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Schemas provide a scaffold for neocortical
integration of new memories over time

Sam Audrain 1,2 & Mary Pat McAndrews 1,2

Memory transformation is increasingly acknowledged in theoretical accounts
of systems consolidation, yet how memory quality and neural representation
change over time andhow schemas influence this process remains unclear.We
examined the behavioral quality and neural representation of schema-
congruent and incongruent object-scene pairs retrieved across 10-minutes
and 72-hours using fMRI. When a congruent schema was available, memory
became coarser over time, aided by post-encoding coupling between the
anterior hippocampus and medial prefrontal cortex (mPFC). Only schema-
congruent representations were integrated in the mPFC over time, and were
organized according to schematic context. In the hippocampus, pattern
similarity changed across 72-hours such that the posterior hippocampus
represented specific details and the anterior hippocampus represented the
general context of specificmemories, irrespective of congruency. Our findings
suggest schemas are used as a scaffold to facilitate neocortical integration of
congruent information, and illustrate evolution in hippocampal organization
of detailed contextual memory over time.

As we go about our lives, we are constantly experiencing new events
and details that are unique to a given moment and place in time. As
only a small subset of our experiences are remembered long-term,
what neural underpinnings support the retention of certain events and
the loss of others? We know that successful long-term memory
retrieval initially depends on the hippocampus and gradually comes to
be supported by the neocortex over time through the process of sys-
tems consolidation. Studies of animal and human memory systems
indicate that recall of detail-rich episodicmemories remain dependent
on the hippocampus in perpetuity, while hippocampal-neocortical
dialog promotes the strengthening of neocortical representation such
that coarse, schematic memories can be supported by the neocortex
independent of the hippocampus with time1–9, c.f. refs. 10,11. However,
an important consideration was not initially appreciated in models of
systems consolidation, namely, that memories are not written to a
blank neocortical slate. As adults, we have years of experience inter-
acting with the world, with many experiences represented in the brain
in distributed neural ensembles as long-termmemories and schematic
knowledge. How does what we already know influence what we will

remember of a new experience? How do our prior experiences influ-
ence mental and neural representation over time?

In recent years there is increased understanding of how prior
knowledge, and schemas that are extracted from multiple similar
experiences in particular, can enhance memory acquisition, con-
solidation, and retrieval12–16. While the establishment of the neocortical
memory trace was originally conceived of as a slow process unfolding
overweeks to years17,18, in rodents, there is evidence that learning novel
information in the context of an existing schema occurs quite quickly,
effectively accelerating consolidation such that new information can
be retrieved without the hippocampus faster than usual19. While
schema-accelerated consolidation has yet to be definitively demon-
strated in humans, it has long been recognized that prior knowledge
benefits mnemonic retention of new congruent information20–22.

Empirically, themedial prefrontal cortex (mPFC; and homologous
regions in rodents) has proven to be important for schema benefits to
memory across both species9,14,23,24. There is evidence that hippo-
campal activity decreases25–28 while mPFC activity increases during the
delayed retrieval of schema-congruent relative to incongruent
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memories26,29,30, indicating the increasing contribution of the mPFC in
supporting schema-congruent retrieval after a periodof consolidation.
Further, functional coupling between the mPFC and hippocampus
increases during encoding of information related to prior knowledge,
and persists off-line after learning26,31–34, c.f. refs. 35,36, which is pro-
posed to reflect updating of neocortical knowledge structures with
related experiences37,38.

Although a relative trade off in activity between the mPFC and
hippocampus provides some support for the existence of schema-
accelerated consolidation in humans, it is unclear exactly how this
might occur. Recent theoretical accounts propose that schemas pro-
vide an organizing scaffold that new overlapping content can leverage
to facilitate integration14,39. Such accounts rest on the idea that related
memories are represented by overlapping neural ensembles in the
neocortex—and the overlap of new with established content enables
the rapid strengthening of new representations via Hebbian learning15,
presumably at the cost of memory specificity afforded by the hippo-
campus. The implication is that schema-congruent memories are
organized and integrated according to the schema that supports
acquisition, which can then be mobilized to facilitate later encoding
and retrieval14.

There is indeed evidence that learned arbitrary associations that
share overlapping features come to be represented more similarly to
each other in the mPFC than nonoverlapping events40,41, lending cre-
dence to the contention that overlapping information is strengthened
in this region while details fall away leaving coarser, more integrated
representations39,41. Although paradigms measuring integration as a
function of shared arbitrary features can speak to the role of overlap in
linking episodic memories, we argue that the complex and abstracted
real-world knowledge that comprise schemas are likely more effica-
cious for integration of new information, as they are not limited to the
arbitrary elements that are presented in an experimental context.
Neural populationoverlapas amechanismfor integrationhas not been
examined in the context of schemas, leaving untested the idea that
representational overlap facilitates neocortical integration. Moreover,
while memory transformation and quality of memory are becoming
increasingly acknowledged in theoretical accounts of long-term
memory formation2,4,13,38,39,42–44, there is a dearth of work empirically
examining howmemory quality and representation change over time,
and how schemas affect this process. Using resting-state fMRI, neural
pattern similarity analyses, and a novel behavioral paradigm sensitive
to quality of memory, we targeted several lines of evidence to address
the following questions: do real-world schemas act as a scaffold to
enhance neocortical integration of new overlapping memories in
humans, and how do the hippocampus and mPFC interact to support
the consolidation and retrieval of coarse and detailed episodic repre-
sentations in the context of schemas over time?

With these aims, participants studied a series of unique objects
that were congruent or incongruent with background scenes in an
event-related fMRI paradigm (Fig. 1). During retrieval, they were pre-
sented with the object cue andwere asked to retrieve the background,
indicating both the context that the object had been paired with
(kitchen or beach), and the specific scene (which specific kitchen or
beach). Memory was tested across a short delay of 10min and a long
delay of 3 days, to measure change in memory specificity and neural
representation over time. We used a multi-voxel pattern analysis
approach to quantify the degree of overlap inmemory representations
as well as baseline and post-encoding resting state scans to measure
experience dependent changes in hippocampal-neocortical interac-
tion as it relates to quality of subsequent memory. We investigated
three hypotheses that speak to the facilitated integration of schema-
congruent information and its organization: (1) Schema-congruent
memories should become coarser than incongruent ones over time.
(2) Stronger post-encoding hippocampal-mPFC coupling should
associate with coarser memory for schema-congruent information

over time. Finally, (3) over time, representations of schema-congruent
memories should become integrated according to the schematic
context with which they are related, and thus overlap in the mPFC,
whereas hippocampal representations could remain distinct when
individuals are able to retrieve fine details. In sum, we targeted three
potential converging lines of evidence that together could sub-
stantiate the phenomenon of schema-facilitated neocortical integra-
tion of overlapping information.

Here, we show that memory for schema-congruent associations
becomes coarser over time, which is associated with post-encoding
coupling between the anterior hippocampus andmPFC. We also show
that schema-congruent representations are integrated in the mPFC
over time, and are organized according to the schematic context
available during learning. Finally, we show that pattern similarity in the
posterior hippocampus comes to represent specific details over time,
while the anterior hippocampus comes to represent the general con-
text of specific memories, irrespective of congruency. The present
study provides evidence that schemas are used as a scaffold to facil-
itate neocortical integration of related information, and suggests that
hippocampal organization of detailed contextual memory evolves
over time.

Results
Congruent associations are remembered more coarsely
over time
To examine the influence of schema congruency on memory over
time, total percent correct was calculated for each participant as the
percent of congruent or incongruent pairs inwhich the correct context
was retrieved (regardless of the specific scene) at each delay. The total
percent correct score is therefore comprised of both coarse and
detailed memories. We submitted total percent correct scores to a
linear mixed effects model with congruency (congruent/incongruent)
and delay (short/long) as fixed effects, a random intercept for each
participant, and random slopes for counterbalancing groups. The
model indicated main effects of congruency (F(1,58) = 72.34,
p <0.0001, M difference = −32.43, CI: [−40.07–(−24.78)]) and delay
(F(1,58) = 201.07, p <0.0001, M difference = 11.52, CI: [5.91–17.12]), and
a congruency by delay interaction (F(1,58) = 19.45, p <0.001, M differ-
ence = 20.56, CI: [11.23–29.89]). Pairwise testing revealed that con-
gruent pairs were remembered better than incongruent ones at the
short delay (t(58) = 4.43, p <0.0001, M difference = 11.86, CI:
[6.51–17.22]). While both types of pairs where forgotten over time
(congruent: t(58) = 4.11, p =0.0001, M difference = −11.52, CI:
[−17.12–(−5.91)], incongruent: t(58) = 8.58, p <0.0001, M difference =
−32.08, CI: [−39.56–(−24.59)]), congruent pairswere retained better at
the long delay compared to incongruent (t(58) = 8.49, p <0.0001, M
difference = 32.43, CI: [24.78–40.07]).

