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Multi‑step ahead predictive model 
for blood glucose concentrations 
of type‑1 diabetic patients
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Lucy D. Mastrandrea3 & Tarunraj Singh2

Continuous monitoring of blood glucose (BG) levels is a key aspect of diabetes management. 
Patients with Type‑1 diabetes (T1D) require an effective tool to monitor these levels in order to 
make appropriate decisions regarding insulin administration and food intake to keep BG levels 
in target range. Effectively and accurately predicting future BG levels at multi‑time steps ahead 
benefits a patient with diabetes by helping them decrease the risks of extremes in BG including 
hypo‑ and hyperglycemia. In this study, we present a novel multi‑component deep learning model 
BG-Predict that predicts the BG levels in a multi‑step look ahead fashion. The model is evaluated 
both quantitatively and qualitatively on actual blood glucose data for 97 patients. For the prediction 
horizon (PH) of 30 mins, the average values for root mean squared error (RMSE), mean absolute error 
(MAE), mean absolute percentage error (MAPE), and normalized mean squared error (NRMSE) are 
23.22± 6.39 mg/dL, 16.77 ± 4.87 mg/dL, 12.84± 3.68 and 0.08± 0.01 respectively. When Clarke and 
Parkes error grid analyses were performed comparing predicted BG with actual BG, the results showed 
average percentage of points in Zone A of 80.17± 9.20 and 84.81± 6.11, respectively. We offer this 
tool as a mechanism to enhance the predictive capabilities of algorithms for patients with T1D.

Diabetes mellitus is a metabolic disease that causes the abnormal regulation of blood glucose (BG) levels in 
the body. Insulin, an endocrine hormone produced by the pancreas, facilitates uptake of glucose by a variety 
of cells. Type-1 diabetes (T1D) or insulin-dependent diabetes is an autoimmune condition requiring external 
administration of insulin for the regulation of blood glucose. Type-2 diabetes (T2D) results from insulin resist-
ance or insulin insensitivity and the regulation of the BG levels require oral medications or insulin. Out of 463 
million people with diabetes, approximately 1 million children and adolescents (under age 20) suffer from Type-1 
diabetes (IAF diabetes atlas, 9th edition 2019, https:// diabe tesat las. org/ en/).

Although T1D cannot be cured or prevented, BG management is accomplished with subcutaneous admin-
istration of insulin either by injection or continuous infusion. Patients with T1D must monitor their BG level 
throughout the day and take necessary actions to prevent hypoglycemia (low BG levels) and hyperglycemia (high 
BG levels). The ability to accurately predict future BG levels would help patients prevent both low and high blood 
sugar levels and allow them to meet glycemic targets and decrease the risk of long-term complications. Factors 
that affect future BG levels include prior BG levels, insulin dose, meal intake, body mass index, physical activity 
among others. Incorporating all the features to predict BG levels with high accuracy poses a challenging  task1. 
This is complicated by the physiological yet unpredictable variations seen in the BG levels caused throughout 
the day (dawn and dusk phenomena). For example, emotional stress can trigger hyperglycemia while physical 
activity can enhance insulin sensitivity thereby causing hypoglycemia for several hours. Capturing such vari-
ations in itself poses a unique challenge for any model to have enough predictive power to forecast BG levels.

Existing BG prediction approaches falls under two paradigms— physiological-driven and data-driven. Physio-
logical-driven methods typically follow a compartment-based modeling approach, that requires extensive knowl-
edge about the underlying mechanism for each  individual2. The  study3 provides a more comprehensive review on 
the use of physiological based approaches for modeling glucose-insulin systems. These  approaches4–6 use insulin, 
meal intake, CGM signals and other variables such as physical activity, heart rate as inputs. Some  studies7,8 
used mathematical concepts such as fractional calculus for capturing complicated dynamics of BG measure-
ments. Many of these models exploit the underlying processes of the system with the help of interconnected 
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compartments that best explain the behavioural process between certain sub-system such as measuring glucose 
production and utilization, insulin action and meal absorption. These approaches also pose certain disadvantages 
such as identifying and establishing many parameters prior to making any predictions related to blood glucose 
values, making the model more cumbersome. Some of the ways to alleviate this issue is to make use of mini-
mized version of these  models9,10 or make use of machine learning techniques for identification of  parameters11.

Data-driven approaches use an individual’s recorded historical data such as Continuous Glucose Monitoring 
(CGM) readings, meal intake information, programmed basal rate infusion amounts, etc., to learn a predic-
tive  model12–14. Data-driven approaches have the advantage of not having to model the underlying, and often 
unpredictable, physiological mechanisms. With tremendous advances in acquiring relevant medical data from 
sources such as  CGMs15, insulin  pumps16, and point of care (POC)  devices17, data-driven approaches have shown 
promising results for BG prediction. With the deluge of information from different data sources, researchers 
from multidisciplinary fields have leveraged the use of different Machine Learning (ML) methods to identify 
relevant data points pertinent to predictive modeling in diabetes research.

