sunlight to
produce electricity by converting sunlight into direct currents
within solar cells (also known as PV cells). Perovskite-based
materials provide a variety of exciting advantages in solar cell
technology.' This is why they are now the subject of intense
research and development worldwide. In the past, this term
was used to describe metal oxides with perovskites, which are
generally classified as piezoelectric or ferroelectric materials.”
Perovskites made from inorganic materials are often produced
for use in a variety of photoelectric and energy-related
purposes.”™ For instance, solar cells,”® light-emitting
diodes,”® and equipment for converting renewable energy.
The ability of halide type perovskites to produce light in light-
emitting diodes (LEDs) was discovered by Mitzi’s group in the
1990s,”~"" and recently related LEDs have been produced.”"”
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In spite of the fact that the process of converting light into
electricity is the opposite of that of converting electricity into
light, the first paper on halide perovskites being used as
photovoltaic solar absorbers appeared a few decades after the
first article on electricity into light.'* A rapid rise in power
conversion efficiency (PCE) from 3.8% to more than 25% in
less than a decade has attracted significant attention for
organic—inorganic hybrid perovskite solar cells.'” Recently,
solar panel technology offered a tempting replacement for
conventional sources of energy because of its highly effective
transformation of light energy into electric power and minimal
loss processes. The features of the perovskite materials have
improved during the last ten years, speeding up this

development.” In the green solar industry'*™" it is also
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Figure 1. Constructed (a) two-dimensional (2D) and (b) three-dimensional (3D) crystals of the Ca;AsBry compound.

creating a lot of buzz. Pinhole-free homogeneous perovskite
material to fabricate more solar modules that are more
efficient, convenient, and safer with regard to the environment
is a new era that researchers are eyeing.

The crystal structure as well as characteristics of perovskite
materials may be changed to make them appropriate for
optoelectronic devices using the powerful technique of stress-
induced engineering.”"~** According to recent studies on how
stress affects material properties, there is a strong and visible
relationship between the stress that is given to a material and
its structural characteristics.”*>* Hadenfeldt et al. conducted an
experimental study, and the report also showed the possibility
for utilizing it in thermal applications.”® Stress causes the
semiconductor to change from semiconductor to metallic,
which increases the possibility of employing it in conducting
applications.”” The most important and practical method is to
use pressure to adjust the optoelectronic, mechanical, and
thermoelectric transport phenomena.”* " The alteration of
these characteristics by octahedral shrink caused by hydrostatic
pressure makes pressurized crystal seem superior to bare
crystal.>!

Inorganic compounds have gained prominence in photo-
voltaic technology due to their extensive structural, electronic,
and optical properties. Recently, several studies examined
different inorganic compounds, such as Ca;AsI; and Sr;AsCls.
In a study published in 2023, Rahman et al. explored spin—
orbit coupling and strain effects on CajAsl;, showing the
bandgap of the material is 1.58 eV and that strain can vary the
bandgap.”” Rahman et al. also published a paper that year that
examined Sr;AsCly’s strain-induced properties, revealing a
direct bandgap of 1.649 and 2.473 eV for the Perdew—Berke—
Enzerhof (PBE) and Heyd—Scuseria—Ernzerhof (HSE)
functions and showing that compressive strain results in a
blue shift in absorption spectra and dielectric function, whereas
tensile strain results in a red shift.”> The first investigation of
Ca;AsBr; conducted by Hadenfeldt et al. in 1984, the thermal
behavior of the compound was studied, including phase
transformations and heat absorption.”® In our study of
Ca;AsBr;, we examined the compound’s structural, mechan-
ical, electrical, and optical properties for the first time under
stress, showing a direct bandgap of 1.63 eV and a transition
from semiconductor to metal at S0 GPa. Additionally, the
material has a high degree of ductility and mechanical
durability, making it suitable for solar energy applications.
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When the stress is created from 0 to 50 GPa, for example, it
considerably impacts the structural, mechanical, electrical, and
optical characteristics of Ca3;AsBr; compound. To make
Ca;AsBr; appropriate for use in conducting applications, it is
crucial to minimize its bandgap value while keeping it within a
steady stability range suited for constructing flawless goods of
any sort. There has not, however, been a thorough
investigation of how stress impacts the optical, electrical, and
mechanical characteristics of Ca;AsBr;. In this study, the
electrical, optical, and mechanical aspects of Ca;AsBr; are
thoroughly investigated in relation to stress using Density
Functional Theory, often known as DFT. We thoroughly
examined the band structure and the procedure for modifying
the Ca;AsBr; bandgap. We looked at how the presence of
external stress alters the physical properties, including
electronic bandgap, to define the electric characteristics of
Ca;AsBr;. Understanding elastic constants, anisotropy, and
moduli is essential to appreciate a compound’s potential for
device construction applications fully.34_‘ © On the other hand,
the anticipated pressure-sensitive electrical and optical proper-
ties are crucial for comprehending the suitability of the
investigated materials for optoelectronic applications.””** A
number of these aspects motivate us to do more theoretical
research utilizing the ab initio density functional theory (DFT)
procedure, a well-liked technique for forecasting new energy
substances based on the electrical, mechanical, and optical
properties of these compounds.