Next, we examined how quality of memory changed over time
within each condition (Fig. 2). At each delay, we defined detailed
memories as the percent of total congruent or incongruent trials
where participants correctly identified both the context (beach/
kitchen) and the specific scene that was paired with a given object at
retrieval. We defined coarse memories as the percent of total con-
gruent and incongruent trials in which participants correctly identified
the context an object hadbeen pairedwith, but indicated that they did
not know the specific scene, or chose the incorrect scene of the same
context. We present the proportion of trials for each condition for
which participants indicated “don’t know” versus chose the incorrect
context or scene in SupplementaryMethod 1/Supplementary Fig. 1.We
ran separate linear mixed models for coarse and detailed memories,
with congruency and delay as predictors, with a random intercept for
eachparticipant, and random slopes for each counterbalancing group.

For detailed memories, we found a significant main effect of
delay (F(1,58.87) = 143.20, p < 0.0001, M difference = 25.94, CI:
[18.88–33.76]) as memories were forgotten over time. There was
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also a main effect of congruency (F(1,57.17) = 36.04, p < 0.0001, M
difference = −19.43, CI:[−26.29–(−12.40]), as detailed congruent
pairs were better remembered than incongruent. The interaction
between delay and congruency for detailed memories was marginal
(F(1,57.17) = 3.58, p = 0.063, M difference = 9.32, CI: [−0.45–19.02]).
For coarse memories, there were significant main effects of
delay (F(1,62.76) = 25.05, p < 0.0001, M difference = −1.66, CI:
[−2.34–(−1.04)]) and congruency (F(1,58.43) = 12.15, p = 0.0009, M
difference = −1.29, CI: [−1.92–(−0.58)]), and a significant interaction
between the two (F(1,58.43) = 5.15, p = 0.027, M difference = 1.02, CI:
[0.089–1.91]). Pairwise t-tests indicated that there was no difference
in the percentage of coarse congruent and incongruent memories
at the short delay (t(58.4) = 0.90, p = 0.37, M difference = 0.27, CI:
[−0.33–0.88]). There were, however, more coarse congruent than
incongruent memories retrieved at the long delay (t(58.4) = 3.89,
p = 0.0003, M difference = 1.29, CI: [0.63–1.96]), which was driven

by an increase in the percentage of coarse congruent memories
retrieved over time (t(60.7) = 5.16, p < 0.0001, M difference = 1.66,
CI: [1.02–2.30]). There was a smaller, marginal increase in the per-
centage of coarse incongruent memories over the same time period
(t(60.7) = 1.99, p = 0.051, M difference = 0.64, CI: [−0.004–1.28]).
The finding that memory became coarser over time in the con-
gruent but not incongruent condition is consistent with the
hypothesis that congruency with prior knowledge facilitates neo-
cortical integration of new memories beyond that which occurs for
incongruent associations across the 3 days. Subsequent control
analyses confirmed that the increase in coarse congruent memory
over time was not due to differing numbers of coarse and detailed
memories retained across the short delay (Supplementary
Method 2; Supplementary Fig. 2), nor due to a possible increase in
bias to choose the congruent context over time (Supplementary
Method 3; Supplementary Fig. 3).
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Fig. 1 | Experimental design. a Participants underwent encoding and retrieval
sessions across a short delay of 10min and a long delay of 3 days in the fMRI
scanner. Participants were counterbalanced across delays according to the
depicted structure. Encoding fMRI data was not analyzed for the present
experiment. b During encoding participants viewed a series of objects, each
paired with one of four repeating scenes (two beaches/two kitchens) and indi-
cated whether the object was related to the background scene. Participants did
not view the names of the scenes during encoding, rather, they learned the
names of the scenes and practiced visualizing them in detail prior to beginning
the experiment. c During retrieval participants were asked to imagine the scene
associated with a presented object in as much detail as possible, and to indicate

which context the object had been paired with (kitchen or beach), as well as
which specific scene (which kitchen or which beach). Trials for which partici-
pants remembered the context a given object was paired with but not the scene
were scored as coarse memories, and trials for which they remembered the
context and specific scene were scored as detailed memories. Dark gray circles
over responses here represent example responses. Scene and object images
presented here are placeholders used for illustrative purposes. Objects were
retrieved from the bank of standardized stimuli (BOSS) database (Copyright (C)
2009, 2010 Mathieu Brodeur)100. Beach A photo by Rowan Heuvel, Beach B
photo by PedroMonteiro, Kitchen A photo by SidekixMedia, Kitchen B photo by
Zac Gudakov, all on Unsplash: https://unsplash.com/license.
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Hippocampus – mPFC post-encoding coupling and subsequent
memory
Prior research suggests that post-encoding connectivity in memory-
relevant networks reflects early systems consolidation processes,
with enhanced delayed long-term retrieval associated with
increased connectivity45–47. The anterior hippocampus has greater
structural and functional connectivity to the mPFC than the pos-
terior hippocampus42,48–50, and coupling between the anterior hip-
pocampus and mPFC has proven to be related to mnemonic
representation and retrieval of remote memories41,51. In order to
determine if post-encoding anterior hippocampal-mPFC coupling
was associated with coarse congruent memories over time, we
extracted functional connectivity between the anterior hippo-
campus and the mPFC at baseline and after encoding object-scene
pairs for the long delay. We then subtracted each participant’s
baseline from their post-encoding connectivity to acquire ameasure
of change in connectivity after encoding, which we correlated with
behavioral retrieval scores across the long delay. In line with our
hypothesis, we found that participants with greater post-encoding
change in coupling between the anterior hippocampus and mPFC
retrieved coarser congruent memories 3 days later (t(15) = 1.98,
p = 0.033, r = 0.46, CI: [0.05–1]; Fig. 3).

If the relationship between connectivity and memory was not
reflective of consolidation processes and instead indexed memory
granularity regardless of having just undergone encoding, one might
expect that it wouldn’t matter if the connectivity data were collected
right after encoding or at some arbitrary timepoint. To test if the
relationship between connectivity and coarse congruent memory was
evident regardless of when the data were collected, we additionally
correlated change in connectivity after encoding for the long delay,
with coarse congruent memory scores across the short delay. Con-
nectivity did not reliably correlate with coarse congruent memory
across the short delay (t(15) = 0.11, p =0.92, r = −0.03, CI: [−0.5–0.46]),
which is in linewith the notion that post-encoding interaction between
these regions reflects processes associated with memory consolida-
tion rather than memory granularity per se. Exploratory analyses
indicated that connectivity between the anterior hippocampus and
mPFC did not reliably associate with the other memory conditions
across the long delay, although the magnitudes of some were within
the range of the coarse congruent condition (detailed congruent
memory: t(15) = 0.96, p =0.35, r = −0.24, CI: [−0.65-0.27]; coarse
incongruent memory: t(15) = 0.77, p =0.46, r =0.19, CI: [−0.32–0.62];
detailed incongruent memory: t(15) = 1.70, p = 0.11, r = −0.40, CI:

[−0.74–0.10]; see Supplementary Method 4 and Supplementary Fig. 4
for a comparison of slopes).

Memories are integrated in the mPFC according to congruent
context
To test the hypothesis that representations of schema-congruent
memories become integrated in the mPFC over time, we used a multi-
voxel pattern analysis approach41,52 to quantify the degree to which
representations of schema congruent and incongruent memories
overlap in the mPFC at each delay. We reasoned that higher pattern
similarity between trials within a condition would reflect commonal-
ities in neural representation. An increase in representational similarity
over time, therefore, is consistent with the idea that there is increased
neural population overlap and integration of mnemonic representa-
tions after a period of consolidation.

For congruent pairs, we extracted the pattern of voxels within the
mPFC as participants were viewing a given object and successfully
retrieving the associated context (regardless of if the specific scene
was retrieved), and then correlated the extracted pattern with all other
patterns for congruent object-context pairs that shared the same
context (within context correlations), and with those from congruent
object-context pairs of the opposing context (across context correla-
tions; Fig. 4a). For incongruent pairs, we computed the same set of
correlations except all object-context pairs were incongruent. We
included both coarse and detailed trials in order to increase statistical
power, because presumably, coarse information should be retrieved
for both trial types (e.g., general features of beaches). If commonalities
across object-context pairs are enhanced with consolidation due to
congruency with pre-existing associations, an increase in pattern
similarity should be evident in the mPFC for congruent information
relative to incongruent despite matched contextual overlap. To the
extent that schemas act as a scaffold for integration, increased pattern
similarity over time should be context-specific (i.e., greater pattern
similarity within-context than across contexts). As we were mainly
interested in change in pattern similarity in the mPFC over time as it
relates to congruency and did not have a priori hypotheses regarding
hippocampal patterns along this dimension, we focused on the mPFC
for this analysis (Fig. 4b). We present a plot of corresponding pattern
similarity in the anterior and posterior hippocampi in Supplementary
Method 5/Supplementary Fig. 5 for the interested reader.