In the past, statistical and machine learning (ML) techniques such as AutoRegressive Integrated Moving 
Average (ARIMA)18, Support Vector Regression (SVR)19,20, and Artificial Neural Networks (ANN)21,22 have 
been used for one-step ahead BG prediction. The existing prediction models using ML techniques can also be 
distinguished based on the different types of input data used. Some  studies23,24 explored the use of random forests 
 while25 used support vector regression for predicting future BG by using the historical BG along with meal intake 
and insulin concentrations. On the other hand, some  studies2,26 investigated the use of ARIMA models such 
as fixed-order  ARIMA27 and adaptive-order  ARIMA18,28 for predicting future BG based only on the historical 
BG information. These models, however, perform poorly for long-term forecasting since they do not effectively 
capture long-term dependencies. Recently, deep recurrent neural network architectures, such as the Long Short-
Term Memory (LSTM) networks, have received considerable attention since they handle long-term dependen-
cies well and effectively outperform any of traditional machine learning approach for predicting blood glucose 
with prediction horizon of 30  mins29–31. Sun et al.29 used Long Short-Term memory (LSTM) based approach for 
predicting blood glucose levels for different prediction horizons. Mhasker et al.30 developed a semi-supervised 
deep convolutional network for effectively predicting BG with prediction horizon of 30 mins. This approach 
makes the use of a judge predictor based on function approximation on data defined manifolds, using diffusion 
polynomials. Daskalaki et al.31 proposed a real-time adaptive recurrent neural network-based model that uses 
BG and insulin information for predicting future BG values with prediction horizons of 30 mins and 45 mins. 
These studies highlight the emergence of advanced ML-based tools in the area of BG prediction in diabetes. 
Additionally, innovative approaches for forecasting BG are essential for the development of effective artificial 
pancreas and personalized diabetes support systems.

Though these recurrent neural networks, like LSTMs, have become the preferred tools for sequence modeling 
tasks, such as language  translation32, they are shown to have some drawbacks, primarily in memorizing long 
temporal sequences. One of the drawback is related to memorizing a very long temporal sequence since a lot 
of information that passes between the cells of the network doesn’t propagate well. In addition to this, when a 
input is fed to each LSTM cell at every time-step, it consumes a lot of time during training. In order to address 
this issue, the use of 1D Convolutional Neural Network (CNN) has proven to be a better modeling approach 
for temporal sequences by coupling convolution operation and dilation rate of the filters. This provides a great 
advantage of capturing larger receptive field of the input sequence. In fact, recent studies have shown that using 
a one-dimensional Convolution Neural Network (CNN) can better model long-range temporal  dependencies33. 
This has led to the use of Temporal Convolution Neural Networks (TCNs) over LSTMs for many time series 
prediction tasks that involve long-term  memories33.

We present a novel TCN based predictive model that can effectively capture long-term history of an indi-
vidual for BG prediction, and report significant improvements over state of art BG prediction models for a 30 
mins prediction horizon. The salient aspects of the proposed model include: (a) multi-step prediction that better 
captures the temporal auto-correlations in the output compared to traditional one-step prediction schemes, (b) 
multi-compartment model that uses varying length histories for different inputs and their combinations, and, 
(c) individual-specific model training to learn the individual characteristics for BG prediction. To the best of 
our knowledge this is the first work focusing on modeling future blood glucose based on varying past history 
information on blood glucose, food intake, basal and bolus insulin using the proposed approach. The illustrated 
experimental results derived from clinical data for 97 T1D patients show the effectiveness of our proposed model 
in forecasting BG with prediction horizon of 30 mins.

Results and discussion
The experiments were conducted on Tidepool (More information on https:// www. tidep ool. org/) datasets pro-
vided by the Juvenile Diabetes Research Foundation (JDRF) (More information on https:// www. jdrf. org/). The 
datasets consists of real world data for 97 patients with T1D patients. For each patient, an unseen test data set 
was used for evaluating the performance of the model. We computed the following quantitative measures of 
error—root-mean-square error (RMSE), mean-absolute-error (MAE), mean absolute percentage error (MAPE) 
and normalized root mean square error (NRMSE). We also computed these measures for three different catego-
ries within the data set. These three subsets pertain to actual blood glucose concentrations falling in different 
range values. The categories were as follows: (1) Hypoglycemic range with blood glucose less than 70 mg/dL, 
(2) Normoglycemic range with BG values greater than or equal to 70 mg/dL and less than 180 mg/dL, and (3) 
Hyperglycemic range with BG readings greater than or equal to 180 mg/dL.

This study investigates the impact and use of deep learning approaches for modeling blood glucose levels 
using a multi-step approach. This approach will provide well-informed analysis as well as support to individuals 
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with Type 1 diabetes. For the prediction horizon (PH) of 30 mins, the proposed model has been evaluated per 
patient both quantitatively and qualitatively with respect to different performance measures described in the 
evaluation metrics section.

The detailed quantitative results for 30 mins ahead forecasting can be found as Supplementary Table S6. The 
table provides a summary of both the overall and detailed quantitative performance of the model to predict BG 
levels 30 mins in the future. In the table, some of the patients had no hypo- or hyperglycemic test samples and 
this has been indicated as No test samples. Quantitatively, the proposed method shows the overall average value to 
be 23.22± 6.39 mg/dL in root mean squared error (RMSE), 16.77± 4.87 mg/dL in mean absolute error (MAE), 
12.84 ± 3.68 in mean absolute percentage error (MAPE) and 0.08± 0.01 in normalized mean squared error 
(NRMSE). For Hypoglycemia, the average value is 21.65± 10.42 mg/dL in root mean squared error (RMSE), 
15.62± 8.39 mg/dL in mean absolute error (MAE), 26.13 ± 14.08 in mean absolute percentage error (MAPE) and 
0.07 ± 0.03 in normalized mean squared error (NRMSE). For Hyperglycemia, the average value is 30.47± 9.35 
mg/dL in root mean squared error (RMSE), 22.84± 7.66 mg/dL in mean absolute error (MAE), 10.55± 3.77 
mg/dL in mean absolute percentage error (MAPE) and 0.10± 0.05 in normalized mean squared error (NRMSE). 
For Normoglycemia, the average value is 21.80± 5.90 mg/dL in root mean squared error (RMSE), 15.90± 4.71 
mg/dL in mean absolute error (MAE), 13.29± 4.00 in mean absolute percentage error (MAPE) and 0.07± 0.01 
in normalized mean squared error (NRMSE).

