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The objective of this study is to develop an ensemble classifier with Merit Merge feature selection that will enhance efficiency of
classification in amultivariate multiclass medical data for effective disease diagnostics.The large volumes of features extracted from
brain Magnetic Resonance Images and neuropsychological tests for diagnosis lead to more complexity in classification procedures.
A higher level of objectivity than what readers have is needed to produce reliable dementia diagnostic techniques. Ensemble
approach which is trained with features selected from multiple biomarkers facilitated accurate classification when compared with
conventional classification techniques. Ensemble approach for feature selection is experimented with classifiers like Näıve Bayes,
Random forest, Support Vector Machine, and C4.5. Feature search is done with Particle Swarm Optimisation to retrieve the subset
of features for further selection with the ensemble classifier. Features selected by the proposed C4.5 ensemble classifier with Particle
SwarmOptimisation search, coupled withMerit Merge technique (CPEMM), outperformed bagging feature selection of SVM, NB,
andRandom forest classifiers.TheproposedCPEMMfeature selection found the best subset of features that efficiently discriminated
normal individuals and patients affected with Mild Cognitive Impairment and Alzheimer’s Dementia with 98.7% accuracy.

1. Introduction

Dementia is a neuropsychiatric disease widespread in many
countries that affects people in older age [1]. Early diagnosis
helps in palliative care, mitigation, and prevention of disease
progression. Accurate diagnosis of crucial factors that cause
the disease is vital for timely treatment [2]. Several high-
dimensional pattern classification techniques have been built
upon methods of computational anatomy, functional neu-
roimaging [3], and neuropsychological analysis demonstrat-
ing that classifications of individuals, in contrast to group
analysis, can be achieved with relatively high classification
accuracy. Recently there has been a growing interest for high-
dimensional feature selection and classification methods that
can combine information from thewhole brainmeasurement
[4] and neuropsychological data [5] to discriminate between
individual subjects. Moreover another study indicates that

not only older population but alsomen andwomen under the
age of 50 are affected by dementia [6]. There are several stud-
ies that have proved the effective utilization of neuropsycho-
logical test data [7–9] for earlier diagnosis of dementia and for
conversion fromMild Cognitive Impairment to Dementia.

The application of artificial intelligence techniques to
cognitive measures provides enhanced feature specific ana-
lytic methods for neuropsychological data that has already
been experimented for the diagnosis of dementia caused by
Alzheimer’s disease [10]. Automated classification of Demen-
tia with PET images has been done with structural warp-
ing of neuroimaging data [11]. Klöppel et al. developed auto-
mated classification of Magnetic Resonance scans and com-
pared the performance of computerized method with a
radiologist in this area of research [12]. Larner has reviewed
the importance of cognitive screening instruments and their
accuracy in diagnosis of Dementia [13]. A diagnostic method
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was developed using neuropsychological test improved by
multivariate analyses using PCA [7]. A research report com-
paring the conventional statistical classifiers and machine
learning methods demonstrated the comparable improved
performance of the machine learning methods [14]. A study
by Quintana et al. provides evidence that Artificial Neural
Networks can be a useful tool for the analysis of neuropsy-
chological profiles related to clinical syndromes. Yu et al.
developed a model of Support Vector Machine for prediction
of common diseases in the case of occurrence of diabetes and
prediabetes [15]. Hachesu et al. applied the Neural Networks,
Decision Tree, and SVM to determine and predict the length
of stay of cardiac patients [16].

Kabir et al. presented a new feature selection (FS) algo-
rithm based on the wrapper approach usingNeural Networks
[17]. The vital aspect of this algorithm is the automatic
determination of Neural Network architectures during the
feature selection process. Maldonado et al. have applied SVM
for simultaneous feature selection and classification [18]. New
approach for classification of microarray high-dimensional
data has been evolved [19]. Chen et al. applied classification
trees for larger datasets in Bioinformatics [20]. Calle et al.
developed a new strategy for genome data profiling with
Random forest [21].