The challenges associated with its use as a solar cells’
material should not be ignored, despite Ca;AsBr;’s promising
characteristics. In this study, while the material exhibits a direct
bandgap and photoconductivity, we did not evaluate essential
parameters such as carrier lifetime and diffusion length. In solar
cell applications, these parameters play a vital role in
determining a material’s efficiency. A comprehensive analysis
of carrier dynamics is needed to better understand and
optimize the photovoltaic performance of Ca;AsBr;.

2. COMPUTATIONAL DETAILS

We used a ultrasoft pseudopotential in the setting of density-
functional theory (DFT).* We used the Generalized Gradient
Approximation (GGA) along with the PBE exchange-
correlation interactions function to investigate the optoelec-
. . 40 . . .
tronic properties.” The density functional theory calculations
were performed using the Cambridge Serial Total Energy
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Package (CASTEP) program.”'~* We established a kinetic
energy cutoff of 600 eV in order to improve the simulation
performance and structural optimization. A maximum
allowable force tolerance was set at 0.01 eV for this
computation analysis. We kept the self-consistent function
boundary at roughly 107 atomic units to accurately simulate
the ground state energy. We considered a convergence
threshold of forces of 107° atomic units for structural
characteristics and ionic relaxation. Additionally, we used a
15 X 15 X 15 Monkhorst—Pack** k-mesh grid to calculate the
electronic band configuration and the density of states (DOS)
by integrating over the first Brillouin zone.*> The CASTEP
package applies the finite theory of strain to calculate the
elastic parameters.46 The factors for geometry optimization
convergent threshold include a maximum displacement of
0.000S, which is the highest stress of 0.02 GPa, maximum
forces of 0.01 eV/A, and overall energy of 1 X 1076 eV/atom.””
The optical properties obtained on the standard DFT Kohn—
Sham orbits are subtracted using the CASTEP program.”®~>°