In terms of accuracy, the overall true positive rate for hypoglycemia, hyperglycemia and normoglycemia is 
0.48± 0.23, 0.73± 0.17 and 0.88± 0.08 respectively. On the other hand, the overall false positive rate for hypo-
glycemia, hyperglycemia and normoglycemia is 0.05± 0.05, 0.04± 0.04 and 0.26± 0.11 respectively. In general, 
the model was found to be difficult in capturing the hypoglycemic events while capturing the hyper- and normo-
glycemic events well. The false positive rates for all the three events were pretty low indicating that the model 
didn’t raise a large number of false alarms while performing the blood glucose forecasting at 30 mins ahead. The 
qualitative results of clinical or zonal accuracy for all the patients in terms of Clarke and Parkes error grids can 
be found as Supplementary Figs. S1 and S2 respectively. In Clarke and Parkes error grid analysis, the average 
percentage of points lying in Zone A were 80.17± 9.20 and 84.81± 6.11 respectively. The model consistently 
provides accurate result as indicated by predicted BG values in Zone A in both the Clarke and Parkes error grid.

Overall, these findings indicate that the blood glucose can be effectively estimated for a 30 mins prediction 
horizon for individual patients. This model has an inherent advantage of taking multi-view of the data and we 
can also leverage other information such as physical activity that can further enhance the predictive accuracy 
of blood glucose levels at prediction horizon of 45 mins and 50 mins. Amongst the related approaches, Marcus 
et al.34 presented the use of kernel ridge regression (KRR) approach in predicting the future BG at 30 mins with 
just the past history of BG values for individual patient. The model was validated on 11 T1D patients and their 
reported average RMSE values is 20.48 mg/dL. Mhasker et al.30 make use of non-patient specific semi-supervised 
deep learning approach for predicting future blood glucose values. This study only included the subject age group 
children less than 18 years old and didn’t include the prediction of blood glucose measurements. Mirshekarian 
et al.11 used long short-term memory (LSTM) networks to predict the blood glucose for 10 T1D patients. The 
subject age group in this study wasn’t reported, however, the RMSE for 30 mins was reported to be 21.4 mg/dL.

Figure 1 shows the prediction accuracy of the model 30 mins ahead on validation data for two T1D patients. 
It can be seen that the model is able to capture the hypoglycemic and hyperglycemic events well.

Comparison with other approaches. Table  1 presents the results of comparison of our model, BG-
Predict with other baseline approaches in terms of RMSE, MAE, MAPE and NRMSE. The units for RMSE, 
MAE are in mg/dL. 

1. Naive Forecasting In naive forecasting, the last recorded observation of blood glucose concentration is 
copied to the 30 mins ahead and the model is evaluated with the actual blood glucose concentration. This 
can be considered as a baseline method in comparing other methods.

2. Gaussian Processes (GP) Gaussian Process is a bayesian non-parametric approach that generalizes the 
Gaussian distribution of functions and can be used for both regression and classification. We use the Gauss-
ian Process regression model for forecasting blood glucose concentration 30 mins ahead.

3. Kernel Ridge Regression (KRR) Kernel Ridge Regression (KRR) is a non-parametric model that combines 
ridge regression (linear least squares and L2-norm regularization) with the kernel trick. The model learns the 
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Figure 1.  30 mins forecasting on validation data for two T1D patients.
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function in a space induced by the choice of kernel and the data. We used Linear and Radial Basis Function 
(RBF) kernel for forecasting blood glucose concentration 30 mins ahead.

The inputs to the KRR and GP models are 3 h history of basal, bolus and meal intake and 30 mins history of 
blood glucose measurements. For both KRR with linear and RBF kernels we did an exhaustive grid search over 
several hyperparameter values with gamma = [0.01, 0.1, 1.0, 10, 100.0] and alpha = [1.0, 0.1, 0.01, 0.001]. We 
found alpha = 1.0 and gamma = 0.1 to be the best choice of hyperparameter values. The kernel used for the GP 
regression model was Automatic relevance Determination (ARD) Radial Basis Function (RBF) with length scale 
and variance initialized to 1.0.

We also compared our proposed model with AutoRegressive with exogenous variables (ARX) and AutoRe-
gressive Moving Average with exogenous variables (ARMAX), which are competitive models for glucose pre-
diction as indicated in Table 2. ARX and ARMAX models are time series models that is an extension of the 
AutoRegressive (AR) and AutoRegressive Moving Average (ARMA) models, which incorporates other exogenous 
variables. Specifically, it takes the history of an endogenous variable along with history of external exogenous 
variables to determine the future values of the endogenous variables. The inputs to the ARMAX models are 3 h 
(36 timesteps of 5 mins each) history of basal, bolus and meal intake and 30 mins (6 timesteps of 5 mins each) 
history of blood glucose measurements. We selected the polynomial orders, na = 6, nb = [36 36 36], nc = 6, nk 
= [0 0 0] for ARMAX model and na = 6, nb = [36 36 36], nk = [0 0 0] for ARX model. The parameter estimation 
was performed using nonlinear least squares with automatically chosen line search method incorporated in the 
system identification toolbox in Matlab. We observed the performance of ARMAX model to be better than ARX 
and our proposed model in terms of the quantitative evaluation metrics, however, when we compared the true 
positive rate or sensitivity under hypoglycemia and hyperglycemia, then our model performed much better than 
both the ARX and ARMAX model. This is an indication that the ARX and ARMAX models are performing well 
only under normoglycemia but is unable to capture the important events for the prediction horizon of 30 mins.

We have used the two-sample t-test with unidentical variance for statistical testing and have reported the 
p-value for interpreting the comparison of the models corresponding to the quantitative evaluation measures. 
The results have been shown in Table 3. It can be seen that all the p-values are very small and much lower than 
the general significance threshold of 0.05 which implies that the results of the models are different.

