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Abstract

Melanoma is an aggressive cancer that metastasizes rapidly, and is refractory to conventional 

chemotherapies. Identifying miRNAs that are responsible for this pathogenesis is therefore a 

promising means of developing new therapies. We identified miR-26a through microarray and 

qRT-PCR experiments as an miRNA that is strongly down-regulated in melanoma cell lines as 

compared to primary melanocytes. Treatment of cell lines with miR-26a mimic caused significant 

and rapid cell death compared to a negative control in most melanoma cell lines tested. In 

surveying targets of miR-26a, we found that protein levels of SMAD1 and BAG-4/SODD were 

strongly decreased in sensitive cells treated with miR-26a mimic compared to the control. The 

luciferase reporter assays further demonstrated that miR-26a can repress gene expression through 

the binding site in the 3′UTR of SODD. Knockdown of these proteins with siRNA showed that 

SODD plays an important role in protecting melanoma cells from apoptosis in most cell lines 

sensitive to miR-26a, while SMAD1 may play a minor role. Furthermore, transfecting cells with a 

miR-26a inhibitor increased SODD expression. Our findings indicate that miR-26a replacement is 

a potential therapeutic strategy for metastatic melanoma, and that SODD in particular is a 

potentially useful therapeutic target.
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INTRODUCTION

Metastatic melanoma is a devastating disease that is notoriously resistant to traditional 

chemotherapies. Recent advances in the use of BRAF inhibitors have marked the first 

serious progress in treating malignant melanoma in nearly 30 years (Buzaid, 2004; Cummins 

et al., 2006; Gogas et al., 2007). Yet in spite of the success of these new drugs, they are only 

appropriate in the roughly one-half of patients with melanomas harboring BRAF V600E 

mutations, and relapse and resistance are inevitable (Ades and Metzger-Filho, 2012; 

Flaherty, 2010). Thus there is a still a pressing need for therapies using novel approaches.

Dysregulation of important cell proliferation pathways and tumor suppressors is a necessary 

step in oncogenesis. Recently, microRNAs (miRNA), short RNAs that target expressed 

mRNA for degradation, have gained much attention for the role they play in affecting 

protein expression in cancer tissues (Esteller, 2011; Kasinski and Slack, 2011; Sandhu and 

Garzon, 2011). Release 18 of miRBase (www.mirbase.org) has nearly 1900 unique mature 

miRNAs annotated for the human genome (Kozomara and Griffiths-Jones, 2011), and 60% 

of all genes may be regulated by miRNAs (Friedman et al., 2009). miRNAs thus represent 

an important regulatory layer that can affect gene expression above and beyond other 

cellular mechanisms. The small size and natural occurrence of miRNAs have made them 

attractive for use in therapy. New therapies are currently being developed based primarily on 

miRNA replacement, since miRNAs are most commonly down-regulated in cancers and are 

thought to act as tumor suppressors (Kumar et al., 2007). Additionally, miRNA studies can 

be useful in identifying potential therapeutic targets that may act upstream or downstream of 

miRNAs.

In the present study, we identified miR-26a in a microarray screen and subsequent qRT-PCR 

validation as being strongly down-regulated in melanoma cells compared to primary 

melanocytes. In surveying possible targets of miR-26a, we found two proteins, Mothers 

Against Decapentaplegic homolog 1 (SMAD1) and BAG family molecular chaperone 

regulator 4 (BAG4, also known as Silencer of Death Domains (SODD), hereafter referred to 

only as SODD) that were strongly down-regulated upon miR-26a treatment. SODD, and to a 

lesser extent SMAD1, appear to be necessary to prevent apoptosis in multiple melanoma 

lines. We discuss the potential for melanoma therapy through miR-26a replacement or the 

direct targeting of these proteins.

RESULTS

Microarray analysis and qRT-PCR identified miR-26a as strongly downregulated in 
melanomas compared to melanocytes

We performed microarray analysis to identify miRNAs that are significantly changed in 

human melanoma cell lines compared to melanocytes. We found a number of miRNAs that 

were either down or upregulated (Table 1). We then performed qRT-PCR of samples from 

numerous melanoma cell lines and two different primary melanocyte cultures at different 

passages under different culture conditions (Fig.1 and data not shown). Results indicated 

that miR-26a was strongly downregulated in all of the melanoma cell lines tested compared 

to the melanocytes. While levels of miR-26a varied considerably among both melanomas 
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and melanocytes, levels were strikingly lower in melanomas, from 4- to as much as 50-fold 

(average of 17.7-fold) lower than in melanocytes (Fig. 1). These results clearly demonstrate 

that miR-26a is strongly down-regulated in melanoma cells, validating our microarray 

results. Since miR-26a showed the strongest and most consistent difference among the 

miRNAs that we tested (Fig. 1 and data not shown), in the present study, we focused on 

miR-26a.