3. RESULTS AND DISCUSSION

3.1. Structural Properties. In the process-structure
performance, the structure of the material correlates with
every prospect in this hybrid regime. Ca;AsBr; is a metal base
halide containing a Pm3m cubic spacing group. There are
seven atoms in total in a unit cell. Figure la depicts the
crystalline structure of Ca;AsBrs, which crystallizes in the
Pm3m spacing group. In this unit cell, the Ca atoms reside in
the 3d Wyckoff site as well as (1/2, 0, 0) fractional coordinates.
As atoms are in that la Wyckoff site, and (0 0, 0) fractional
coordinates, Br atoms reside in the 3¢ Wyckoff site as well as
(0, 1/2, 1/2) fractional coordinates. When Ca>* forms bonds
with two corresponding As®>™ and four similar Br'~ atoms,
CaAs,Br, octahedra are formed with sharing to their corners
and outside edges. There is no inclination at all in the shared
corner octahedra. As** forms corner-sharing AsCaq octahedra
by forming covalent bonds with six different Ca>" molecules.
There is no distortion in the two nearby octahedra. In an
alternating square arrangement, the Br'~ ion is joined to four
comparable Ca®" molecules. Binding energy fluctuation with an
alteration in its lattice constant has been seen by utilizing relax
processing in a PBE program, allowing parameters of structure-
like lattice constants to be determined. By assessing the lattice
constant, the quantity that yields the ground state’s lowest
energy intensity, and maintaining the structural integrity of the
lattice structure, the energetic density function of the
fundamental state is easy to calculate. The lattice parameter
of our ideal relaxing Ca;AsBr; arrangement is 5.95. The
optimal number agrees well with earlier studies.”® As a result,
the two- and three-dimensional perspectives of the Ca;AsBr;
lattice framework are graphically shown in Figure la and b.
The sections that follow will go through the electrical and
optical characteristics that may be obtained by this form of
hypostatic stress integration.

The lattice constants and the volume of a crystal decrease
with pressure, as can be seen in Figure 2, because the atoms are
pushed closer together. The reason for this is that the external
pressure forces the atoms over their repelling forces, and they
occupy an area that is smaller. In Figure 3, simulated X-ray
diffraction (XRD) analysis is illustrated.”’ It is evident from
XRD analysis that the sample is cubic (JCPDS card no. 04—
010—0309),”° and maintained its cubic property even after
applying stress ranging from 0 to 50 GPa. Due to pressure, the
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Figure 2. Variation of the lattice constant and volume as a function of
pressure.
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Figure 3. Simulated XRD signature of the Ca;AsBry compound at
various pressures.

peaks shift to the right side without changing their original
structure. Figure 2 depicts that with more induced pressure,
the lattice constant and the lattice volume decrease. The XRD
peaks shift toward the right with increased pressure; this
indicates that the lattice constants of Ca;AsBr; material are
decreased. As previously mentioned, adding pressure to
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Figure S. Estimated (a) Pugh’s and Poisson’s ratios and (b) Cauchy pressures with respect to pressure for Ca;AsBr;.

compound can force particles closer to each other, which
reduces the lattice constant.

3.2. Mechanical Properties. The elastic parameters for
the metallic halide Ca;AsBr; were calculated because they
provide information on the crystal’s sensitivity to various
stresses ranging from 0 to 50 GPa. The constants of elasticity
may also be used to determine a material’s stiffness and
stability.”>® The dynamical information on the resistance of a
substance to external pressure may also be calculated using the
elastic constant.”* The mechanical properties of the metals
employed in a material determine the variety of uses for that
material and the length of anticipated service life.”> Based on
the imposed strain, we calculated the elastic coeflicients C,,
Cyy and Cy. C;; and Cy, show how longitudinal elasticity
properties change as the stress differs. In addition, the rest
constant C,,, frequently used to relate the mechanical rigidity
and crystal form deformation,’® is used to observe the
variations in shape elasticity. The connection between Cauchy
pressure as well as material ductility is created by the angular
shape of atomic bonds in metals.”” A crystal is considered to be
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ductile or brittle depending on whether its Cauchy pressure is
positive or negative.”® The outcomes of this DFT calculation
of the elastic constants for Ca;AsBr; are shown in Figure 4a,
and the elastic moduli are shown in Figure 4b. Furthermore,
because the stress applied altered the lattice constant, it is
critical to understand how the mechanical properties will
change. The material may also be categorized and charac-
terized according to its mechanical characteristics. Figure Sb
shows that the Cauchy pressure rises as the stress does and
maintains a positive value across the range of recorded pressure
levels. This demonstrates the substantial degree of ductility
shown by the Ca;AsBr; material. The Pugh’s ratio after
applying stress is shown in Figure 5a. The material has grown
more ductile due to increased applied stress, which has also
increased the mechanical stability. The renowned Born
stability criteria,”” as presented below, explain the mechanical
stability of Ca;AsBr; adequately: C;; > 0, C4y > 0, C;; + 2C}, >
0, C;1-C, > 0.