Comparison for different prediction horizons. Supplementary Table  S3 presents the comparative 
evaluation of model’s results on prediction horizons of 30 mins and 60 mins for 24 patients (i.e. Patients ID 
74–97). We selected 24 out of 97 patients to show the performance of the proposed model for prediction horizon 
of 30 and 60 mins on patients data that have above average quality. These patients were selected based on the 
below quality criteria: (i) Time in range > 70%—It is likely that meal information in datasets showing a high 
time in range (70–180 mg/dL) is more accurate, as determining the carbohydrate content of meals correctly is 
fundamental for good blood glucose control, (ii) Average number of meal inputs per day > 3.5—A high aver-
age number of daily meal inputs can only be observed in datasets with regular reported meals and (iii) Time in 
hypoglycemia < 2%—There seems to be cases in the data where carbohydrates which are consumed to counter-
act hypoglycemia are often not reported. Hence, it is likely that there are fewer missing meal labels in datasets 
showing a shorter time in hypoglycemia (< 70 mg/dL).

For prediction horizon of 30 mins, the model shows the average value of 19.18± 3.29 in root mean squared 
error (RMSE), 13.42 ± 2.36 in mean absolute error (MAE), 9.91± 1.61 in mean absolute percentage error (MAPE) 
and 0.07± 0.01 in normalized mean squared error (NRMSE). For prediction horizon of 60 mins, the model 

Table 1.  Comparison with other approaches.

Model approach RMSE MAE MAPE NRMSE

Naive forecasting 31.12± 8.49 21.96± 6.11 16.92± 4.80 0.12± 0.02

GP 28.01± 7.39 20.05± 5.39 15.09± 3.88 0.11± 0.02

KRR (linear) 25.77± 6.62 18.75± 4.90 14.31± 3.65 0.10± 0.01

KRR (RBF) 32.45± 8.62 23.21± 6.20 17.22± 4.12 0.13± 0.02

BG-predict 23.22± 6.39 16.77± 4.87 12.84± 3.68 0.08± 0.01

Table 2.  Comparison of ARMAX model with the proposed model in terms of true positive rate (TPR) under 
hypoglycemia and hyperglycemia.

Model approach RMSE MAE MAPE NRMSE TPR-hyper TPR-hypo

ARX 20.31± 5.01 14.81± 3.75 11.61± 2.87 0.07± 0.01 0.70± 0.17 0.17± 0.12

ARMAX 19.25± 1.12 16.35± 1.18 13.00± 1.65 0.08± 0.02 0.64± 0.17 0.30± 0.46

BG-predict 23.22± 6.39 16.77± 4.87 12.84± 3.68 0.08± 0.01 0.73± 0.17 0.48± 0.23
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shows the average value of 32.06± 5.81 in root mean squared error (RMSE), 23.40± 4.50 in mean absolute error 
(MAE), 17.31± 2.86 in mean absolute percentage error (MAPE) and 0.12 ± 0.02 in normalized mean squared 
error (NRMSE). It is indicative from the table and these values that as we increase the prediction horizon, the 
model’s performance drops as we expected.

Sensitivity analysis of features and past history. Supplementary Table S4 describes the impact of 
features and past history on the blood glucose output at prediction horizon of 30 mins. This describes the impact 
of simultaneous inclusion/exclusion and past history (p) of input variables of each component on the output. We 
did the analysis on some of data for patient 77 and we monitor the evaluation measure of RMSE.

For the first component, we noticed as we switched off just the meal intake component, the performance 
on the predictions is slightly decreased. Similarly, we also noticed a decrease in RMSE when we switch both 
the components, (no history or p = 0). There was no clear trend as we increase the past history of the variables 
in the first component, but there is a slight decrease and then a gradual increase as we move past the history 
of timesteps. For the second component, we noticed a slight decrease in evaluation measure as we switch off 
the only BG variable while when we switch on the variable, we notice a slightly decrease and increase in the 
performance of the model.

For the third component, when we switch off both the basal and the BG variables, then we observed a slight 
decrease in RMSE as compare to when we switched on both the components. For the fourth component, we 
noticed a decrease in the RMSE measure when we switch off both the BG and the bolus variables. When we 
switch off just the bolus variable then also we noticed a slight decrease in performance in comparison to when 
we switched on both the variables.

Weighted contribution on the predictions. Supplementary Table  S5 presents the contribution of 
weights of each component on the predicted output sequence. We provide the analysis for 24 patients (i.e. 
Patients ID 74–97). For forecasting of prediction horizon of 30 mins, we observed that the contribution of the 
first component (3 h history of meal intake and blood glucose) and the second component (recent 30 mins his-
tory of blood glucose) to be more in comparison to the third component (3 h history of basal insulin and blood 
glucose) and the fourth component (3 h history of bolus insulin and blood glucose).

Methods
Problem formulation. Given the historical data inputs of meal intake (M), blood glucose (BG), basal insulin 
rate (Ba) and bolus insulin (Bo), we want to predict the future BG values in multi-step manner. The problem can 
be formulated as:

• Given {M0, . . . ,Mt} ; {BG0, . . . , BGt} ; {Ba0, . . . , Bat} and {Bo0, . . . , Bot}
• Predict BGt+1, . . . , BGt+f

We define our model by accounting the different input history length of these input variables. Considering 
the different input history, we reformulate the problem as:

• Given {(M, BG)t−p1 , . . . , (M, BG)t} ; {BGt−p2 , . . . , BGt} ; {(Ba, BG)t−p3 , . . . , (Ba, BG)t} and {(Bo, BG)t−p4 , . . . ,

(Bo, BG)t}• Predict BGt+1, . . . , BGt+f

We denote f as the prediction horizon (PH) while the starting position in history for the inputs sequence 
length in the four components of our proposed model is denoted by p1 , p2 , p3 and p4 . Here, (·, ·) denotes the 
interaction term indicating the multiple variables for all time steps to be fed to a component of the proposed 
model. For example, (M, BG) implies considering both input meal intake and blood glucose variables for all time 
steps for sequence length indexed from t − p1 until t.