As a linearmixedmodel predicting pattern similarity in the mPFC
as a function of congruency (congruent/incongruent), context (within/
across) anddelay (short/long)was too complex to convergewhilst also

Fig. 2 | Quality of memory for congruent and incongruent associations over
time.We examined the percent of total congruent and incongruent trials that
were correctly retrieved as a function of memory granularity. Memories were
considered coarse if participants retrieved the correct context an object had
been paired with but not the specific scene and were considered detailed if they

retrieved the specific scene. Coarse and detailed memories together comprise
total memory accuracy. Error bars reflect standard error of the mean adjusted
for within-subject design. N = 23 participants across the short delay and N = 19
participants across the long delay. Source data are provided as a Source
Data file.
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accounting for evident heteroskedasticity and participant-specific
effects in the model, we ran three simpler models targeting our main
questions of interest. First, we tested the hypothesis that overlapping
(within-context correlations) congruent pairs become better inte-
grated in the mPFC than overlapping incongruent ones over time
(congruent within versus incongruent within bars in Fig. 4b). We ran a
linearmixed effectsmodel predictingwithin-context pattern similarity
in the mPFC as a function of congruency and delay, with random
intercepts for each participant, random slopes for each

counterbalancing group, and weighted to model unequal variance
across fixed effects. We found main effects of congruency
(F(1,13848) = 17.72, p <0.0001, M difference = −0.015, CI:
[−0.023–(−0.006)]) and delay (F(1,13848) = 70.99, p < 0.0001, M dif-
ference = −0.022, CI: [−0.028–(−0.017)]) as well as a significant inter-
action between the two (F(1,13848) = 5.50, p =0.019, M
difference =0.011, CI: [0.002–0.021]). Pairwise t-tests indicated that
there was no reliable difference in representational similarity of con-
gruent and incongruent object-context pairs at the short delay

correct context trials

rr

a

within context across context

rr

b

Fig. 4 | Pattern similarity analysis in the mPFC during retrieval of congruent
and incongruent object-context pairs. a Schematic example of our analysis
approach. Patterns for trials where participants successfully retrieved the context
associated with the presented object (regardless of whether they retrieved the
specific scene) were extracted from the mPFC and correlated within and across
context, separately for congruent and incongruent trials. This example depicts
congruent beach stimuli, but the same analysis was applied to incongruent beaches,
as well as congruent and incongruent kitchens. Background scenes were not pre-
sented during retrieval, but were retrieved from memory. b Resulting pattern simi-
larity in themPFC over time, according to congruency (congruent/incongruent) and

context (within/across). Data reflect estimated marginal means from linear mixed
effects models predicting pairwise Fisher transformed correlations from con-
gruency, context, and delay variables, in N = 23 participants across the short delay
and N = 19 participants across the long delay. Errors bar reflect standard error of the
mean adjusted for within-subject design. r = Pearson’s correlation. Scene and object
images presented here are placeholders used for illustrative purposes. Objects were
retrieved from the bank of standardized stimuli (BOSS) database (Copyright (C)
2009, 2010 Mathieu Brodeur)100. Beach photos by Rowan Heuvel and Pedro Mon-
teiro, kitchen photos by Sidekix Media and Zac Gudakov, all on Unsplash: https://
unsplash.com/license. Source data are provided as a Source Data file.

r = 0.46*

r

a b

Fig. 3 | Anterior hippocampus – mPFC increase in post-encoding coupling is
associated with coarse congruent memory 3 days later. a Time series from the
anterior hippocampus andmPFC were extracted and correlated during baseline
and post-encoding rest. Pre-encoding anterior hippocampus – mPFC con-
nectivity was subtracted from post-encoding connectivity to derive a measure
of post-encoding change in connectivity. b Correlation between anterior hip-
pocampus and mPFC post-encoding change in coupling and coarse congruent
memory 3 days later (t(15) = 1.98, p = 0.033, r = 0.46, CI: [0.05–1]). Coarse con-
gruent memory was quantified as the percent of total congruent judgements for
which the context was correctly retrieved but the specific scene was not. The
black dots reflect data from individual participants, and the black line reflects

the line of best fit for the correlation. Gray ribbon represents 95% confidence
interval for a one-tailed test.*significant correlation according to a one-tailed
Pearson’s correlation test. Source data are provided as a Source Data file. Brains
are the MNI152 template (0.5 mm, linearly smoothed; Copyright (C) 1993–2009
Louis Collins, McConnell Brain Imaging Centre, Montreal Neurological Institute,
McGill University101), with ROI masks overlayed. The mPFC mask is a combina-
tion of A14m and A10m ROIs from the Brainnetome Atlas92. The anterior and
posterior hippocampal masks are ahipp and chipp masks from the Brainnetome
Atlas and are used for illustrative purposes, as the hippocampal masks used in
this study were segmented based on each participant’s anatomy. r = Pearson’s
correlation.
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(t(13848) = 1.37, p =0.170, M difference =0.003, CI: [−0.001–0.008]).
While patterns for both congruent and incongruent pairs became
more similar within congruency over time (congruent: t(13848) = 8.35,
p <0.0001, M difference =0.022, CI: [0.017–0.028]; incongruent:
t(13848) = 2.72,p =0.007,Mdifference = 0.011, CI: [0.003–0.019]), this
changewas greater for the congruent pairs such that there was greater
pattern similarity for congruent than incongruent pairs at the
long delay (t(13848) = 3.46, p =0.0006, M difference = 0.015, CI:
[0.006–0.023]). In other words, object-context representations
became more similar to each other in the mPFC over time if they
shared a congruent context rather than an incongruent one. Impor-
tantly, as context was matched between congruent and incongruent
trials for this comparison (all correlations were restricted to those
between trials that had been paired with the same background con-
text), the observed increase in pattern similarity in the congruent over
the incongruent condition must be due to congruency between the
object and schematic context rather than due to overlapping percep-
tual similarities between the background contexts.

We next tested the hypothesis that pattern similarity would
increase within context but not across context if representations were
organized according to the paired schema. We computed a linear
mixed model predicting pattern similarity as a function of context
(same context/across context) and delay (short/long), separately for
congruent and incongruent pairs. Random intercepts were included
for each participant, with random slopes for counterbalancing condi-
tion, and weights were included to model unequal variance across
fixed effects. We found that for congruent pairs (congruent within
versus congruent across bars in Fig. 4b) there was a main effect
of context, due to greater similarity of patterns within than
across context (F(1,17746) = 6.68, p = 0.010, M difference = −0.007,
CI:[−0.013–(−0.002)]). There was also a main effect of delay, such that
similarity became greater over time (F(1,17746) = 107.83, p <0.0001,M
difference = −0.022, CI: [−0.027–(−0.017)]). There was no context by
delay interaction (F(1,17746) = 1.52, p = 0.218, M difference =0.004, CI:
[−0.003–0.012]). This indicates that patterns for objects that shared
the same congruent context weremore similar to each other than they
were to congruent object-context pairs of the opposing context, irre-
spective of delay. For incongruent pairs (incongruent within versus
incongruent across bars in Fig. 4b), although therewas amain effect of
delay (F(1,10380) = 12.37, p =0.0004, M difference = −0.010, CI:
[−0.019–(−0.002)]) whereby similarity generally increased over time,
there was no effect of context (F(1,10380) = 1.14, p =0.285, M differ-
ence =0.002, CI: [−0.008–0.012]) and no context by delay interaction
(F(1,10380) = 0.0007, p =0.979, M difference <0.001, CI: [−0.11–0.11]).
Thus, patterns for incongruent object-context pairs were becoming
more similar over timebut theywerenot being integrated according to
the schematic context with which the objects were paired.

We ran several control analyses to complement the above find-
ings. We found that integration of congruent object-context pairs over
time is not driven by the fact that objects in the congruent condition
are more semantically similar to each other than are objects in the
incongruent condition (Supplementary Method 6; Supplementary
Fig. 6). Thus, integration apparently proceeds according to over-
lapping congruent contexts rather than overlapping incongruent
contexts or conceptual similarity between objects. Furthermore, lack
of context-specific integration in the incongruent condition was not
driven by inflated correlations in the across-context condition due to
residual semantic overlap between objects and opposing contexts
(Supplementary Method 7; Supplementary Fig. 7). We also examined
integration in the mPFC restricted to detailed memory trials and
similarly found evidence of increased representational overlap for
schema-congruent information (Supplementary Method 8; Supple-
mentary Fig. 8), suggesting thatmPFC integration does not necessarily
reflect loss of detail, and coarse features of detailedmemory trialsmay
also be integrated in the mPFC. In addition, integration of congruent

trials in the mPFC over time was not related to post-encoding con-
nectivity between the anterior hippocampus and mPFC (Supplemen-
tary Method 9). We therefore, did not observe evidence that post-
encoding interaction with the anterior hippocampus was related to
subsequent organizationof congruentmemories in themPFC. Further,
the same set of pattern analyses applied to forgotten trials indicated
that observed integration in themPFCover time is specific to trials that
were remembered (SupplementaryMethod 10; Supplementary Fig. 9a,
Supplementary Table 2). Finally, we present pattern similarity plots for
within-context correlations separately for beaches and kitchens in
Supplementary Fig. 10 (SupplementaryMethod 11). Further research is
required to investigate category-specific differences in representation.