Transfection with miR-26a mimic decreases viability and increases apoptosis in multiple 
melanoma cell lines

To test whether low levels of miR-26a facilitate melanoma cell viability, we transfected 

multiple melanoma cell lines with miR-26a mimic. Viability assays as shown in Fig. 2a 

demonstrate massive reduction in viability starting at 72 h and accelerating by 96 h after 

transfection with miR-26a mimic compared to transfection with negative control siRNA in 

most cell lines tested, but not in normal primary melanocytes HEMNLP2. Statistical 

analyses indicated that at 72 h, the viabilities of miR-26a-transfected cells from RPMI7951, 

WM278, WM852c, 1205Lu were significantly different from those of control-transfected 

cells (p < 0.05). At later time points, in addition to the same melanoma cell lines above, the 

viability of miR-26a-transfected HT-144 was also significantly different from the controls. 

On the other hand, melanoma cell lines A375, SK-MEL-28, and primary melanocytes 

HEMNLP2 were resistant to miR-26a.

Annexin V assays shown in Fig. 2b corroborate the viability assays and demonstrate that 

apoptosis is a major mechanism of reduced viability in some cell lines. Statistical analyses 

indicated that miR-26a significantly increased the percentage of total Annexin V+ cells in 

HT-144, WM852c, WM278 and 1205Lu (Fig. 2b). The appearance of the cells (Fig. 2c) is 

consistent with the viability and Annexin V assays, showing reduced proliferation and cell 

death. Cell lines A375 and SK-MEL-28 were resistant to the effects of the miR-26a mimic, 

as were primary melanocytes HEMNLP2 (Fig. 2c). Furthermore, immunoblots of lysates 

from cells transfected with miR-26a mimic showed that miR-26a also increased PARP 

cleavage in miR-26a-sensitive cells compared to those transfected with negative control 

siRNA (Fig. 3a), further demonstrating that miR-26a induces apoptosis in these cells.

To test whether variations in transfection efficiency could account for the differences in 

sensitivity to miR-26a mimic, we used an identical protocol to transfect multiple melanoma 

cell lines and melanocytes with Allstars Negative Control siRNA conjugated with a 

fluorophore. Fluorscence microscopy indicated transfection efficiencies near 100%, even in 

cells resistant to miR-26a mimic (Supplementary Fig. S1). Additionally, we measured 

miR-26a in both sensitive and resistant cell lines transfected with miR-26a mimic and 

negative control by qRT-PCR. miR-26a levels were on the order of 103-fold higher in cells 

transfected with miR-26a compared to those transfected with negative control at 72 h post-

transfection (928- and 3866-fold higher in HT-144 and SK-MEL-28 cells, respectively). We 

thus concluded that differences in transfection efficiency or miRNA stability were not 

responsible for differences in sensitivity to miR-26a.
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SMAD1 and SODD protein levels are decreased in miR-26a mimic-treated cells, inhibition 
of miR-26a increases SODD levels, and luciferase reporter assays confirm that SODD is a 
target of miR-26a

Melanoma cells treated with miR-26a mimic and negative control siRNA were collected 

after 72 h and lysed for immunoblotting. We tested these lysates for a variety of possible 

targets to miR-26a, including EZH2, cyclins D2 and E2, metadherin, GSK-3β, SMAD1, and 

SODD. Each of these proteins, with the exception of SODD, has been previously identified 

as a target of miR-26a (Kota et al., 2009; Luzi et al., 2008; Mohamed et al., 2010; Sander et 

al., 2008; Zhang et al., 2011). SODD was identified in the TargetScan database as having a 

potential 3′UTR binding site for miR-26a close to the stop codon, with 99 percentile context 

score, in addition to two other binding sites, rendering it a strong candidate target. We found 

sharp reductions in the levels of SMAD1 and SODD in most sensitive cell lines, but not in 

the other putative targets (Fig. 3a and data not shown). Resistant cell lines A375 and SK-

MEL-28 showed little or no reductions in these proteins. All sensitive cell lines showed 

reduction in at least one of these two proteins of 50% or more, although 1205Lu showed no 

noticeable reduction in SODD after miR-26a treatment.