Table 3.  Statistical testing results showing p-values for making comparison on the results of different models 
in terms of evaluation measures.

Models Evaluation measures

Model 1 Model 2 RMSE MAE MAPE NRMSE

BG-predict Naive 1.21e−14 6.44e−13 3.72e−13 1.53e−39

BG-predict GP 1.07e−11 1.70e−10 2.54e−09 2.13e−38

BG-predict KRR (linear) 7.36e−05 7.32e−05 0.0001 4.51e−29

BG-predict KRR (RBF) 9.68e−23 1.27e−21 1.00e−21 6.34e−62

BG-predict ARX 5.00e−60 5.14e−58 7.19e−56 3.48e−55

BG-predict ARMAX 2.48e−69 1.26e−50 1.15e−46 1.07e−37
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Data. The experiments in our study are conducted on data for 300 patients with T1D. All methods were car-
ried out in accordance with relevant guidelines and regulations. The experimental analysis was conducted on 
anonymized datasets obtained from the Tidepool Big Data Donation Project (More information on https:// www. 
tidep ool. org/ bigda ta). These datasets do not require IRB approval for use due to the HHS Policy for Protection of 
Human Research Subjects exemption research guideline, 45 CFR 46.104 (More information on https:// www. hhs. 
gov/ ohrp/ regul ations- and- policy/ regul ations/ 45- cfr- 46/ common- rule- subpa rt-a- 46104/ index. html).

Data of patients using hybrid closed loop systems is included. The training and the testing data for each 
patient were separately provided to us by Tidepool. Each dataset consists of information on CGM readings 
(sampling time 5 mins), basal and bolus insulin administration and carbohydrate intake. Some datasets contain 
additional information on CGM readings or performed physical activity (type, duration and/or distance trav-
elled). Additional information including age, number of years living with diabetes, diabetes type, and biological 
sex is available for each patient. Since the purpose of this study is to model the blood glucose dynamics of adult 
patients with type-1 diabetes, we adopt a strategy as shown in Fig.  2 for identifying eligible patients for our 
experiments. The inclusion of the patients is made on the basis of some Eligibility Criteria (EC). The criterions 
are: (1) EC1: Patients with confirmed type-1 diabetes, (2) EC2: Patients of age > 18 years, and (3) EC3: Patients 
whose time since diagnosis > 2 years.

During the data preprocessing stage, there were some missing CGM readings. It is assumed that the time 
course of the blood glucose level within a small time window, i. e. up to 30 mins, can be extrapolated from sur-
rounding blood glucose levels at a sufficient accuracy. To ensure equidistant data points, such short gaps are 
filled using piecewise cubic interpolation. Larger gaps are not filled by interpolation, as there is a risk of missing 
significant oscillations of the blood glucose level. Instead, they are used to split the dataset into subsets. Any 
subset containing a calibration, which differs significantly (> 50 mg/dL) from the simultaneous CGM reading, 
is dismissed, as the calibration likely causes a step discontinuity in CGM readings, which does not represent the 
actual time course of the blood glucose level.

The characteristics of the data for each patient can be found in Supplementary Tables S1 and S2. Each of the 
patient’s data is divided into training and testing dataset each of which consists of CGM recordings, Basal, Normal 
Bolus, Meal Intake. Supplementary Table S1 provides the number of CGM samples, mean CGM, frequency of 
meals taken, hypo-, hyper- and normo-glycemic values in training and test data for each patient. In each of the 
patient’s data, the observation value for CGM measurement, meal intake, basal and bolus insulin is recorded 
every 5 mins.

Supplementary Table S2 provides the duration (in days), standard deviation of CGM, Coefficient of varia-
tion of CGM, Time spent (in h) for hypo- hyper- and normo-glycemia. The average duration (in days) for the 
train and test data of the study population is 143.42± 90.39 days and 25.37± 4.96 days respectively. The CGM’s 
average and coefficient of variation for the train data of the study population is 139.05± 26.17 mg/dL and 
0.31± 0.06 respectively. The CGM’s average and coefficient of variation for the test data of the entire population 
is 140.60± 22.78 mg/dL and 0.32± 0.06 respectively. The average time (in h) spent in hypoglycemia for the train 
and the test data of the study population is 112.69± 156.53 h and 19.88± 18.90 h respectively. The average time 
(in h) spent in hyperglycemia for the train and the test data of the study population is 666.95 ± 766.21 h and 
115.25± 83.70 h respectively. The average time (in h) spent in normoglycemia for the train and the test data of 
the study population is 2664.48± 1878.40 h and 474.03± 123.69 h respectively.

Temporal convolutional networks (TCN). Sequence-based prediction tasks are solved using Recurrent 
neural networks (RNN) like (Long short-term memory) LSTM networks and Gated recurrent unit (GRU) net-
works in the deep learning world. Although these approaches were quite successful in solving several sequence-
to-sequence tasks, we encountered certain limitations such as inability to handle long time sequences as well as 
vanishing and exploding gradients. Temporal convolutional networks (TCN) were introduced for video-action 
segmentation  task35 to overcome the issues faced by the RNN-based approaches. TCN can be seen as the combi-
nation of 1D convolutional neural network with dilated and causal convolutions.

Age > 
18 years

Not meeting 
eligibility criteria

(n = 203)

Excluded

EC1
Confirmed 
Type-1 
diabetes

for experiments (n = 97)
Total patients data used

Total patients (n = 300)

EC3
Time since 
diagnosis
> 2 years

Figure 2.  Flowchart for processing tidepool data.

https://www.tidepool.org/bigdata
https://www.tidepool.org/bigdata
https://www.hhs.gov/ohrp/regulations-and-policy/regulations/45-cfr-46/common-rule-subpart-a-46104/index.html
https://www.hhs.gov/ohrp/regulations-and-policy/regulations/45-cfr-46/common-rule-subpart-a-46104/index.html
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Causal and dilated convolutions. The primary characteristics of temporal convolutional network is that the 
convolutions are causal and dilated. Causal convolution implies that the convolution operation output at time t 
in a current layer is performed by considering elements at time t and earlier in the previous layer. Causal convo-
lutions ensure that there is no information leakage from future to present while computing the output prediction 
at time t. By just performing the simple causal conventional convolution operation, we are only looking back at 
the history of sequence with size linear in the depth of the network. This makes the task more challenging for 
longer input sequences. In order to alleviate this problem, dilated convolutions were introduced to enable large 
receptive field  in33.