Neural specificity in the hippocampus for detailed episodic
memories
As the hippocampus is required for the retrieval of specific episodic
events, we next investigated whether the representation of detailed
memories in the hippocampus varied as a function of mnemonic
specificity and congruency. We ran a modified version of the pattern
similarity analysis outlined above using only items for which both the
context and the specific scene were retrieved. We focused on the
anterior and posterior hippocampus as our ROIs, as it has been pro-
posed that the posterior hippocampus represents fine-grained or
detailed aspects of memory, while the anterior portion represents
coarser aspects5,40,42,53,54. This time, we calculated three groups of
correlations per successfully retrieved object-scene pair for each par-
ticipant (Fig. 5a). For congruent pairs, we extracted the pattern of
voxels within each ROI as participants were retrieving the scene
associated with a given object. We then correlated the extracted pat-
ternwith 1) the patterns of all other objects in the congruent condition
that had been paired with the same scene, 2) the pattern of all other
objects in the congruent condition that had been paired with the
similar scene of the same context, and 3) the pattern of all other
objects in the congruent condition that had been paired with scenes
from the other/opposing context. We did the same thing for incon-
gruent pairs, except all correlations were between incongruent rather
than congruent trials. For eachROI,we submitted these correlations to
a scene (same/similar/other-context scene) × congruency (congruent/
incongruent) × delay (short/long) linear mixed model, with a random
intercept for each participant and random slopes for each counter-
balanced group. We hypothesized that the posterior hippocampus
would reflect scene specificity: patterns for objects paired with the
same scene would be more similar to each other than to those for
objects paired with the similar scene of the same context, as well as
those for objects that had been paired with scenes from the opposite
context. Conversely, we hypothesized that the anterior hippocampus
would represent context but not scene specificity: correlations should
be similar between representations for objects paired with the same
and similar scene of the same context, but different from representa-
tions of objects that had been paired with scenes from the other
context. We expected to see these patterns in the hippocampus at
both delays irrespective of congruency if the hippocampus is impor-
tant for representingdetailed episodicmemories regardlessof content
over time55.

In the posterior hippocampus, we found a main effect of delay
(F(1,16061) = 47.14, p < 0.0001, M difference = −0.030, CI:[−0.042-
(−0.017)]), driven by higher pattern similarity across the long delay
than the short. Therewas also amain effect of scene (F(2,16148) = 5.00,
p =0.007), which was driven by higher pattern similarity between
objects sharing the same scene compared to those paired with a
similar scene (t(16148) = 2.76, p = 0.006, M difference =0.010, CI:
[0.003–0.018]) and compared to those paired with scenes from other
contexts (t(16148) = 2.86, p =0.004, M difference =0.009, CI:
[0.003–0.016]). There was no difference in pattern similarity between
the similar scene and other-context scene conditions (t(16148) = 0.30,
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p =0.77, M difference = −0.001, CI: [−0.007–0.005]). The rest of the
effects in the model were not significant (Table 1), although the
interaction between delay and scene was marginal (F(2,16149) = 2.69,
p =0.068), and a visual inspection of mean pattern similarity in each
condition suggests the effect of scene was largely driven by pattern
similarity across the long delay (Fig. 5b). These results indicate that
whenmemorieswere retrievedwith specificity, posterior hippocampal
patterns distinguished between objects paired with the same scene
from those that had been paired with similar and other-context scenes
over time, irrespective of congruency. Thus, the posterior hippo-
campus differently represents fine-grained perceptual differences
between scenes from the same schematic context. As there was no
effect of congruency, we present the main effects collapsed across
congruency in Fig. 5b for clarity, and the full un-collapsed data for
hippocampal and mPFC ROIs in Supplementary Method 12/Supple-
mentary Fig. 11. The same set of pattern analyses applied to forgotten
trials did not yield any statistically significant effects (Supplementary
Method 10; Supplementary Fig. 9b; Supplementary Tables 1 and 2).
Further, when adding in coarse memory trials and collapsing across
detailed and coarse memories (as done for the mPFC analysis), the
effect of scene disappears, suggesting that representational scene

specificity is lesser in magnitude or absent for coarse memory trials
(SupplementaryMethod 13; Supplementary Fig. 12). Finally, we did not
observe the same pattern of representational scene specificity for
detailed trials in the left posterior hippocampus (Supplementary
Method 14; Supplementary Fig. 13a).

In the anterior hippocampus there was a main effect of scene
(F(2,16146) = 6.67, p =0.001), as well as a delay by scene interaction
(F(2,16147) = 3.78, p =0.023; Fig. 5b). The rest of the effects in the
model were not significant (Table 1), although there was also a mar-
ginal interaction between congruency and delay (F(1,16158) = 3.26,
p =0.071, M difference =0.014, CI[−0.006–0.033]; Supplementary
Fig. 10). We unpacked the interaction between scene and delay with
pairwise t-tests. At the short delay, there was no difference in pattern
similarity between the three scene conditions (same scene vs
similar scene: t(16144) = 0.871, p =0.38, M difference =0.003, CI:
[−0.003–0.008]; same scene vs other-context scenes: t(16143) = 1.44,
p =0.15, M difference = 0.004, CI: [−0.001–0.009]; similar scene vs
other-context scenes: t(16144) = 0.45, p =0.66, M difference =0.001,
CI: [−0.004–0.006]). At the longdelay, while therewas nodifference in
pattern similarity between objects that shared the same scene versus
similar scenes (t(16147) = 0.02, p =0.99, M difference <0.0001, CI:

r

same scene

a

b

similar scene other context

r

correct scene trials

r r

Fig. 5 | Representational similarity analysis of object-scene pairs retrievedwith
detail in the hippocampus. a Schematic example of our analysis approach. Pat-
terns for successfully retrieved object-scene pairs were extracted from the right
anterior and posterior hippocampus and correlated with objects that had shared
the same scene, had been paired with the similar scene of the same context, as well
as those that had been paired with scenes from the other context. This example
depicts congruent correlations for one of the beaches, but the same analysis was
applied to the other beach, as well as to both kitchens, within congruent and
incongruent conditions. Background scenes were not presented during retrieval,
butwere retrieved frommemory.bResulting pattern similarity in the posterior and
anterior hippocampus over time, according to scene/context overlap. Note that as

congruency did not interact with scene condition, we plot the main effect of scene
collapsed across congruency. Data reflect estimated marginal means from linear
mixed effects models predicting pairwise Fisher transformed correlations from
congruency, scene, and delay variables, inN = 23 participants across the short delay
andN = 19participants across the longdelay. Errorsbar reflect standard error of the
mean adjusted for within-subject design. Scene and object images presented here
are placeholders used for illustrative purposes. Objects were retrieved from the
bank of standardized stimuli (BOSS) database (Copyright (C) 2009, 2010 Mathieu
Brodeur)100. Beach photos by Rowan Heuvel and Pedro Monteiro, kitchen photos
by Sidekix Media and Zac Gudakov, all on Unsplash: https://unsplash.com/license.
Source data are provided as a Source Data file.
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[−0.013–0.013]), pattern similarity was higher in both conditions
compared to the other-context scenes condition (same scene vs other-
context scenes: t(16147) = 2.82, p = 0.005, M difference =0.017, CI:
[0.005-0.028]; similar scene vs other-context scenes: t(16147) = 2.85,
p =0.004, M difference =0.017, CI: [0.005–0.028]). Pattern similarity
between objects that shared the same scene did not change over time
(t(16161) = 1.06,p =0.29,Mdifference =0.006,CI: [−0.005-0.016]), nor
did pattern similarity between objects sharing similar scenes
(t(16155) = 1.59, p = 0.11, M difference =0.008, CI: [−0.002-0.018]).
There was a marginal decrease in correlations between patterns for
objects from opposing scene contexts over time (t(16155) = 1.95,
p =0.051, M difference = −0.007, CI: [−0.015–0.00003]). These results
indicate that over time the anterior hippocampus was not distin-
guishing between objects paired with specific scenes, but it was dif-
ferentiating the coarser context regardless of congruency. The same
set of pattern analyses run on forgotten trials did not yield any sta-
tistically significant effects (Supplementary Method 10; Supplemen-
tary Fig. 9c; Supplementary Tables 1 and 2). We did not observe the
same pattern of representational context specificity in the left anterior
hippocampus for detailed trials (Supplementary Method 14; Fig. 13b).

Discussion
We examined the influence of real-world schemas on systems con-
solidation by probing memory quality, post-encoding hippocampal-
mPFC functional interaction, and representation in the mPFC and
hippocampus during subsequent retrieval. We found that only
schema-congruent object-scene pairs were remembered more coar-
sely over 3 days, in linewith evidence for a change inquality ofmemory
due to increasing reliance on neocortical retrieval over time2,3, as well
as better retention of (and/or greater reliance on) schematic infor-
mation when detail is forgotten56. We further showed that coarser
quality of memory over time was associated with enhanced post-
encoding coupling between the anterior hippocampus andmPFC. This
finding is in line with theoretical work propounding the importance of
offline functional interaction between these regions for updating
established neocortical memory traces with consolidation33,37,38.
Finally, we present evidence of greater representational overlap in the
mPFC during the retrieval of schema-congruent than incongruent

pairs with consolidation, despite the fact that context between these
two conditions was matched. Furthermore, memory representations
were specifically integrated within the paired congruent context,
showing that schemas act as an organizing scaffold for the con-
solidation of congruent content. As we did not find evidence of neo-
cortical integration across these three modalities of inquiry for
incongruent pairs across the same time-frame, the totality of these
findings accord with rodent work suggesting that schemas accelerate
consolidation12,19,23,24.