To further test the role of miR-26a in targeting SODD, a putative and previously unreported 

target, we transfected primary melanocytes HEMNLP2, and two melanoma cell lines that are 

sensitive to miR-26a, HT-144 and WM852c, with an miRNA inhibitor specific to miR-26a. 

Lysates of these cells were compared to those transfected with a negative control inhibitor 

by immunoblot. We found noticeably increased levels of SODD in cells treated with the 

miR-26a inhibitor at 72 h (Fig. 3b), indicating that endogenous miR-26a has a repressive 

effect on SODD.

To further confirm the role of miR-26a in regulating SODD, we constructed a dual 

luciferase reporter system with 479 base pairs (bp) of the 568 bp SODD 3′UTR from the 

cDNA of a melanoma cell line containing the miR-26a binding site downstream of the 

Renilla luciferase gene (Fig. 3c). We then cotransfected HEK293 cells with both miRNA 

mimics (miR-26a or negative control) and reporter constructs (two different clones of the 

reporter plasmids containing SODD 3′UTR or empty vector without any 3′UTR). The dual 

luciferase assays showed that at 48 h post-transfection, miR-26a significantly decreased 

relative luciferase activity compared to the negative control for both clones with the 

construct containing the SODD 3′UTR (0.74 and 0.68, p = 0.002 and 0.0013, respectively) 

(Fig. 3c). In contrast, there was no significant difference in relative luciferase activity for the 

empty vector between miR-26a and control cotransfections (1.02, p = 0.82). In addition, we 

also constructed reporter plasmids containing a shorter SODD 3′UTR with the same 

miR-26a binding site, wild-type or mutated (Supplementary Fig. S2). The luciferase assays 

showed that 48 h post-transfection, miR-26a significantly decreased the relative Renilla 

luciferase activity when co-transfected with the construct containing the wild-type binding 

site instead of the mutant binding site (0.52, p < 0.0001) (Supplementary Fig. S2). In 

contrast, mutations in the miR-26a binding site of the 3′UTR in the reporter plasmid 

dramatically decreased relative miR-26a repression of luciferase activity (0.88 vs. 0.52, p = 

0.0014) (Supplementary Fig. S2)). These results demonstrated that miR-26a can repress 

gene expression through the miR-26a binding site in the SODD 3′UTR.
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Knockdown of SODD, and to a lesser extent SMAD1, induces cell death in melanoma cell 
lines sensitive to miR-26a

To test whether miR-26a targeting of SMAD1 and/or SODD was responsible for the cell 

death observed upon treatment with miR-26a mimic, we knocked-down these transcripts in 

multiple melanoma cell lines using siRNA. Cell lines were treated with up to 25 nM of total 

siRNA against SMAD1, SODD, or both together for 120 h and subjected to MTS assays. 

Cell lines WM278, HT-144, and WM852c all showed significant reduction in viability after 

treatment with siSODD and for the combination, and HT-144 and WM278 showed a slight 

reduction in viability with siSMAD1 treatment compared to negative control siRNA (Fig. 

4a; for concentration-dependent results, see Supplementary Fig. S3). Cell lines 1205Lu and 

SK-MEL-28 showed no reduction in viability, while A375 showed only a slight reduction in 

viability with siSODD treatment compared to the control (Fig. 4a). Similar results were 

found for the other two siRNAs (not shown). Annexin V assays after 120 h siRNA 

treatments for cell lines HT-144, WM852c, and WM278 demonstrated a significant 

apoptotic population ranging from 17 to 26% upon siSODD treatment, and minor apoptosis 

(~2–8%) for siSMAD1 treatment (Fig. 4b) above the control. 1205Lu showed only slight 

apoptosis (~5%) with siSODD treatment. Cell lines SK-MEL-28 and A375 were essentially 

unaffected by siRNA treatments according to Annexin V assays. The appearance of the cells 

(Fig. 4c) also indicated cell death for lines sensitive to siSODD and was similar to that with 

miR-26a treatment. Western blotting showed strong knockdown of the respective proteins in 

all cell lines treated with siSMAD1 and siSODD, except for SK-MEL-28 which had only 

slight knockdown (Fig. 4d). Results from both MTS and Annexin V assays upon siSODD 

treatment are broadly consistent with results for miR-26a treatments, although there is the 

major exception of cell line 1205Lu. Treatment with siSMAD was likewise consistent with 

miR-26a results, though its effects were very small.