According to the findings, the Ca;AsBr; metal halide is
mechanically stable to a wide range of pressure fluctuations

https://doi.org/10.1021/acsomega.3c08131
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Table 1. Minimum, Maximum Values of the Young’S Modulus, Compressibility, Shear Modulus, Poisson’S Ratio and the Ratio
A of CazAsBr;

Pressure (GPa) Y., (GPa) VY, (GPa) Ay K, (TPa™!) K, (TPa™') Ax  Gun (GPa) G, (GPa)  Ag v

min Vmax AL/
0 45.43 75.96 1.67 9.57 9.57 1.00 17.71 33.425 1.89 0.09 0.43 4.70
S0 26.57 480.94 18.1 1.68 1.68 1.00 8.99 219.61 24.43 0.01 0.93 136.05
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Figure 6. 2D and 3D plots of (2) Y, (b) K, (c) G, and (d) v of Ca;AsBr; at 0 GPa.
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Figure 7. 2D and 3D plots of (a) Y, (b) K, (c) G, and (d) v of Ca;AsBr; at SO GPa.

and fulfills the Born stability requirements. Furthermore, it is
clear that the values of C,;, C,,, and C,, rise when the outer
hypostatic pressure is added. Among the essential mechanical
parameters are the bulk modulus (shown by B), shear modulus
(shown by G), Young’s modulus (shown by E), Pugh’s ratio
(shown by B/G), and Poisson’s ratio (shown by n). A
material’s overall modulus is a measure of its rigidity as well as
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flexibility. The shear modulus may determine how much a
material can deform plastically in reaction to pressure. The rise
in the modulus of bulk, shear, and Young’s modulus along with
pressure is observed because pressure increases the inter-
molecular or interatomic forces in the Ca;AsBr; compound.
This makes it more robust against volume changes, shear
deformation as well as deformation in the axial direction.
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Figure 8. Electronic band structure of Ca;AsBr; under pressure and the band gap shrink with the increase of pressure.

Pugh’s ratio is another name for the bulk modulus to shear
modulus ratio (B/G).”” The mechanical properties of a
material, such as brittleness and ductility, are related to
Poisson’s and Pugh’s ratios.” In general, the Pugh’s and
Poisson ratios, which distinguish between ductile and brittle
substances, are considered as critical values of 1.75 and 0.26,
respectively.”’ Calculated and presented ratios such as the
Poisson’s and Pugh’s ratios demonstrate a greater degree of
ductility. Initially, these materials exhibit brittle behavior
(about 0 GPa), but with increased pressure within the range
mentioned, they become more ductile.”” The minimum and
maximum values of Young’s modulus, compressibility, shear
modulus, Poisson’s ratio, and the ratio A of Ca3AsBr3 are
listed in Table 1.

Therefore, it can be claimed that this material is particularly
beneficial for creating devices and real-world applications. The
3D visual illustrations of the direction dependence of Young’s
modulus (E), shear modulus (G), and Poisson’s ratio (v) at 0
GPa pressure were demonstrated using the ELATE tool®® and
are shown in Figure 6a—d, respectively, to further explain the
anisotropic nature.””*® Figure 7a—d show the same phenom-
enon at 50 GPa. The circular 2D and 3D plots show complete
isotropy, and their aberrations represent a material’s
anisotropy. The 3D graphs show that the compounds
examined are anisotropic in all directions. There is, however,
a greater spherical 3D deviation when the pressure is S0 GPa
than when it is 0 GPa, indicating that the greater the pressure,
the greater the anisotropy.