Several studies with multimodal data [22] have proven
the classification efficiency of Random forest [14, 20, 21]. In a
study forDifferentiation ofMCI fromAD,Näıve Bayes, SVM,
NN, and Decision Tree (DT) were used for feature selection
and Näıve Bayes was used as the base classifier [23]. In that
study, Näıve Bayes andDT gave better results when compared
with SVM.

Relevance of This Study. Attribute selection performs a key
role in building a good classifier which can efficiently delin-
eate the patient records with absolute accuracy and efficiency.
This study proposes an ensemble feature selection approach
using J48 classifier with PSO search strategy andMeritMerge
technique to do the following.

(a) Find the optimal subset that can effectively delineate
the three classes as Normal (NL), Mild Cognitive
Impairment (MCI), and Alzheimer’s Dementia (AD)
with ensemble feature selection.

(b) Find all possible subset combinations that can
increase the accuracy in the discrimination of Mild
Cognitive Impairment from Dementia.

(c) Train and test an ensemble model that can effectively
classify multiclass medical data.

2. Feature Selection and Classification

2.1. Feature Selection. Feature selection is an important step
that determines the performance of a classifier. Dimension
reduction [24] is compulsory for better classification of
larger datasets. Feature extraction selects the most relevant,
nonredundant features of interest from the given data. In
general, feature selection can be performed by filter, wrapper
[17], and embedded methods. Several studies have been
reported for feature selection with Support Vector Machine
[18, 25, 26] and Random forest [21]. Uncu and Türksen

developed a new approach with combination of filters and
wrapper for feature selection [27].

Particle SwarmOptimisation (PSO) is a search technique
that is a proven feature selection mechanism [28]. The capa-
bility of PSO is that it can search in a very large search space
and find solutions quickly compared to other evolutionary
search techniques like Genetic Algorithm. Optimisation of
solution plays a great role in classification and clustering
applications. PSO has been used not only for feature selection
[29]; it has been applied for the optimization of parameters in
machine learning algorithms like SVM.

2.2. Bagging. Bagging follows a bootstrap method of data
selection for classification. It uses classifiers of the same type.
Bagging follows sampling with replacement procedure for
selecting a set of data as input for a classifier. Since it has
classifiers of the same type, majority vote across the ensemble
formulates the final result. Boosting ensemble follows a
sequential method where every classifier is formed based on
the output and error of the previously constructed classifier
[30]. Second classifier performs better than the first and
the same for the consecutively constructed classifiers. Hence
it takes more time for model construction and complexity
increases. Moreover it results in overfitting of the given
data. Ensemble classifier is a supervised learning model [31]
that employs the concept of a group of multiple classifiers
to improve classification accuracy. It combines many weak
learners in order to generate a strong learning algorithm.The
aim of applying ensemble method is to overcome the risk of
overfitting by individual classifier.

2.3. Classification

2.3.1. Support Vector Machines. Support Vector Machines
(SVMs) were introduced in 1995 by Cortes and Vapnik [32].
In terms of theory the SVMs are well founded and proved to
be very efficient in classification tasks.The advantages of such
classifiers are that they are independent of the dimensionality
of the feature space and that the results obtained are very
accurate, although the training time is very high. Support
Vector Machines are feed-forward networks with a single
layer of nonlinear units.Their design has good generalization
performance as an objective and follows for that reason the
principle of structural risk minimization that is rooted in VC
dimension theory.

The training points, for which the equality of the separat-
ing plane is satisfied, that is,

∀𝑖, 𝑦
𝑖
(𝑥
𝑖
⋅ 𝑤 + 𝑏) ≥ 0, (1)

those which wind up lying on one of the hyperplane 𝐻
1
,

𝐻
2
, and whose removal would change the solution found,

are called Support Vectors (SVs). This algorithm is firmly
grounded in the framework of statistical learning theory,
Vapnik-Chervonenkis (VC) theory, which improves the gen-
eralization ability of learning machines to unseen data. In the
last few years Support Vector Machines have shown excel-
lent performance in many real-world applications including
object recognition, face detection, and dementia diagnosis in
images.
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Table 1: Datasets used in the study.