Use of dilated convolutions implies applying the convolution filter to an area larger than its size by enhanc-
ing the filter by dilating it with zeros. Alternatively, the filter can be applied over the larger area in the input by 
skipping input values with a certain step or dilation factor. Formally, dilated convolution is defined as:

Here, x is the input sequence, d is the dilation factor, f is the filter and k is the filter size. F is the dilated con-
volution operation, s is an element of the input sequence, x , s − d.i accounts for the direction of the past. The 
use of dilated convolution serves two purposes, firstly the output of each convolution propagates rich informa-
tion while tracking very long data sequence. As the dilation factor is increased, the range of inputs is increased 
and have increased receptive field and secondly, it is efficient in computation as the computation cost is less as 
compare to the use of larger filter size to increase the receptive field. Dilated convolutions are shown in Fig.  3 
with dilation factors d and kernel size k.

Residual network. Deep neural networks are popularly used in several studies related to image processing. As 
we stack more layers, there is great improvement in results, however, there are problems related to vanishing/
exploding  gradients36,37. Although, these problems can be alleviated with different solutions such as initialization 
 strategies38, etc., there are still issues related to degradation, i.e. arising of higher training error, as we add more 
layers to the network. With the advent of residual  block39, we can achieve more deep layered network without 
leading to degradation. Instead of stacking layers and learning the desired (true) mapping function H(x) like 
in the conventional neural network block, the layers of the residual block tries to learn the residual function 
F(x) , i.e., F(x) = H(x)− x . The output of the residual block will lead to the learning of desired mapping func-
tion, which can be recast as H(x) = F(x)+ x . This expression can be realized with the help of shortcut/skip 
connections. This allows to skip one or more layers without introducing any extra parameter thereby avoiding 
any further increment to computational complexity. Since, the use of deeper and larger temporal convolutional 
neural network helps in computation involving larger receptive fields, it would be important to make sure that 
this large and deep network remains stable throughout training. In order to do this, the use of residual block is 
kept in the TCN based model.

Figure 4 shows the structure of the residual block that is incorporated in each of the hidden layer in the 
temporal convolutional network. The residual block in each of the hidden layer differs in terms of dilation fac-
tors d. The residual block consists of two 1D convolutional layer with same dilation factor d and kernel size k 
for better capturing long-term temporal dependencies. Each of which is followed by the normalization, activa-
tion and dropout layer. For the normalization block, we can use either the layer or batch normalization. Layer 
 normalization40 is used to normalize the activations of the previous layer for each given example independently in 
a batch rather than across batch as seen in batch  normalization41. The Relu block comprises of the ReLU (Rectified 
Linear Unit) activation, which is a non-linear and differentiable activation function that is useful for learning 
complex, non-linear mapping of data. We use a 1D version of spatial  dropout42, a regularization technique like 
dropout but which differs in its working operation. In the normal dropout, individual nodes are dropped off the 
nodes in the network randomly while 1D version of the spatial dropout drops the entire 1D feature maps which 

F(s) = (x ∗d f ) =

k−1
∑

i=0

f (i) · xs−d.i

yˆ0 ŷ 1 ŷ 2 ŷT −2     ŷT −1 ŷT

x0 x1 x2 xT −2     xT −1 xT

Output 

d = 4 

Hidden 

d = 2

Hidden

d = 1

Input

Figure 3.  Dilated causal convolutions with dilation factor d = 1, 2, 4 , and kernel size, k = 3.
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helps in maintaining the independence between feature maps. The 1 × 1 conv1D layer is to ensure that the width 
of the output matches with the input.

Seq‑to‑seq models. Sequence-to-Sequence model approach aims at mapping a fixed length input to a fixed 
length output. Here, input sequence and output sequence may or may not be of same length.

This approach have been popularly used in language modeling tasks such as machine  translation43, speech 
 recognition44 and video  captioning45. The structure of a typical encoder-decoder approach involving temporal-
convolutional networks is shown in Fig.  5.

Here, both the encoder and decoder consists of TCN. The encoder takes the input sequence and processes 
the input by passing it through different residual blocks having convolution layers with different dilation factors 
d, collecting all the relevant information and producing a encoded state vector that best summarizes or captures 
all the input information that were seen by the encoder TCN. This encoded state vector is also called the hidden 
or latent state. This hidden state is then fed to the decoder part to start the prediction of output sequence one 
step at a time which is then used to produce the predicted sequence output.

Proposed model. Our proposed model consists of four components that use temporal convolutional net-
work embedded within encoder-decoder sequence-to-sequence model approaches that take into account differ-
ent past history of input predictors as shown in Fig.  6.

Since, the model predictions are done in multi-step manner and inputs and output sequences are of variable 
length, we made use of encoder-decoder sequence architecture, which models the sequence to sequence tasks. 
The purpose of using different input time sequence is because the future blood glucose would be functionally 
impacted differently by different inputs. For example, the blood glucose levels for an individual with T1D are 
impacted by food intake (carbohydrates), basal insulin delivery, and bolus insulin administered to cover food 
and regulate BG levels within a target range.