3.3. Electronic Properties. The electrical band structures
of two different unstressed (0 GPa) and stressed (10 to 50
GPa) materials were calculated to better understand the
unique electronic properties of Ca;AsBr;. The electronic band
configuration of Ca;AsBr; is determined by the highly arranged
symmetric Brillouin zone positions (G, F, Q, Z, and G), and
the overall structure displays the band architecture recurring
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through these points. The high-symmetry k-path to the initial
Brillouin zone is shown in Figure 8. The Fermi energy level
remained constant at nil to make it simple to determine the
bandgap value from the graphic. According to Figure 8, the G-
point is where the conduction band’s minimum (CBM) as well
as the valence band’s maximum (VBM) are found. It may be
inferred from this that the Ca;AsBr; material under study has a
direct bandgap structure, corresponding to a bandgap value of
around 1.63 eV when applying the PBE functional. Over the
whole stressed engineering process, Ca;AsBr; retained its
direct bandgap electrical structure. When the stress was
changed between 0 and 50 GPa, the Ca;AsBry’s bandgaps
were tuned from 1.63 to 0 eV. In particular, different bandgap
values were observed at different stress levels, such as 0 GPa
(1.634 eV), 10 GPa (1.144 eV), 20 GPa (0.734 eV), 30 GPa
(0.373 eV), 40 GPa (0.043 eV), and 50 GPa (0 eV). An
optimal bandgap of 1.14 eV can be achieved by tuning
Ca;AsBr; under 10 GPa stress conditions. Polman et al.
showed the optimal semiconductor bandgap of 1.34 eV was
instrumental to achieving the highest efficiency of photovoltaic
energy conversion in single-junction solar cells.”® Our optimal
band gap is close to that value. Pressure affects the transition
from a semiconductor to a metallic state. The bandgap was
undervalued when it was evaluated using the GGA approach.
The GGA approach often runs into issues like these.
Additionally, the LDA+ U®" (local density approximation)
approaches showed an underestimation of the bandgap. Some
researchers have suggested the GW method®® and hybrid
functional® as two methods to get around this kind of
bandgap computation. Each of these methods has a unique set
of limitations, however. The hybrid potential proposed by
HSE” may raise the simulated bandgap values to within a
small range of the empirically determined value, albeit this is
not always the case. Additionally, the ideal value may undergo
certain modifications using the GGA+U’' approach. This
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Table 2. Mulliken Atomic Populations of Ca;AsBr;

Compound P (GPa) Species s p d Total Charge Bond Population Length (A)
Ca;AsBr; 0 Ca 243 6.64 0.66 9.73 0.27 Ca—As 0.96 2.98
As 1.59 4.03 0.00 5.62 -0.62
Br 161 5.45 0.00 7.06 -0.06 Ca—Br 0.11 2.98
50 Ca 225 6.50 1.20 9.94 0.06 Ca—As 0.55 2.51
As 1.67 3.84 0.00 5.51 -0.51
Br 1.60 529 0.00 6.89 0.11 Ca—Br 0.29 2.51
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Figure 11. Optical functions of (a) absorption and (b) reflectivity of Ca;AsBry under different pressures.