Dataset Number of instances Number of attributes Number of classes AD Normal MCI
Neuropsychological dataset 750 48 3 150 200 400
Neuroimaging dataset 650 108 2 250 250 200
Baseline combined data 870 65 3 140 280 450
Combined dataset 750 40 2 150 200 400

2.3.2. Random Forest. Random forest trees introduced by
Breiman [33] are amethod of building a forest of uncorrelated
trees with randomized node optimization and bagging. Out
of bag errors is used as an estimate of the generalization
error. Random forest (RF) is used to measure variable
importance through permutation [34].The general technique
of bootstrap aggregation is applied in the training algorithm.
In Random forest implementation only the number of trees
in the forest and the number of attributes for prediction need
to be defined [35].

2.3.3. C4.5. C4.5 algorithm is used to generate a Decision
Tree that can be used for classification problems [36]. Deci-
sion Tree is built using the entropy value obtained from the
given data. C4.5 uses binary split or multivalued split in
selection of attributes. Performance of the algorithm varies
with cross validation and train-test method. The average
accuracy across several folds should be taken as the eval-
uation measure. As with all other classifiers, precision and
recall increases with more records in the training dataset. J48
is the Java implementation of C4.5 in Weka tool. C4.5 is an
improvement of the ID3 algorithm and is capable of handling
both discrete and continuous values. Another advantage is
that fields with missing values need not be imputed with any
values. Rather that field will not be used for calculation of
entropy and information gain.

2.3.4. Naı̈ve Bayes. Näıve Bayes classifier is a statistical
technique [37] that is applied for classification in data mining
problems. It is based on probabilistic outcomes of a given
data. It is a supervised learning technique and hence prior
knowledge can be incorporated in its learning process. Hence
it is well suited for medical diagnostics where the knowledge
of the domain expert can be incorporated in prior in order to
achieve higher performance.

3. Experimental Design

The reason for selection for C4.5 classifier is that it pro-
vides better accuracy when compared with Random forest,
Näıve Bayes, and Support Vector Machine in multiclass
classification problems. Ensemble feature selection is done
with C4.5, SVM, RF, and NB followed by classification with
C4.5. AdaBoost has the disadvantage of overfitting and the
model construction involved more time and complexity.
Hence bagging approach is selected for the multiclass dataset
classification.

3.1. Dataset. Data used in the preparation of this paper
were obtained from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database (adni.loni.usc.edu). The ADNI
was launched in 2003 as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial Magnetic Reso-
nance Imaging (MRI), positron emission tomography (PET),
other biologicalmarkers, and clinical andneuropsychological
assessment can be combined to measure the progression of
Mild Cognitive Impairment (MCI) and early Alzheimer’s
disease (AD). Table 1 shows the details of data sets used in
the study. Table 2 lists the attributes in the dataset.

3.2. Preprocessing. Preprocessing precedes classification for
noise removal and missing data management. Data was
partitioned based on the month of visit. Records in each
partition are clustered based on the diagnosis in that visit.
Data was normalized with 𝑧-score normalization. Values of
selective attributes were normalized to a range from 0 to 1. In
prediction of length of stay of patients, classwise mean values
of respective classes were used to replace numeric missing
values and mode of different classes replaced nominal or
ordinal missing values. Moving average (MA) operators are
used for handling missing values in time series data. MA has
been applied for medical data and nonstationary signals also
[38]. Expectation maximization (EM) algorithm was used
to impute the missing data in a study [39]. EM has already
been applied in the analysis of Alzheimer’s data and found
to be more effective than multiple imputation methods [40].
Attributes with more than 40% missing data were removed
from the attribute set to avoid misclassification and bias.