DISCUSSION

We identified miR-26a in a microarray screen and subsequent qRT-PCR validation as being 

strongly down-regulated in melanoma cells compared to primary melanocytes. Prior studies 

of miRNAs in melanoma have identified a number of miRNAs that are involved in 

melanoma progression (Bell and Levy, 2011; Bonazzi et al., 2012; Howell et al., 2010; 

Mueller and Bosserhoff, 2010). These include two miRNAs that our analysis identified as 

up-regulated, miR-27b and miR-222. However, to the best of our knowledge, none of the 

miRNAs that we identified as down-regulated have been previously implicated in 

melanoma, although several, in addition to miR-26a, such as miR-let7e, miR-494, and 

miR-30a, are known to be down-regulated in other cancers (Kumarswamy et al., 2012; 

Mitra et al., 2011; Olaru et al., 2011).

Down-regulation or polymorphisms of miR-26a have previously been implicated in a variety 

of cancers, including nasopharyngeal carcinoma (Lu et al., 2011), breast cancer (Zhang et 

al., 2011), hepatocellular carcinoma (Kota et al., 2009), oral cancer (Clague et al., 2010), 

and colon cancer (Boni et al., 2011). Kota and coworkers (Kota et al., 2009) have 

successfully demonstrated miR-26a replacement therapy in a mouse model of hepatocellular 
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carcinoma. Additionally, down-regulation of miR-26a appears to play roles in other diseases 

(Leeper et al., 2011).

We found that treatment of melanoma cell lines with a miR-26a mimic induced substantial 

cell death in multiple melanoma lines, but not in primary melanocytes, indicating that 

reduction of miR-26a is necessary for the survival of most melanomas. However, we found 

melanoma cell lines resistant to the mimic, including A375 and SK-MEL-28, showing that 

in at least some melanomas, compensatory mechanisms must exist and/or there is 

incomplete degradation of miR-26a targets. Experiments with fluorescently labeled siRNA 

demonstrated that transfection efficiency with our protocol was extremely high, and qRT-

PCR experiments showed high miR-26a levels in cells transfected with miR-26a mimic, 

including resistant cells, so it is highly unlikely that resistance was the result of insufficient 

miR-26a exposure. Among the sensitive cell lines was RPMI-7951, which is a p53 null line 

(Reuland et al., 2011), indicating that the mechanism of cell death is not p53-dependent.

We searched for putative targets of miR-26a by first testing targets previously reported in 

other studies. EZH2, for example, is commonly cited as an important target of miR-26a 

(Alajez et al., 2010; Sander et al., 2008; Wong and Tellam, 2008; Zhang et al., 2011). While 

we found some reduction of EZH2 in some miR-26a-treated cells, the reduction was low and 

inconsistent (Fig. 3a). Additionally, we treated cell lines with the histone methylation 

inhibitor DZNep, which depletes EZH2 (Tan et al., 2007), and found that it had little effect 

even at high doses (Supplementary Fig. S4), with the paradoxical exception of cell line 

A375, which while sensitive to DZNep is resistant to miR-26a treatment. We therefore 

concluded that miR-26a was not killing melanoma cells through EZH2 knockdown.

Other previously validated targets of miR-26a include GSK-β (Mohamed et al., 2010), 

cyclins D2 and E2 (Kota et al., 2009; Lu et al., 2011; Zhu et al., 2011), metadherin (Zhang 

et al., 2011), and SMAD1 (Luzi et al., 2008; Nigam et al., 2010). Of these, only SMAD1, a 

transcription factor involved in bone morphogenic protein (BMP) signaling, showed clear 

and consistent repression by miR-26a in the melanoma cell lines we tested (Fig. 3a and data 

not shown). We also queried the TargetScan database to identify other potential targets of 

miR-26a. A binding site in the 3′UTR of SODD was predicted with a 99 percentile context 

score, and is also close to the stop codon (position 130–137). In addition, SODD encodes a 

member of the BAG1-family, a potential anti-apoptotic protein (Antoku et al., 2001). As 

with SMAD1, we found that miR-26a caused strong and consistent down-regulation of 

SODD protein. We also found that inhibition of endogenous miR-26a in normal 

melanocytes and two melanoma cell lines leads to increased SODD levels (Fig. 3b), and we 

further found that miR-26a can repress gene expression through the native SODD 3′UTR 

using luciferase reporter assays (Fig. 3c, Supplementary Fig. S3). Taken together, the 

evidence indicates that SODD is a target of miR-26a in melanoma cells.