We investigated the nature of representations as they were influ-
enced by delay, schematic congruency, and contextual overlap.
Althoughpattern similarity in themPFC increasedover timeduring the
retrieval of arbitrary associations that shared the same context –

similar to what others have reported41 – we demonstrated that sche-
matic congruency not only enhances integration but also organizes
neocortical representations according to existing knowledge struc-
tures. The fact that pattern similarity increased for both congruent and
incongruent associations over time suggests that unique features may
have been lost or minimized in both conditions over time. As asso-
ciationswere studied in the samebroader experimental context (i.e., in
the scanner, in the context of the same experiment), some degree of
increase in pattern similarity that was not specific to the beach or
kitchen stimuli may have occurred after a delay in both congruent and
incongruent conditions57. It was only in the congruent condition,
however, thatmemories became integrated according to the beach or
kitchen context with which they were associated, either by strength-
ening overlapping elements39,41 or by the distortion of common ele-
ments being pulled together in representational space58–60, which is
likely to occur with schematic assimilation61. Alternatively, congruent
memories may have become more strongly linked such that retrieval
of one pair reactivated other related pairs in the neocortex34, thus
increasing pattern similarity across trials. We postulate that the coar-
sening of memory observed for congruent object-context pairs over
time is suggestive of one of the former interpretations. Finally, con-
gruent memory traces may have been strengthened at encoding and
therefore slower to decay, rather than actively schematized with con-
solidation. While a memory strength interpretation accords with the
notion that strengthening overlapping neural ensembles enhances
neocortical integration, the finding that schema-congruent mPFC
representations are integrated only after a prolonged delay suggests
extended consolidation processes are paramount. Moreover, we
found evidence of schema-congruent neural integration in the mPFC
even for detailed memories (Supplementary Method 8; Supplemen-
tary Fig. 8), which suggests that increased pattern similarity in the
mPFC does not simply reflect degradation of detail. Likely, both
encoding and post-encoding processes contribute to the lasting
schema benefit to memory, as rodent work suggests23,24.

Notably, while we observed that schematic congruency affected
both quality of memory and neural integration in the mPFC, the fact
that representational integration also occurs for detailed memories
suggests that there is not a linear relationship between neural overlap
in themPFC and coarsening of memory. From the perspective of trace
transformation theory, both neocortical and hippocampal memory
traces can exist concurrently2, thus coarsening of memory likely
results from both consolidation of and reliance on neocortical ele-
ments, as well as loss or disuse of (likely posterior9) hippocampal
contribution. In other words, an important additional contributor to
memory transformation is likely lack of detail that depends on pos-
terior representations retrieved by the hippocampus.

The fact that schematic context could be distinguished in the
mPFC for only congruent pairs suggests that congruent object-context
representations were organized according to the schema with which
they were related. Thus, schematic beach and kitchen information was
retrieved in themPFC in response to congruent objects irrespective of
delay. The mPFC was not representing schematic context in the

Table 1 | Results of hippocampal pattern similarity models

Effects DFn DFd F P

Posterior Hippocampus

Scene 2 16148 5.00 0.007*

Congruency 1 16153 1.06 0.30

Delay 1 16061 47.14 <0.000001*

Scene × congruency 2 16146 1.46 0.23

Scene × delay 2 16149 2.69 0.068~

Congruency × delay 1 16162 1.96 0.16

Scene × congruency × delay 2 16146 0.52 0.59

Anterior Hippocampus

Scene 2 16146 6.67 0.001*

Congruency 1 16165 0.44 0.51

Delay 1 16062 0.60 0.44

Scene × congruency 2 16144 0.43 0.65

Scene × delay 2 16147 3.78 0.023*

Congruency × delay 1 16158 3.26 0.071~

Scene × congruency × delay 2 16144 0.13 0.88

Scene (same/similar/other), congruency (congruent/incongruent), and delay (short/long) were
included as factors in a linear mixed effects model predicting pattern similarity in the posterior
and anterior hippocampi, with a random intercept for each participant and random slopes for
each counterbalancing condition.
DFn degrees of freedom for the numerator, DFd degrees of freedom for the denominator.
*p <0.05 and ~p >0.05 <0.1, uncorrected for multiple comparisons.
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incongruent condition, despite the fact that contexts were ultimately
retrieved. This lack of schema context effect is at oddswith the finding
by Tompary and Davachi41 of increased representational overlap in the
mPFC for arbitrary object-scene pairs within the same context relative
to across contexts by one week, but it is possible that this effect
emerges over longer time-frames with slower neocortical learning17.
Further work is required, however, in both animals and humans, to
demonstrate neocortical integration for both congruent and incon-
gruent stimuli in the same study across different time-scales. An
alternative explanation for the discrepancy between Tompary and
Davachi’s41 findings and ours lies in differences in the encoding task
instructions employed in each study. In their study, participants were
asked to imagine the object interactingwith the scene,whichmay have
facilitated neural integration of the arbitrary object-scene pairings. In
the present study, participants instead made congruency judgements
during encoding that may have facilitated integration of congruent
stimuli more than incongruent. We conjecture that integrative
encoding and schematic congruency are two complimentary ways of
achieving neural integration. The former, more effortful case, is likely
necessary tobuild schemasand accommodate novel informationwhile
the latter likely facilitates integration of related content by leveraging
existing information. It is plausible that incongruent stimuli in the
present study would have shown stronger neural integration with an
integrative encoding strategy.

We alsoused pattern similarity analysis to examine the granularity
of representations for memories retrieved with specificity in the
anterior and posterior hippocampus. Over time patterns in the pos-
terior hippocampus came to differentiate objects that hadbeen paired
with the same scene from those paired with similar scenes and scenes
from opposing contexts. Patterns in the anterior hippocampus did not
differentiate between objects that had been paired with the same and
similar scenes, but did differentiate between the broader kitchen and
beach contexts. These findings follow rodent and recent human work
indicating that by virtue of receptive field size, subfield composition,
and functional and structural connectivity with the rest of the
brain42,48,49,51,62, the posterior hippocampus differentiates granular
pieces of information in the service of episodic specificity, while the
anterior hippocampus represents more global features such as epi-
sodic context5,42. Interestingly, this representational pattern only
emerged after a delay.

It is plausible that visually similar overlapping information was
representationally orthogonalized across the short delay, in line with
the well-described role of the hippocampus in pattern separation63.
Over time, overlapping information came to be integrated according
to the degree of perceptual and contextual overlap, while also
becoming differentiated from objects paired with other scenes and
contexts. Several studies have reported representational changes in
the hippocampus over time for overlapping or visually similar
events41,59,64–67. Indeed, the most similar of these studies to ours found
that patterndiscriminability betweenoverlapping andnonoverlapping
object-scene pairs only emerged over time in the anterior and pos-
terior hippocampus41. Furthermore, while a number of studies have
been unable to decode mnemonic content in the hippocampus at
relatively short delays68–70, others have documented increasing accu-
racy in such decoding over time71–73, in line with the present findings.

Computational modeling and rodent work indicates that the
hippocampus can simultaneously represent orthogonal and over-
lapping information74,75, but it remains to be specified under which
circumstances the hippocampus integrates, orthogonalizes, or sepa-
rates mnemonic content, as well as the scale of such processes in
humans. Studies of representational similarity in the hippocampus
have generally been mixed in this regard, and have rarely been inves-
tigated in terms of change over extended delays58,76. Our finding that
hippocampal representations change with consolidation such that
objects that share the same scene exhibit greater representational

overlap while simultaneously preserving scene and context informa-
tion, agrees with the notion that consolidation serves to group com-
mon element together while also differentiating similar experiences. It
follows that consolidation processes may be bidirectional; in addition
to the hippocampus driving reorganization in neocortical networks,
the opposite is likely true as well – possibly through neocortical-
hippocampal-neocortical loops that act to consolidatememory during
sleep or awake replay of learned content77–80.

Finally, while there is theoretical work and empirical evidence that
hippocampal engagement differs for congruent and incongruent
information16,81–83, how the hippocampus represents congruent versus
incongruent content when it is engaged is much less clear (although
see ref. 60). When detailed episodic memory was retrieved, we found
evidence of representational specificity in the hippocampus regardless
of congruency. These observations are in keeping with trace trans-
formation theory, which posits that even though memory quality may
become less precise over timewith the establishment of – and reliance
on – neocortical memory traces, detailed retrieval invariably involves
the hippocampus2,4, which operates as a high-fidelity relational binder
of consciously apprehended information, regardless of content55.
Notably, given the difficulty of obtaining enough coarsememory trials
for reliable pattern similarity analyses, we have not shown that repre-
sentational specificity is exclusive to detailed and not coarse memory
trials. However, including coarse memory trials in our analysis (i.e.,
collapsing across coarse and detailed trials, see Supplementary Figs. 5
and 12) suggested that the effect of representational specificity is at
least smaller for coarse trials. These analyses also indicated that con-
gruency can influence pattern similarity in the hippocampus over time
when coarse trials are included, which may indicate that congruency
influences gist representation. Nonetheless, the finding that detailed
memories are represented with specificity in the hippocampus
regardless of congruency raises important considerations that have
yet to be tested in the rodent literature: while schema-consistent
information can be retrieved without the hippocampus relatively
quickly, it is possible that suchmemory is nonetheless lacking the rich
episodic detail and specificity the constitutes hippocampalmemories9.
Should task demands tax the memory system to retrieve such detail,
we predict the hippocampus would be required – as demonstrated in
rodent (and human) studies of memory in the absence of a learned
schema2,4,9,84.