Given the maximum history of available input information until timestep t, in order to predict BG at future 
timesteps until prediction horizon f as an output sequence, ŷt+1, ŷt+2, . . . , ŷt+f  , we divide the input temporal 
sequence history of variables in the following four components that forms the basis of predicting the final 
sequence output. These four components are:

Output

Input

+

Residual Block (k, d)

Dropout
Spatial 
Dropout

Spatial

(Optional)
1 x 1 Conv1D

ReLUNormalizationConv1DReLUNormalizationConv1D

Figure 4.  Residual block in temporal convolutional network.

Figure 5.  Sequence-to-sequence approach.
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• History of BG and Meal intake In this component, we consider a longer past history of 3 h for BG and meal 
intake for predicting the future BG. The meal intake in the past impacts the BG levels in the future as meal or 
the carbohydrates intake usually increases the blood glucose levels. The input sequence for this component is 
〈BGt1 ,Mealt1 〉 where t1 = {t − p1, t − (p1 − 1), t − (p1 − 2) . . . , t} . Here, we denote the length of past history 
for this component by p1.

• Recent history of BG This component comprises of the recent 30 mins history of BG. The close history 
information on the BG history is considered here to aid the improvement in output predictions. The input 
sequence for this component is 〈BGt2 〉 where t3 = {t − p2, t − (p2 − 1), t − (p2 − 2) . . . , t} . Here, we denote 
the length of past history for this component by p2.

• History of BG and basal rate This component comprises of inputs of 3 h of history of BG and basal rate. 
Basal insulin is the background insulin that runs continuously and regulates BG levels between meals, 
and during times of fasting (ie sleep). The input sequence for this component is 〈BGt3 , Basalt3 〉 where 
t3 = {t − p3, t − (p3 − 1), t − (p3 − 2), . . . , t} . Here, we denote the length of past history for this component 
by p3.

• History of BG and bolus insulin In this component, we take the input history of 3 h for BG and bolus 
insulin. This insulin is required when the patient consumes a meal or gives insulin to correct a high blood 
sugar value. The amount of bolus insulin required by the body is largely dependent on amount of meal intake 
(usually in grams), total daily insulin requirements, and the target range of the BG level. The input sequence 
for this component is 〈BGt4 , Bolust4 〉 where t4 = {t − p4, t − (p4 − 1), t − (p4 − 2), . . . , t} . Here, we denote 
the length of past history for this component by p4.

In the model shown in Fig. 6, the starting position history for the inputs sequence length in the four com-
ponents can be determine through p1 , p2 , p3 and p4 . The predicted output sequence from these four individual 
components are then fed into the time distributed layer that further applies the fully-connected or dense layer 
to every temporal slice of the output sequence. After this, the final output sequences from the time-distributed 
layers are fused with a weighted parametric layer that looks for the optimum set of contributions that results in 
accurate future blood glucose values.

Figure 6.  Proposed model.
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Parametric fusion layer. In the proposed model architecture, we have four different components that accounts 
for different histories of variable combinations for predicting the sequence output. We compute final predicted 
output sequence by fusing the sequence outputs of different components of the model with associated learnable 
component weighted parameters as below:

Here, Ŷ1 , Ŷ2 , Ŷ3 and Ŷ4 are the predicted sequence output coming out of the four component of the model 
while W1,W2,W3 and W4 are the trainable weight parameters that indicates the degree of influence that each 
of the component has on the final sequence prediction.

Loss function. We used Huber loss as the objective function for the proposed model. Huber loss is less sensitive 
to outliers unlike mean squared error. It is defined as:

where y and ŷ are the predicted and actual sequence output. Huber loss is the combination of squared loss 
and absolute loss in its definition. It becomes quadratic when the error is small else it is linear. The control of 
boundary that defines the transition from quadratic to linear is done by tuning of hyper-parameter δ . For our 
experiments we set δ = 0.5.

To improve predictions, we have also incorporated the weighted values for different events. For example, 
we penalize the cost of incorrect hypoglycemic values by multiplying it with weight, denoted by �hypo ; the cost 
of penalizing the incorrect hypoglycemic values is taken by multiplying it with �hyper with the cost of incorrect 
normoglycemic values being denoted by �normo . The illustration of adding the additional cost to the sample 
sequence is shown in Fig. 7. For our experiments, we use �hypo = 100 , �hyper = 10 and �normo = 1 . The intro-
duction of extra-penalty terms can cause non-smoothness in the loss function, however, with enough number 
of training epochs and the stated learning rate and batch size, the loss converges and is effective in improving 
the generalizability of the model in better capturing of the rare events such as hypoglycemia and hyperglycemia.

Experimental set‑up
The proposed model was tested on actual blood glucose data for 97 patients as discussed in Data section. The 
experiments were conducted on a computing cluster available through Centre for Computational Research (CCR) 
in University at Buffalo. The nodes were equipped with NVIDIA Tesla V100 GPUs with 16GB memory. We used 
Keras  library46 with the Tensorflow  library47 as backend.

Data preparation. The data has been normalized using Min-Max normalization method to normalize or 
scale the data into the range [0, 1] before feeding into the model. The output predictions from the model are then 
de-normalized or re-scaled back to permit comparing and evaluating with groundtruth values using different 
performance measures. This is an important step since normalizing the values is required before feeding into the 
model while de-normalizing is required for correct evaluation of model predictions.

Training and parameter learning. Parameters of the proposed model are learned through back propaga-
tion through time (BPTT) with Adam as optimizer with learning rate of 0.0001. The training batch size is set to 
32. For the 1D convolution layers, the kernel size for the convolution layers is set to 2 while the number of filters 
is set to 64. The dilation factors d in these layers is changed with the following values—[1, 2, 4]. The 1D spatial 
dropout is set to 0.2. We switched off the use of normalization layers in the residual block. We use one stack of 
residual block in each of the encoder and decoder module within each of the four components of our model. 