study, however, ignored the bandgap inaccuracy introduced by
the GGA approach in favor of focusing just on the effect of
stress on the bandgap of Ca;AsBr; Depending on the specific
material and application requirements, direct or indirect band
gaps are potentially suitable for solar, photothermal, or
optoelectronic devices. Simulated Ca;AsBry’s direct bandgap
value suggests it is the best material for optoelectronic
applications. The Ca;AsBr; band topologies that result from
hypostatic stress between 0 and 50 GPa are shown in Figure 9
as a function of the density of states. The total density of states
(TDOS) gives us the idea of hybridization, band intersecting
phenomenon and bond formation. We examined the effects of
stresses ranging from 0 to S0 GPa (with an interval of 10 GPa
in each direction) on the Ca;AsBr; structures. The partial
density of states (PDOS), which depicts the influence of
individual atoms and their many states, is often used to
determine the bandgap energy of Ca;AsBr; formations. PDOS
provides an illustration of the energetic level of an orbit on its
density of states. The quantity known as the density of state, or
DOS for short, is obtained by adding up all of the projections.
The variation of PDOS measurements for CajAsBr; crystals
across the energetic range of —6 to +6 eV is shown in Figure
10. The contribution of the orbital Ca, As, and Br atoms is
likewise altered by stress. The PDOS of Ca;AsBrj; as a function
of energy. As the stress changes from 0 to 50 GPa, the PDOS
filled by the 4p orbital of Br atoms shows a presence toward
the valence band side, below the Fermi level. The 4p orbital in
the conduction band area dominates the total DOS of the Ca
atoms. The static position and structure of the occupied DOS
of the Ca’s 4p orbital in the conduction band are affected by
changes in stress. As a result, the total DOS contribution is
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decreasing. As can be observed in the figure, the Ca;AsBr;
structure’s total DOS decreases from around 15 electrons/eV
(at 0 GPa) to about 10 electrons/eV (at SO GPa). The
conjugated hybridized Ca—Br and As—Br orbitals are seen
beyond the bandgap in all of the energy rangesCa;AsBrs’s
hybridized Ca and as states with Br cover the whole energy
spectrum while avoiding the bandgap. The Ca—Br as well as
As—Br bonds are examples of covalent bonds. In the substance
Ca;AsBr;, the charge shifts from Ca and As to Br as a result of
the extreme differences in atomic states. Ca** atoms have a
minimal impact close to the Fermi level. When we studied
Ca;AsBr; in its cubic stage, we discovered that the As-p orbital
and the Ca-p orbitals individually contributed just a little to the
band of conduction. In contrast, the Br-p orbital was
predominant over each of the two in the band of valence.
Mulliken charge analysis is computed, and it is shown in
Table 2. Based on Table 2, As and Br have negative charges in
the Ca;AsBr; material, which indicates that positive charges
from Ca atoms can be transferred into As and Br. The Ca—As
bond in Ca3AsBr;, has a value of 0.96, indicating that 96% of
the electrons are shared by the two molecules. This suggests
that the Ca—As bond could be an exceptionally solid bond.
The Ca—Br bond population of 0.11 implies that 11% of the
electrons are shared between the two atoms in the Ca—Br
bond. This demonstrates that compared to the Ca—As bond,
the Ca—Br bond is substantially weaker. The difference in
electronegativity between the two atoms is what causes the
difference in bond populations between the Ca—As and Ca—Br
bonds. Arsenic is more electronegative than bromine, meaning
that it has a stronger attraction for electrons, resulting in a
stronger bond between the calcium and arsenic atoms. The
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Figure 12. Different pressures of the optical properties of (a) the real part of the dielectric function, (b) the imaginary part of the dielectric

function, (c) the conductivity, and (d) the loss function of Ca;AsBr;.

compression of the material, which influences the bonding
interactions between atoms and molecules, results in a
reduction in bond population and bond length under applied
pressure. The Ca;AsBr; VBM and CBM moved toward the
Fermi energy level during hypostatic stress (0 to S0 GPa).
However, the CBM and VBM both remained at the G-point.
The bond length between the Ca, As, and Br was decreased as
a consequence of the orbital overlapping that developed as a
result of imposing stress. The pressure caused a straight
bandgap to appear at the G-point. The bandgap was shown to
narrow with more significant stress for every single specimen,
as seen in Figure 8. Nevertheless, the electric band structure
changed when the stress grew from 0 to 50 GPa, as shown in
Figure 8. As the stresses increased, the VBM and CBM shifted
further from the Fermi level, widening the bandgap. Due to the
hypostatic pressure, the repulsion force between the Ca, As,
and Br atoms reduced as their bond lengths became smaller
and their atomic distance decreased.