To conclude, we present evidence that post-encoding hippo-
campal-mPFC coupling strengthens the coarse memory trace of
schema-congruent memories after a prolonged period of consolida-
tion. In parallel, we present evidence that real-world schemas act as
organizing scaffolds that serve to enhance neocortical integration of
related memories. The hippocampus, on the other hand, supported
specificity of representation for detailed retrieval at the long delay
irrespective of congruency. Interestingly, the pattern of hippocampal
representation during retrieval evolved markedly over time and was
suggestive of integration of overlapping content while simultaneously
keeping similar memories distinct. This unexpected finding suggests
that even detailed hippocampal representations change with con-
solidation, expanding the hypothesized role of the hippocampus to
include the organization of contextual memory over time.

Methods
Participants
Twenty-three young adults (8M/15 F, mean age: 26.39 years, range:
22–34) participated in this experiment. Sample sizewasdetermined by
an a priori power analysis based on a study using a similar experi-
mental design41, and is outlined in Supplementary Method 15. Total
percent correct was below chance (<33%) in four participants at the
longdelay, and, therefore, their data for the longdelaywas excluded in
all analyses; data at the short delay were retained. For resting state
connectivity analyses an additional 2 participants were excluded as
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resting-state scanswere not collecteddue to technical issues. Thus, the
total sample size for the behavioral and pattern similarity analyses was
23 participants at the short delay and 19 at the long delay, while 17
participantswere included in the resting-state connectivity analysis. All
participants were English speakers with normal or corrected to normal
vision, and no active diagnosis of neurological or psychiatric disorder.
The experimental protocol was approved by the University of Toronto
Research Ethics Board, and all participants provided informed
consent.

Experimental design
Participants underwent two fMRI sessions separated by ~72 h. During
the course of the experiment participants underwent an encoding and
cued retrieval session for object-scene pairs across a 10min (short)
delay, and again across a 72 h (long) delay. Thesedelayswere chosen to
reflect long-termmemory across a relatively short and extended delay.
The 72 h delay was chosen based on behavioral piloting which indi-
cated adequateperformanceacross this timeframe,while alsoallowing
multiple nights of sleep between study and test to provide the
opportunity for extended consolidation processes to occur79. All
encoding and testing tookplacewithin the fMRI scanner, and theorder
of the delays was counterbalanced to limit confounding practice
effects and differences in neural similarity that could arise due to
experience with the four scenes. Participants underwent fieldmap and
structural scanning during the 10min delay (i.e., they remained in the
scanner), and went about their typical activities outside of the scanner
during the 72 h delay.

The counterbalancing procedure resulted in two groups of par-
ticipants with slightly different scanning procedures. In group A, the
first scanning session involved encoding object-scene pairs, alongwith
a cued-retrieval test for the learned pairs 10min later. Theywould then
encode a new set of object-scene pairs in the scanner, to be tested 72 h
later during session 2. In group B, participants encoded object-scene
pairs during the first session. During session 2, they were tested on the
learned object-scene pairs (72 h delay), and then encoded a new set of
stimuli, which they were tested on 10min later. All participants were
administered a learning and practice test (described below) prior to
scanning to prepare for the main experiment within the scanner. After
participant exclusions (detailed above), there were 10 participants in
group A and 13 in group B for the behavioral and pattern similarity
analyses. For the connectivity analyses there were 4 participants in
group A and 13 in group B. We note here that random slopes for each
counterbalancing groupwere fit in all behavioral and pattern similarity
models to account for differences across the two groups.We present a
plot of the connectivity results according to counterbalancing group in
Supplementary Method 16/Supplementary Fig. 14, given the low sam-
ple size in Group A precluded accurate modeling of group differences
for the connectivity analysis.

Stimuli
Stimuli were presented using Inquisit 5 (Millisecond; https://www.
millisecond.com/). Four scenic color photos (1920 ×1080 pixels) were
used in this experiment: twobeaches, and two kitchens. These beaches
and kitchen scenes served as backgrounds to 160 pictures of objects in
white boxes (300 ×300 pixels), 60 of which were objects typically
found in kitchen contexts, 60 were typically found in beach contexts,
and the remaining 40were unrelated to either context (and were from
a variety of other contexts). In order to minimize item-specific effects,
objects were pseudo-randomly paired with each of the four scenes
within and across congruent and incongruent contexts and delay for
each participant, to construct two stimulus lists per participant: one
for the short and one for the long delay. Each stimulus list consisted of
80 object-scene pairs, 40 of which were congruent (20 beach objects
paired with beaches, 20 kitchen objects paired with kitchens) and 40
of which were incongruent (10 beach objects paired with kitchens, 10

arbitrary objects unrelated to either context paired with kitchens, 10
kitchen objects paired with beaches, 10 arbitrary objects unrelated to
either context paired with beaches). Thus, congruency here refers to
the relationship between each object and the schematic context with
which it was paired. Half of the pairs in the incongruent condition
consisted of objects typically found in the opposite context (e.g., oven
mitts are typically found in kitchens, but were paired with a beach), in
order to minimize the assumption that objects typically found in a
context would always be paired with that context, and hence dis-
courage the strategy of always choosing the congruent context during
the memory test, described below.

Training task
Given that we were interested in probing pattern similarity for scenes
basedonmemory (and not based on re-exposure), it was important for
the participants to learn the name of each of the four scenes thor-
oughly (BeachA, BeachB, KitchenA, KitchenB) so that they could later
indicate which scene was paired with an object without being visually
re-presented with the scene itself during memory testing. It was
equally important to ensure that participants knew the difference
between scenes of the same context so that they were not inad-
vertently indicating the wrong scene. Finally, wewanted to ensure that
participants were able to visualize the scenes in detail during retrieval.
To that end, participants underwent a training session 1 h prior to the
first scanning session in which they learned the name of each of the
four scenes, practiced visualizing the scenes in detail, and became
acquainted with the task they were to undertake in the scanner. The
training session consisted of 4 parts and took ~15–25min to complete.

Part 1 of the training session was a self-paced format in which
participants viewed each scene with its corresponding name, one at a
time, and then all four scenes on the screen at once so that they could
compare them. They were asked to pay attention to the name and to
the visual details of each scene, so that theywould be able to name and
visualize them in detail later on. In part 2 participants were shown each
scene one at a time and were asked to choose the name of the scene
from the four available options. They were given immediate feedback
as to whether they were correct or incorrect. If they were incorrect,
they repeated the process until all of the scenes were correctly named.
In part 3 they were given the name of each scene one at a time, and
were asked to visualize the scene in as much detail as possible, as well
as to rate howvivid their visualizationwas on a four point scale ranging
from “could not visualize” to “vivid visualization”. Right after visuali-
zation of a given scene they were asked one question pertaining to a
detail of the scene (e.g., is thedishwasher located to the right or the left
of the stove?), and had to select the appropriate answer out of two
options. If the participant indicated they had a less than “good”
visualization for any of the four scenes, or if they got any of the detail
questions wrong, they re-studied the images and tried again with new
questions about the details of the scenes (again, one question per
scene). They repeated this process until they could produce good
visualization and correctly answer the detail question for all scenes. In
part 4 they underwent a practice encoding and cued-retrieval proce-
dure as they were to be undertaken for the actual experiment for a
small subset of images (12 object-scene pairs), as described in further
detail below. Participants were given an abridged version of the
training task before entering the scanner during the second session,
wherein they completed Part1 and Part2 once more. This procedure
served to ensure that the participants correctly remembered the name
of each scene, and thus could proceed with the fMRI task.

Encoding
For each encoding session, participants werepresentedwith images of
80 objects one at a time, each paired with one of four background
scenes, with pairings as described above (i.e., half congruent and half
incongruent). The verbal labels associated with each background
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scene were not present during encoding. Participants’ task during
encoding was to indicate if each object was related to the background
scene or not. An objectwas to be considered related to the scene if the
participant thought they might find the object in that context in real
life. Participants were aware that they would be tested for their
memory of the object-scene associations.

For each delay, they studied each object-scene pair three
times across three 6.5 min long encoding runs. All pairs were
presented in each encoding run in a pseudo-random order for each
participant, such that adjacent trials did not share the same scene.
Participants viewed each scene for 0.1 s on its own before it was
overlaid with the paired object for an additional 2 s. This brief
temporal overlaying strategy was implemented to emphasize that
the object and scene were separate entities rather than a unitized
construct. They were then presented with a screen with response
options for 1 s during which they indicated if the object-scene pair
had been related or unrelated using an MRI compatible button
box. The response window was followed by a jittered fixation
period lasting 1, 1.5, or 2 s.