Ŷ = W1 ⊙ Ŷ1 +W2 ⊙ Ŷ2 +W3 ⊙ Ŷ3 +W4 ⊙ Ŷ4

Lδ(y, ŷ) =

{

1
2 (y − ŷ)2, for |y − ŷ| ≤ δ

δ(|y − ŷ| − 1
2 δ), otherwise

External weighted sequence
λhyper λnormo λnormo λnormo λnormo λhypo

Actual sequence
Loss Function L

t1 t2 t f

t1 t2 Predicted sequence
t f

Figure 7.  Weighted loss function.
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Based on the sensitivity analysis of history size and impact of each input variables on the forecasting skill of the 
model, we have set these values as p1 = p3 = p4 = 36 and p2 = 6 , since 36 ∗ 5 = 180 mins and 6 ∗ 5 = 30 mins. 
We choose the past history of first, third and fourth component as 3 h to account for a better long-term depend-
encies. The second component has the input of recent history of 30 mins for BG as the recent values have great 
impact on the values that are followed in the output sequence.

Evaluation. In this subsection, we describe the evaluation measures used for evaluating the performance 
of our model. The performance evaluation metrics is the key indicator of the prediction power of a developed 
model.

Quantitative evaluation metrics. The performance metrics used in our experiment for evaluating the predic-
tion accuracy of the proposed model are listed as below: 

1. Root mean squared error (RMSE)

2. Mean absolute error (MAE)

3. Mean absolute percentage error (MAPE)

4. Normalized root mean squared error (NRMSE)

Here, N is the number of BGC values, ŷi and yi are the predicted and actual BGC values respectively, while 
ymax and ymin are the maximum and minimum of the actual BGC values respectively. These evaluation metrics 
describes the quantitative accuracy for blood glucose predictions. Additionally, we also report different accura-
cies (i.e. true positive rate, false positive rate) for hypoglycemia, hyperglycemia and normoglycemia predictions. 
Here, we defined True Positive Rate = TP/P while False Positive Rate = FP/N. Here, TP, P, FP and N implies the 
True Positives, Positives, False Positives and Negatives respectively. To determine the True positive rate and false 
positive rate, for hypo-, hyper- and normoglycemia, we define the relevant terms as described below:

• Hypoglycemia For hypoglycemia (BG < 70 mg/dL), the True Positives (TP) is defined as the number of times 
the predicted BG level and the corresponding actual BG level < 70 mg/dL while the Positives (P) is defined as 
the number of times actual BG levels < 70 mg/dL. Here, we also define the False Positives (FP) as the number 
of times the predicted BG level < 70 mg/dL and the corresponding actual BG level >= 70 mg/dL while the 
Negatives (N) is defined as the number of times actual BG levels >= 70 mg/dL.

• Hyperglycemia For hyperglycemia (BG >= 180 mg/dL), the True Positives (TP) is defined as the number of 
times the predicted BG level and the corresponding actual BG level >= 180 mg/dL while the Positives (P) is 
defined as the number of times actual BG levels >= 180 mg/dL. Here, we also define the False Positives (FP) 
as the number of times the predicted BG level >= 180 mg/dL and the corresponding actual BG level < 180 
mg/dL while the Negatives (N) is defined as the number of times actual BG levels < 180 mg/dL.

• Normoglycemia For Normoglycemia (70 mg/dL <= BG < 180 mg/dL), the True Positives (TP) is defined as 
the number of times the predicted BG level and the corresponding actual BG level >= 70 mg/dL and < 180 
mg/dL while the Positives (P) is defined as the number of times actual BG levels >= 70 mg/dL and < 180 mg/
dL. Here, we also define the False Positives (FP) as the number of times the predicted BG level >= 70 mg/dL 
and < 180 mg/dL and the corresponding actual BG level < 70 mg/dL or >= 180 mg/dL while the Negatives 
(N) is defined as the number of times actual BG levels < 70 mg/dL or >= 180 mg/dL.

While all the previously mentioned metrics are good indicators of the model’s performance quantitatively, 
they are unable to clearly represent the qualitative performance like clinical accuracy of modeled blood glucose 
meter. In order to represent this qualitative measure of the model, we make use of error grid analysis which is 
described in the following section.

Error grid analysis. To measure the clinical accuracy of our model predictions, we used both the  Parkes48 and 
the  Clarke49 error grid system. In each of these grid systems, the errors are categorized into zones and each zone 
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covers a certain range of prediction and reference values. The pairing of the corresponding values in the actual 
blood glucose and predicted blood glucose levels is plotted in the error grid. Each of these pairs falls in one of 
the zones in the error grid. Each zone represents the degree of risk of an outcome arising due to the difference in 
error between predicted and actual values. The performance of the model can be best assessed by having more 
number of pairs of predicted and actual points appearing in Zone A. Zone A is defined as the grid region where 
predicted values fall within ± 20% of the actual data. In clinical practice, predictions which fall within this Zone 
would not be expected to alter clinical action by the patient.

Conclusion and future work
We present here a novel deep learning based model to predict future BG of T1D patients in a multi-step ahead 
manner. This model takes the past history of BG, insulin (basal and bolus) and meal intake in order to predict 
the multi-step ahead BG values. The novelty of the the proposed model lies in accounting of different view of 
past history for different variables like meal intake, basal rate and insulin boluses. Results with validation data for 
97 T1D patients demonstrate that our proposed model performs consistently on both qualitative and quantita-
tive metrics. Our proposed model outperforms some of the competitive and baseline approaches while it is also 
shown that the ARX model seems to be one of the challenging prediction model in comparison to our model. 
It has been shown that our model is able to capture the hyperglycemic and the hypoglycemic events better as 
compare to the ARX model but is slightly less accurate in the normoglycemic range values. In the future, we 
would incorporate either other patient-related information or make an ensemble fused modelling approach to 
overall enhance the prediction accuracy. The other direction can be considered in incorporating a probabilistic 
layer that can quantify the uncertainty of input and output.
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