To test the possible involvement of SMAD1 and/or SODD in melanoma cell death induced 

by miR-26a replacement, we specifically knocked-down these two proteins with siRNA. 

The results indicated that SODD expression at least is necessary for preventing cell death in 

multiple melanoma lines. We found only minor effects by knocking-down SMAD1 alone, 

although the possibility remains that this protein plays crucial roles under different contexts. 
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Interestingly, one cell line that was highly sensitive to miR-26a mimic, 1205Lu, was 

completely insensitive to siSODD and siSMAD1 treatments (compare Figs. 2 and 4). This 

was likely not due to insufficient knock-down (Fig. 4d), but rather implies that there are 

additional targets of miR-26a that account for the sensitivity of 1205Lu to the mimic. It is 

well known that miRNAs have many targets and that these vary according to cell type in a 

context-dependent manner (Didiano and Hobert, 2006). It is not clear to us why this cell line 

is highly sensitive to the miRNA mimic yet not affected by knockdown of SODD or 

SMAD1. We hypothesize that one or more targets other than SODD or SMAD1 mediate the 

effects of miR-26a in the 1205Lu cell line. The identification of these additional targets, and 

the potentially complex mechanism of their interplay, will require further study. Likewise, 

the resistance of two melanoma cell lines to both miR-26a and the siRNAs against SMAD1 

and SODD would seem to indicate that these proteins are essential only in a subset of 

melanoma cells. Significant knock-down of both proteins was achieved in siRNA-treated 

A375 cells (Fig. 4d), and yet this had no effect on viability. Taken together, it appears that 

while SODD is a potentially critical target of miR-26a in many melanomas, its knockdown 

by miR-26a treatment can only cause cell death in a subset of melanoma cell lines.

To the best of our knowledge, SODD has not previously reported as a target of miR-26a and 

as an anti-apoptotic protein in melanoma. SODD is known as an inhibitor of the death 

domains of the TNF receptor 1 (TNF-R1), preventing trimerization of the receptor subunits 

in the absence of specific signaling (Jiang et al., 1999; Miki and Eddy, 2002). Upon TNFa 

binding, the subunits of the receptor trimerize and SODD is quickly released. Activated TNF 

receptors can then lead to either apoptosis or NF B activation. Additionally, SODD is known 

to interact with Hsp70, death receptor 3, and the anti-apoptotic protein Bcl-2 (Antoku et al., 

2001; Brockmann et al., 2004; Jiang et al., 1999). SODD is overexpressed in pancreatic 

cancer and leads to resistance of TNFα-induced cell death (Ozawa et al., 2000), and 

increased SODD is correlated with the severity of acute lymphoblastic leukaemia in 

children, and the down-regulation of SODD and NFκB induces apoptosis (Tao et al., 2007). 

Since the balance between pro- and anti-apoptotic signaling in TNF-R1 activation is critical 

in melanoma (Ivanov et al., 2003), it is likely that SODD acts to tip the balance away from 

cell death and toward NF B activation, which is constitutively active in melanoma and 

important in its progression (Madonna et al., 2012; Poser and Bosserhoff, 2004). 

Additionally, SODD could play a role in the anti-apoptotic functions of Bcl-2 family 

members, as we and others have found that these proteins are critical mediators of cell 

survival in melanoma (Reuland et al., 2011; Reuland et al., 2012). Further study is needed to 

test these and other hypotheses, but regardless, our data indicate that SODD is essential for 

cell survival of a subgroup of melanoma cells without any other triggers, suggesting that 

SODD is a potential target for treatment of certain types of melanoma.

In conclusion, we have found that miR-26a is strongly down-regulated in melanoma cells 

compared to normal melanocytes, and that replacement of miR-26a induces cell death in 

multiple cell lines. We have identified the anti-apoptotic protein SODD as a target of 

miR-26a, and found that specific knockdown of SODD produces cell death in some, but not 

all, cell lines sensitive to miR-26a. While the mechanistic details of its function in 

melanoma require more study, SODD is a potential target for melanoma therapy. In 
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addition, our data imply that miR-26a must act on additional targets, and that miR-26a 

replacement therapy is a promising strategy for treating melanoma.