Cued retrieval
After eachdelay (10min, 72 h), participants underwent a cued retrieval
session during which they viewed studied objects individually in the
absence of the paired background scene, and were asked to retrieve
the scene that had been paired with the object as vividly as possible.
The 80 learned pairs were tested across four 4-min runs with 20
objects presented in each run. Each objectwaspresented for 2 s during
which time participants were to visualize the paired scene. Participants
were then shown a response screen and had 2 s to indicate with which
context the object had been paired with (kitchen/beach/don’t know).
The response screen remained on for the duration of the 2 s regardless
of the speed of the button press. If they indicated that the object had
been paired with a kitchen or a beach, they were then shown another
response screen for an additional full 2 s, during which they indicated
with which specific beach or kitchen scene the object had been paired
with (for example, if they chose “beach” they were offered the fol-
lowing response options: Beach A/Beach B/don’t know). Piloting had
revealed that some participants tended to over-rely on the “don’t
know” option, so they were instructed to use this option only when
they hadnomemoryof the correct answer, in lieu of guessing (i.e., they
didn’t have to have high confidence, but they should not guess).
Objects were presented in a randomorder for each participant, and all
responses were recorded using an MRI-compatible button box. Each
trial ended with a jittered fixation period lasting 3–6 s.

Behavioral data analysis
All statistical testing was performed using RStudio version 1.2.5033
(RStudio Team, 2019; http://www.rstudio.com/)85. To examine the
influence of prior knowledge onmemory over time, congruency of the
object-scene pairs (congruent/incongruent) was scored based on each
participant’s judgments during encoding. Given that participants
viewed each object-scene pair three times during encoding, this
decision was operationalized as concordance on at least two of the
encoding trials. On average, participants judged approximately half of
the object-scene pairs at encoding as congruent and half as incon-
gruent at both the short (congruent trials: M = 40.30, SD = 1.52;
incongruent trials: M = 39.70, SD = 1.52) and long (congruent trials:
M = 40.84, SD = 1.57; incongruent trials: M = 39.05, SD = 1.61) delays.
Participants were generally consistent in their judgements of trials as
related or unrelated across encoding runs (M=81.58% of trials were
consistent, SD = 13.50%), indicating that they were not responding
randomly. Total percent correct retrieval based on congruency was
calculated as the percent of total congruent or incongruent trials
where participants identified the correct context (regardless of the
specific scene) separately for congruent and incongruent pairs at each

delay (short/long). In the examination of memory granularity, we
defined detailed memories as the percent of objects for which parti-
cipants correctly retrieved both the context (beach/kitchen) and the
specific scene (e.g., Beach A/Beach B). We defined coarsememories as
the percent of congruent and incongruent encoding judgements in
which participants correctly identified the context with which an
object had been paired with (beach/kitchen), but indicated that they
did not know the specific scene, or else chose the incorrect but visually
similar sceneduring retrieval. Differences inmemory retrieval between
conditions were tested using linear mixed effects models with a ran-
dom intercept for each participant and random slopes for each
counterbalancing condition, using the lme4 package86 (version 1.1.30;
https://cran.r-project.org/web/packages/lme4/index.html). Denomi-
nator degrees of freedom and p-values were estimated using the Sat-
terthwaite approximation as implemented using the lmerTest package
in R87 (version 3.1.3; https://cran.r-project.org/web/packages/
lmerTest/index.html), given that this method produces results with
relatively low Type I error rates and gives themost comparable results
to regular linear models88. Normality of model residuals was assessed
by inspecting histograms of the residuals andwith ShapiroWilk’s tests,
as implemented in the base stats package in R (version 4.2.1). In
keeping with the assumptions of linear mixed models, if model resi-
duals did not follow a normal distribution, the dependent variable was
transformed by taking the square root, and the model was re-run on
the normalized data. Homogeneity of variance of the model residuals
was assessed for eachmodel by visually inspecting a plot of themodel
residuals versus fitted values, and using Levene’s test for unequal
variance, as implemented in the car package in R89 (version 3.1.0;
https://cran.r-project.org/web/packages/car/index.html). If Levene’s
test indicated heteroskedasticity, we re-ran the model with a specified
variance structure using the nlme package (version 3.1.158; https://
CRAN.R-project.org/package=nlme), to allow the variance to vary
across levels of the heteroskedastic fixed effects90. Confidence inter-
vals reflect 95% confidence as determined via bootstrapping using the
confint function of the stats package in R (version 4.2.1). We reported,
plotted, and tested the raw descriptive means for each condition.

fMRI parameters
All scanning was performed using a Siemens Prisma 3T full-body MRI
scanner. Visual stimuli were projected onto a screen that was viewed
through a mirror attached to the head coil. Functional echo-planar
imaging (EPI) scanswere oriented horizontally to intersect the anterior
and posterior commissures (TR= 1.5 s TR, TE = 26ms, flip angle = 70°,
FOV = 220 × 220, 52 slices, 2.5mm×2.5mm× 3mm voxels), and were
acquired with a GRAPPA acceleration factor of 1, and a multiband
factor of 2. Phase encoding was in the anterior to posterior direction,
with interleaved acquisition in the inferior to superior direction along
the z-axis. A fieldmap scan was also collected, using a double-echo
gradient echo sequencewith the same parameters as the EPI sequence
(with the exception of the following: TR =0.88, TE1 = 4.92ms, TE2 =
7.38ms, flip angle = 60°). A T1-weighted magnetization-prepared
rapid-acquisition gradient echo (MPRAGE) sequence (1mm isotropic
voxels, 160 sagittal slices) was also collected.

Regions of interest definition
The hippocampi were anatomically defined for each participant using
FSL’s automatic subcortical segmentation protocol (FIRST). We chose
to focus on the right hippocampus given its sensitivity to visual
memory91, but we present pattern similarity data from the left hippo-
campus in Supplementary Fig. 13 for the interested reader. Each par-
ticipant’s hippocampi weremanually segmented in native space along
the long axis at the uncal notch to create anterior and posterior hip-
pocampal ROIs42. The mPFC mask was constructed from combining
areas A14m and A10m from the Brainnetome atlas92 bilaterally in MNI
space (https://atlas.brainnetome.org/). These ROIs are together
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relatively inclusive of the mPFC. We did not include some of the most
ventral mPFC ROIs of the Brainnetome atlas due to a high degree of
signal dropout in these areas in some of our participants, resulting in
noisy signal. The resulting mPFC mask was warped into each partici-
pant’s native space using FSL’s FLIRT function.

Resting state connectivity analysis
Pre- and post-encoding resting state scans were acquired during ses-
sion 1. The baseline resting state scanwas acquired at the beginning of
the scan. Given that our hypotheses pertained to quality of memory
over time, and given that Tompary and Davachi41 found that anterior
hippocampus - mPFC connectivity was associated with representation
of remote memories, we were specifically interested in changes in
connectivity frombaseline to post-encoding for stimuli thatwere to be
tested after the long delay. The placement of the post-encoding rest-
ing-state scan occurred, therefore, directly after all three encoding
runs for stimuli to be tested across the 72 h delay (there was no resting
state scan after encoding stimuli to be tested across the short delay).
Rest scans were 6min long, wherein participants were instructed to
fixate on a small black cross in the center of a gray screen and
remain awake.

Resting state scans were used to measure encoding-related
changes in functional connectivity between the mPFC and the ante-
rior hippocampus, as indexed by correlations between low frequency
fluctuations in BOLD activity of each ROI45. We chose the right anterior
hippocampus because this region has greater structural and functional
connectivity to the mPFC than the posterior hippocampus42,48–50, and
because connectivity between the anterior hippocampus and mPFC
has proven to be related to mnemonic representation and retrieval of
remote memories41,51. The resting state scans were preprocessed and
modeled as separate sessions using CONN version 18b93 (https://web.
conn-toolbox.org/), which utilized the Statistical Parametric Mapping
12 (SPM12; https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) tool-
box via MATLAB R2016b (Mathworks) for preprocessing. The first 6
volumes were removed to allow for scanner stabilization. Motion was
estimated and realignment, unwarping, and distortion correctionwere
applied to the EPI images simultaneously. Volumes contaminated by
sudden large head movements were identified using the Artifact
Detection Toolbox93 (ART), which flagged TRs with fluctuations in
global signal greater than 3 standard deviations, translational motion
greater than 1mm, and rotational motion greater than 0.05 radians.
The EPI images were co-registered to the T1-weighted anatomical scan,
andwere segmented into graymatter, whitematter, and cerebrospinal
fluid masks for each participant. We used aCompCor94 to exclude
physiological noise by regressing out the top five principal compo-
nents from the data – as identified from a principal components ana-
lysis on the unsmoothed signal from erodedwhitematter and cerebral
spinal fluid masks. The motion parameters (6 rigid body realignment
parameters and their first order temporal derivatives, plus the high
motion volumes identified by ART) were also regressed out, and the
datawere temporallyfiltered to exclude very low (<0.008Hz) andhigh
(>0.09Hz) frequency fluctuations.