3.4. Optical Properties. It is possible to determine a
material’s suitability for optoelectronic applications by looking
at its optical characteristics, which include measurements of
the absorption, reflectivity, dielectric functions, conductivity,
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and loss function.”” Hydrostatic stress is a thermomechanical
method that may improve a material’s visible properties by
altering the lattice parameter.””~”* The distance that light of a
given wavelength traverses before it is absorbed may be
calculated by examining the coefficients of absorption
whenever light strikes the outermost layer of a material. It is
also conceivable to specify the ideal solar energy conversion
effectiveness range, and this is essential for use in applications
involving photovoltaics. In this study, it was discovered that
Ca;AsBry’s optical properties can be tuned across a pressure
range of 0 to 50 GPa. The photon-energy-intensive coefficients
of absorption for the stressed Ca;AsBrj; structures are shown in
Figure 1la. Because it shows the largest wavelength that a
material can absorb, the first absorption peak appears to be the
most important in photovoltaic applications.”””” Because
photovoltaics employ this information, it is significant.
Ca;AsBr; had very poor absorption characteristics in the
near-visible region of the optical spectrum in the absence of
any external stress, as seen in Figure 1la. Compared to the
initial conditions, the absorption edge of Ca;AsBr; under stress
migrated to the higher energy area. In contrast, Ca;AsBr;
under hydrostatic stress went into the low energy region,
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proving a red shift. Hypostatic stress causes a significant rise in
the Ca;AsBr; absorption spectra in the visible and UV regions.
Stressed Ca;AsBr; exhibits a larger range of light absorption
than their nonstressed counterparts, making them a desirable
candidate for use in photovoltaics. Due to the fact that
Ca;AsBry’s absorption maxima moves toward the UV region
under stress, it is an excellent candidate for use in the creation
of medical equipment disinfection devices. In Figure 11b, the
reflectivity of the substance is demonstrated, which is opposite
to the absorption phenomenon but indicating the same
applications. Materials having absorbance maxima between
11 to 17 eV show proficiency with applications for ultraviolet
light. Figure 11b shows the high reflectivity of at low photon
energies because most of the photons incident on the surface
are being reflected and relatively few are being absorbed. The
reflectivity of Ca;AsBr; decreases with increasing photon
energy. The Ca;AsBr; material absorbs more photons when
under higher pressures, so the reflectivity decreases more
slowly. Ca;AsBr; is also suitable for a wide range of other
applications such as optical storage and solar energy
conversion.

In the remainder of the formula of the dielectric function
e(w), both real and imaginary components are indicated by the
symbols &,(w) and &,(w) as follows:

e(w) = g(w) + ig,(w) (1)

The real dielectric function was obtained via the Kramers—
Kronig transformation.”® The components of the momentum
matrix corresponding to the hypothetical dielectric function
were also taken into consideration.”’ Figure 12a shows the
dielectric constants for the stressed real portion for photon
energy up to 20 eV. The real component data of the constant
of dielectric might be used to calculate the impact of
polarization as well as dispersion. The symbol &,(0), which
stands for frequency limits to zero and is a subset of the real
component &,(0), denotes an essential parameter for the
investigation of optical phenomena. At a pressure of 0 GPa, the
value of £,(0), for cubic Ca;AsBry was discovered to be S.5.
The increase in the value of &(0), from its starting value of
€,(0), following exposure to optical radiation is proof that the
material has a strong capacity for light spectrum absorption in
the visible region. The positive values of &;(@) pointed to the
greatly increased refractive index and semiconducting charac-
teristics of unstressed Ca;AsBr;. The peak dielectric constant
of the Ca;AsBr; material crystals were changed by varying the
hydrostatic pressure. Because the band gap narrowed and
shifted to a lower wavelength with increasing stress, Ca;AsBr;
had a greater stationary dielectric constant under all stresses.
The hydrostatic pressure also resulted in the first peak
exhibiting a red-shift inside the visible area and a diminishing
pattern consistent with stress-dependent band structure
expectations. At 50 GPa, the actual portion of the dielectric
function was measured to be around 18. Ca;AsBr; could be
used as a nanocoating material that operates in the infrared
spectrum because of its characteristics. For high-band gap
elements compared to low-band gap substances, the dielectric
constant peaks are lower. The Ca;AsBr; structures displayed
greater dielectric constant peaks and a red shift to greater
wavelengths of photon energies since the band gap shrank with
increased hydrostatic stress. Figure 12b shows the behavior of
the imaginary dielectric constant, &,(®), under stress. The
imaginary dielectric function &,(w) may be used to predict
interband transition energies close to the Fermi level and the
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characteristics of the materials’ spectrum absorption.
CayAsBry’s &,(w) values predominated the absorbance
spectrum. It demonstrates how, when stress is applied, the
imaginary component of the dielectric function expands and
goes to the high wavelength region. The transition of the
particles from valence to conduction bands relies on these
hypothetical absorption peaks. Because of changes made to the
lattice parameter and bandgap, the peak locations have been
shifted. When hydrostatic stress is applied, the imaginary
points show a redshift at the lower energy region and a
blueshift at the higher energy region, correspondingly. This
indicates that the hydrostatic stress may alter the absorption
spectrum range of the Ca;AsBr; material under study.