MATERIALS AND METHODS

miRNA microarrays

MicroRNAs from melanoma cell lines SK-MEL-28 and HT-144 were compared to those 

from two normal melanocyte cultures. Each sample was run in triplicate for the experiment. 

Total RNAs were extracted using an miRNeasy kit (Qiagen, Valencia, CA), and then 

enriched for small RNAs using an RNeasy minelute kit (Qiagen) before being sent to the 

University of Colorado Cancer Center Microarray Core for miRNA microarray analysis. 

RNA samples were analyzed on a Bioanalyzer Small RNA chip for quality control, then 

labeled and run on CombiMatrix human miRNA arrays (CombiMatrix Diagnostics, Irvine, 

CA) by the Core, as directed by the manufacturer. For data normalization, the CombiMatrix 

recommended method was used: briefly, background signaling was estimated as the lowest 

5% of all signaling, including perfect matches and the mismatch controls, and data were 

then normalized from the arrays using global scale factors to bring all backgrounds to the 

same value. For filtering, we removed any miRNA with no normalized signals >200, or 

miRNAs with an intensity less than 1000 in all samples, and only kept miRNAs with 

signaling on perfect matches (PM) that exceeded background by at least 2x, and PM values 

that exceeded 1.2x (the intensity of the double mismatch control). We then used Rank 

Product statistical analysis as reported by Breitling et al. (Breitling et al., 2004) to identify 

up- or down-regulated miRNAs in melanoma compared to normal melanocytes. The Rank 

Product analysis is a simple non-parametric statistical method based on ranks of fold 

changes to detect differentially expressed genes in replicated array experiments (Breitling et 

al., 2004). The rank products were calculated using the same method and procedure with 

Excel as described by Breitling et al. (Breitling et al., 2004).

Plasmid constructs, transfections, and luciferase reporter assays

TargetScan was used to identify potential miR-26a binding sites in the SODD 3′UTR (called 

BAG4 in TargetScan). Total RNA from melanoma cell line WM852c was used to generate 

cDNAs and to clone the 3′UTR of SODD (NM_001204878). The SODD 3′UTR is predicted 

to be a 568 bp fragment (see http://www.origene.com/MicroRNA/3-UTR-Clone/

SC207066.aspx) or a ~2.8 kb fragment (in TargetScan). We attempted to amplify both the 

568 bp and ~2.8 kb 3′UTR from cDNAs of multiple melanoma cells; however, we could 

only amplify the 568 bp 3′UTR. It is possible that melanoma cells mainly have the SODD 

transcript with the 568 bp 3′UTR. Thus we cloned 479 bp of this 568 bp 3′UTR into a 

pSiCheck2 reporter plasmid at Xho1-Not1 sites for luciferase activity assays, using the 

following PCR rimers: 5′-ACTGCTCTGCTCGAGAGCCTGTTACTAACTTGAC-3′ and 

5′AATTAGCGGCCGCCTGCAAATAACAAAACAAAACAGAAGTCC. The constructed 

psiCHECK2 plasmids were verified by DNA sequencing (Colorado Cancer Center DNA 

Sequencing Core). This cloned SODD 3′UTR, from cDNAs of melanoma cells, contains one 

predicted binding site for miR-26a.
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HEK293 cells were cotransfected with luciferase reporter plasmids (psiCHECK2 vector 

with or without indicated SODD 3′UTR, 0.25 μg) and mimics of miR-26a or Allstars 

Negative Control siRNA (25 nM) in 24-well plates using the Lipofectamine 2000 reagent as 

directed by the supplier (Invitrogen, Carlsbad, CA). After 48 h, the cells were lysed and 

assayed for luciferase activity using the Dual Luciferase Reporter Assay kit (Promega) 

according to the manufacturer’s protocol on a microplate reader (BioTek). The psiCHECK2 

reporter construct contains both firefly and Renilla luciferase genes under the control of 

constitutive promoters, and firefly luciferase activity was used as an internal control. The 

relative Renilla luciferase activity was calculated as the ratio of Renilla to firefly luciferase 

activity for each sample, and the relative Renilla luciferase activities were normalized to 1.0 

for negative control cotransfected cells.