Average timeseries across the unsmoothed voxels within each
native-space ROI were used to compute a Pearson’s correlation
between the ROIs of interest for each participant (mPFC- anterior
hippocampus). Correlation values were Fisher transformed, and
the resulting values from the pre-encoding scan were subtracted
from the post-encoding values for each participant. These post-
pre difference scores in pairwise connectivity for each participant
were then correlated with participants’ percent correct retrieval
scores (congruent/incongruent coarse/detailed retrieval), using a
one-tailed test for our a-priori hypothesis, and two-tailed tests for
exploratory correlations, using the base stats package in R (version
4.2.1). Confidence intervals reflect 95% confidence. Tests for dif-
ferences between correlations (Supplementary Method 4) were

conducted using William’s test for dependent correlations using
the psych package in R (version 2.2.5; https://cran.r-project.org/
web/packages/psych/index.html).

Pattern similarity estimation
All retrieval scans were preprocessed using FSL (FEAT; http://www.
fmrib.ox.ac.uk/fsl). Encoding scans were not analyzed for the present
manuscript. The first 6 volumes of the EPI images were removed to
allow for scanner stabilization. For each functional run, head move-
ment was estimated (6 rigid body motion estimates corresponding to
translations and rotations around x, y, and z-axes, which were saved as
regressors for later modeling) and the EPI was realigned to correct for
motion. Volumes with framewise displacement >0.9 were flagged, to
be used as regressors during first level modeling in order to account
for large changes in signal intensity that occur with sudden large head
movements95. To reduce spatial distortion of the EPI images, an
unwrapped phase map in rad/s was constructed from the magnitude
(skull-stripped) and phase fieldmap images, and applied to the EPI data
simultaneously with motion correction to minimize interpolation-
related image blurring. Co-registration of the EPI image to the skull-
stripped T1-weighted anatomical image was also performed during
this step using boundary-based registration (BBR). The EPI images
were smoothed with a 3mm FWHM Gaussian kernel. All analyses took
place in native space.

All preprocessed retrieval scans were modeled in each partici-
pant’s native space. We took a Least Squares Single (LSS) pattern
estimation approach96,97, wherein each trial’s activation was estimated
with a separate GLM. The first regressor in eachmodel represented the
trial of interest (specifically, the portion of the trial where the object
was on the screen and the participant was remembering the paired
associate), and five additional regressorsmodeled the remaining trials
within the same run according to trial type (coarse congruent, coarse
incongruent, detailed congruent, detailed incongruent, forgotten).
Therewere additional regressors for each responsewindow. Finally, in
order to correct for head motion, there were 6 regressors for rigid
bodymotion parameters (translations and rotations around x, y, and z-
axes), as well as a regressor for each TR that was flagged as having
greater framewise displacement than 0.9 during preprocessing95.
Regressors were convolved with a double gamma HRF. A map of t-
values for thefirst parameter estimatewas retained for eachmodel and
represents the activation for each trial during retrieval. For each trial,
the spatial pattern of activity across each ROI was extracted into a
vector and z-scored. Similarity between different vectors was calcu-
lated with Pearson correlations, which were Fisher-transformed prior
to statistical testing. To avoid inflated correlations due to temporal
proximity within each run, correlations were limited to trials occurring
in different runs97.

Pattern similarity correlations for congruency dimension
At each delay (short/long) correlations were computed on mPFC pat-
terns between objects that shared the same context (within kitchen or
beach; within-context correlations), as well as between patterns for
objects that had been paired with opposing contexts (kitchen vs
beach; across-context correlations), separately for congruent and
incongruent pairs. Specifically, similarity was computed for every
retrieval trial in which the context was correctly retrieved (beach/
kitchen) regardless of whether the specific scene was correctly iden-
tified (Beach A/Beach B or Kitchen A/Kitchen B). We included both
coarse and detailed trials in order to increase statistical power,
because presumably, coarse information should be retrieved for both
trial types (e.g., general features of beaches). We note here that this
analysis therefore shouldcapture the representationof coarse features
ofmemory (regardless ofmemory quality), which does not necessarily
correspond to the phenomenological experience of coarse quality of
memory. In the congruent condition, the retrieval vector of each
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congruent trial (i.e., trials where the object had been congruentwith its
paired context) was correlated with the retrieval vectors of all other
objects that shared the same context (and were also congruent with
that context), as well as with the retrieval vectors of all other objects
that were paired with the opposing context (and were congruent with
that context). Similarly, in the incongruent condition, the retrieval
vector of each incongruent trial (trials where the object had been
incongruent with its paired context) was correlated with the retrieval
vectorsof all other objects that shared the samecontext (andwerealso
incongruent with that context), as well as with the retrieval vectors of
all objects that had been paired with the opposing context (and were
also incongruent with that context). We additionally confirmed that
differences in univariate activation between congruent and incon-
gruent pairs over time were not driving pattern similarity results in the
mPFC, as described in Supplementary Method 17.

Pattern similarity correlations for scene granularity dimension
At each delay and for each ROI (anterior hippocampus/posterior hip-
pocampus), we computed a series of correlations between trials that
had been remembered in detail, depending on congruency and the
specific scene the object had been paired with. Retrieval similarity was
computed for every retrieval trial in which both the context and the
specific scene that had been paired with the object was correctly
retrieved (i.e., detailed memories). For congruent object-scene pairs,
each trial’s retrieval vectorwas correlatedwith 1) the retrieval vector of
all other objects in the congruent condition that had been paired with
the same scene, (same scene correlations), 2) the retrieval vector of all
other objects in the congruent condition that hadbeen pairedwith the
visually similar scene of the same context (similar scene correlations),
and 3) the retrieval vector of all other objects in the congruent con-
dition that had been paired with scenes from the opposite context
(other-context scene correlations). For the incongruent trials, we ran
the same correlations except all of the correlations were between
incongruent object-scene pairs (again, depending on whether the
objects were paired with the same scene, visually similar scene, or
other-context scenes). We additionally confirmed that differences in
univariate activation between detailed congruent and incongruent
pairs over time were not driving pattern similarity results in the hip-
pocampus, as described in Supplementary Method 17.

Statistical testing of pattern similarity
Statistical testing was performed using RStudio version 1.2.5033
(RStudio Team 2019; http://www.rstudio.com/). All correlations were
Fisher transformed before being submitted to statistical tests. Indivi-
dual pairwise correlations were plotted and inspected across condi-
tions for eachROI to assess for outliers that couldbedriving significant
effects (Supplementary Method 18, Supplementary Fig. 15). Trial-level
similarity was estimated using linear mixed effects models with a
random intercept for each participant and random slopes for each
counterbalancing condition, using the lme4 package86 (version 1.1.30;
https://cran.r-project.org/web/packages/lme4/index.html). In keeping
with the assumptions of linear mixed models, normality of each
model’s residuals was confirmed by inspecting a histogram of the
model residuals and with Shapiro-Wilks tests of normality, as imple-
mented in the base stats package in R (version 4.2.1). Homogeneity of
variance of the model residuals was assessed for each omnibus model
by visually inspecting a plot of themodel residuals versus fitted values,
andusing Levene’s test forunequal variance, as implemented in the car
package in R89 (version 3.1.0; https://cran.r-project.org/web/packages/
car/index.html). If Levene’s test indicated heteroskedasticity, we re-ran
the model with a specified variance structure using the varIdent
function and the weight argument using the nlme package (version
3.1.158; https://CRAN.R-project.org/package=nlme), to allow the var-
iance to vary across levels of the heteroskedastic fixed effects90. As
models containing unequal variance across three-way interactions

were too complex for the models to resolve with the added variance
structure, these models were broken down into simpler models, test-
ing 2-way interactions of interest such that the unequal variance could
be appropriately modeled. Denominator degrees of freedom and
p-values were estimated using the Satterthwaite approximation as
implemented using the lmerTest package in R87 (version 3.1.3, https://
cran.r-project.org/web/packages/lmerTest/index.html), given that this
method produces results with relatively low Type I error rates and
gives the most comparable results to regular linear models88. We note
here that the denominator degrees of freedom for hierarchicalmodels
are based on the number of level 1 observations, which in our pattern
similarity models corresponds to the number of pairwise trial-level
correlations beingmodeled across all conditions. Confidence intervals
reflect 95% confidence as determined via bootstrapping using the
confint function of the base stats package in R (version 4.2.1). Due to
differing amount of data in each condition, we reported and plotted
the estimated marginal means (also known as adjusted means,
extracted using the emmeans package inR, version 1.7.5: https://cran.r-
project.org/web/packages/emmeans/index.html). Estimated marginal
means are calculated by giving equal weight to each cell in the model,
and are, therefore, unbiased by imbalances in the data; in other words,
they estimate what themarginal means would be had there been equal
trial numbers in each condition. Main effects and interactions were
interrogated using pairwise t-tests on the estimated means from each
omnibus model, using the emmeans package (version 1.7.5). Within-
subject error bars were computed for plotting purposes using the
Morey (2008) method98 using the Rmisc package in R (version 1.5.1;
https://cran.r-project.org/web/packages/Rmisc/index.html).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw neuroimaging data are protected and are not available due to
data privacy laws. The processed behavioral data, connectivity data,
and pattern similarity data are freely available on Zenodo (https://doi.
org/10.5281/zenodo.6980915)99. Source data for all figures are pro-
vided with this paper. Source data are provided with this paper.

Code availability
Code to plot Figs. 2–5 and to reproduce all statistical models in the
manuscript has been deposited on Zenodo and can be found at:
(https://doi.org/10.5281/zenodo.6980915)99.
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