A substance’s 3photon conductance is referred to as
photoconductivity.”® It offers the ability to conduct electricity
in the presence of different fields of electromagnetic radiation.
The spectral conductivity of Ca;AsBr; is demonstrated in
Figure 12c. With an increased pressure, the conductivity
increases. In the presence of high pressure, the material
exhibits a significant increase in the absorption spectra and
optical conductivity, demonstrating the possibility of utilizing it
as a solar cell. The loss function is another property that
measures the energy driven away by an electron as it moves in
an insulator. It is symbolized by L(w).

-1
”@‘4Ra]

or in labels of £,(w) and &,(w),

Llw) =

82(0))
e’(w) + & (w)

)

In Figure 12d, we observe the loss function of Ca;AsBr; under
unstressed conditions. Peaks in the diagrams of loss function
uncovered that photon energy was mislaid when the upcoming
photon energy was more significant than the substance’s
bandgap for the Ca;AsBr; compounds. For the universal cubic
structure of Ca;AsBr;, the L(®) peaks emerged across 13 to 18
eV. Figure 8 proved that underneath the bandgap, no
dispersion was observed. Several notorious peaks were in the
ultraviolet province of the loss function diagram, demonstrat-
ing that this province was where the mainstream of electron
loss and resonance occurred for the Ca;AsBr; monolayer.
Since the energy loss function stages were not noticeably
present below 1 eV, it was transparent that Ca;AsBr; would be
an efficient absorber in the visible light and near-IR region.

4. CONCLUSION

Finally, using the first-principles DFT theory, we thoroughly
explored the structural, mechanical, and optoelectronic
characteristics of the inorganic material Ca;AsBr;. The
Ca;AsBr; substances showed a red shifting phenomenon in
the visible region and its increasing absorption and optical
conductivity peaks after applying hydrostatic pressure. At 50
GPa pressure, semiconductor to metallic transition opens some
door to applications in the optoelectronic arena where metallic
system is a prerequisite. Also X-ray diffraction data confirms
cubic cell retention even after applying pressure/stress
uniformly from all directions. The distribution of density
states demonstrates that As and Br atom orbitals provide the
greatest contribution to VBM and CVB, with Ca atoms making
the smallest contributions. Ca;AsBr; compounds may be used
for photovoltaic purposes because of their high ductility as well
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as mechanical stability, as demonstrated by their stress-induced
mechanical characteristics. By adjusting the band configu-
ration, dielectric coeflicient, and elastic constant quantities via
stress variation, Ca;AsBr;’s physical and structural rigidity may
be maintained while its potential for large photon absorption is
increased. Our findings point to the potential for Ca;AsBr; to
become a dominant material for usage in optical systems, and
we expect to see this happen soon.
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