Statistics

All comparisons were evaluated by two-tailed unpaired t-tests using the program GraphPad 

Prism (GraphPad Software Inc., La Jolla, CA), with P values below 0.05 considered 

significant.

Other methods

Further information about other materials and methods used in this work are provided in the 

Supplementary material.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Scatter plot of qRT-PCR results for miR-26a expression showing melanocytes vs. melanoma 

cell lines. Melanocytes include two different primary melanocyte lines (HEMNLP and 

HEMNLP2) at different passages and with different culture conditions (with or without 

FBS). Melanomas include 10 different established cell lines under standard culture 

conditions (see Materials and Methods for a list of cell lines). All results were normalized to 

RNU1A as an internal standard, and denote relative expression compared to one of the 

melanocyte lines set at 1.0. Melanoma lines had an average of 17.7-fold less miR-26a 

compared to melanocytes, p < 0.0001.
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Figure 2. 
Treatment with miR-26a mimic induces cell death in several melanoma cell lines. (a) Time-

course MTS assays for cells transfected with 50 nM miR-26a mimic. Results for each cell 

line at each time point represent the viability of cells transfected with miR-26a mimic as a 

percentage of those transfected with negative control. Error bars represent SEM of at least 3 

replicates. See Results section for statistical significance. (b) Annexin V assays of cells 

transfected with 50 nM miR-26a or negative control for 96 h. * p-values < 0.05 for 

comparisons between miR-26a mimic and negative control cells. Error bars represent SEM 

of at least 2 independent experiments. (c) Visual appearance of cells after 96 h of treatment. 

Scale bar in top left image = 0.5 mm.
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Figure 3. 
SODD is a target of miR-26a. (a) Immunoblot. Cells were transfected with miR-26a mimic 

(26a) or Negative Control (c.) for 72 h. Quantifications are the ratios of the proteins to 

tubulin with controls set to 1.0. (b) Immunoblot. Cells were transfected with 50 nM miR-26a 

inhibitor (26aI) or miScript Inhibitor Negative Control (c.). (c) Dual-luciferase reporter 

assay. Luciferase reporter vectors containing SODD 3′UTR (Clones 1 and 2) or empty 

vectors were used. Relative luciferase activity was significantly decreased with miR-26a 

cotransfection (0.74 and 0.68, p = 0.002 and 0.0013, respectively) compared to control 

mimic for the constructs containing the SODD 3′UTR, but not for the empty vector (1.02, p 

= 0.82). Error bars represent SD of 3 replicates. *, p-value < 0.05.
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Figure 4. 
The effects of knocking-down SODD. (a) MTS assays after 120 h treatment with 25 nM 

total siRNA normalized to the control. Shown are results using siSMAD1-a and siSODD-a; 

similar results were found for the other two siRNAs (not shown). Error bars represent SEM 

of 3 replicates. (b) Annexin V assay results after 120 h treatment with 25 nM siRNA 

normalized to the control. Y-axis represents the increase in the percentage of total Annexin 

V positive cells compared to negative control transfected cells. Error bars represent SEM of 

at least 2 independent experiments. (c) Visual appearance of cells from (a). Scale bar = 0.5 

mm. (d) Immunoblots of siRNA-treated-cells from (b). Lane 1, control; lanes 2/4, siSMAD1 

(-a and -b); lanes 3/5, siSODD (-a and -b).
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Table 1

MiRNAs identified as down- or up-regulated in melanomas compared to normal melanocytes by Rank Product 

Statistical Analysis.

Down-regulated in melanoma Fold expression (melanoma/melanocyte)

hsa|let-7e 0.5

hsa|miR-1234 0.2

hsa|miR-125a-5p 0.3

hsa|miR-130a 0.5

hsa|miR-20b 0.7

hsa|miR-26a 0.6

hsa|miR-30a 0.6

hsa|miR-361-5p 0.6

hsa|miR-363 0.1

hsa|miR-494 0.4

hsa|miR-508-3p 0.5

hsa|miR-509-3-5p 0.3

hsa|miR-513a-5p 0.2

hsa|miR-923 0.5

Up-regulated in melanoma Fold expression (melanoma/melanocyte)

hsa|miR-100 2.0

hsa|miR-222 2.7

hsa|miR-23b 2.1

hsa|miR-27b 2.4

hsa|miR-31 2.5

hsa|miR-99a 2.4

J Invest Dermatol. Author manuscript; available in PMC 2014 January 22.