3.3. Ensemble Feature Selection. There are 3 phases in the
proposed Merit Merge feature selection technique. Base
classifier to be applied for feature selection is determined in
Phase I by comparing the classifiers reported in the literature
with the ensemble classifiers. After the identification of base
classifier, PSO search is coupled with ensemble classifiers to
identify feature sets with higher merit. The ensemble model
is trained and tested with feature set to obtain the optimal
subset that can be used for the multinomial classification.

Phase I.This phase determines the base classifier that can be
used for modelling the ensemble classification model. Clini-
cal dementia ratio is a key attribute in the discrimination of
NL, MCI, and AD. Hence that key attribute is removed and
the performance of classifiers is compared. It was noted in the
previous study that classification by NB outperformed SVM.
Hence those classifiers are compared with C4.5 in the classi-
fication of our multiclass problem. Figure 1 shows the steps
in the selection of base classifier. Data set containing both
neuropsychological test data and neuroimaging measures
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Table 2: List of attributes derived from neuropsychological test and
neuroimaging measures.

Neuropsychological and neuroimaging measures
Average FDG-PET of angular,
temporal, and posterior
cingulate

Mini Mental State
Examination-baseline

Average PIB SUVR of frontal
cortex, anterior cingulate,
precuneus cortex, and parietal
cortex

Ventricles measure

Average AV45 SUVR of frontal,
anterior cingulate, precuneus,
and parietal cortex relative to
the cerebellum

Hippocampus-baseline, volume

Clinical dementia ratio-SB Whole brain-baseline, volume

ADAS 11 UCSF entorhinal-baseline,
volume

ADAS 13 UCSF fusiform-baseline,
volume

Mini Mental Scale Examination
score UCSF Med Temp-baseline

RAVLT (forgetting) UCSF ICV-baseline
RAVLT (5 sum) MOCA-baseline
Functional Assessment
Questionnaire Pt ECog-Memory-baseline

MOCA Pt ECog-Language-baseline
Pt ECog-Memory Pt ECog-Vis/Spat-baseline
Pt ECog-Language Pt ECog-Plan-baseline
Pt ECog-Visual Pt ECog-Organ-baseline
Pt ECog-Plan Pt ECog-Div atten-baseline
Pt ECog-Organ Pt ECog-Total-baseline
Pt ECog-Div atten SP ECog-Mem-baseline
Pt ECog-Total SP ECog-Lang-baseline
SP ECog-Memory SP ECog-Vis/Spat-baseline
SP ECog-Language SP ECog-Plan-baseline
SP ECog-Visual SP ECog-Organ-baseline
SP ECog-Plan SP ECog-Div atten-baseline
SP ECog-Organ SP ECog-Total-baseline

SP ECog-Attention
Average FDG-PET of angular,
temporal, and posterior
cingulate at baseline

SP ECog-Total

Average PIB SUVR of frontal
cortex, anterior cingulate,
precuneus cortex, and parietal
cortex at baseline

UCSF ventricles measures

Average AV45 (PET ligand)
SUVR of frontal, anterior
cingulate, precuneus, and
parietal cortex relative to the
cerebellum at baseline

UCSF hippocampus measure CDR-SB
UCSF whole brain measure ADAS 11, baseline
UCSF entorhinal measure ADAS 13, baseline
UCSF fusiform measure
UCSF temporal measure RAVLT (forgetting), baseline
UCSF ICV RAVLT (5 sum), baseline
Pt: patient, ECog: everyday cognition test, SP: study partner, ADAS:
Alzheimer’s disease assessment scale, MOCA: Montreal Cognitive Assess-
ment, Ray Auditory Verbal Learning Test, ICV: intracranial volume, SUVR:
Standard Uptake value ratio, and CDR-SB: Clinical Dementia Rating Sum of
Boxes.

with 870 instances was classified by NB, RF, SVM, and
C4.5 decision tree. Data set without clinical dementia ratio
attribute is again classified with the four classifiers. This
is done to evaluate the sensitivity of the classifier even in
the absence of relevant attributes. Since C4.5 decision tree
classifier outperformed the other classifiers used in the mul-
ticlass classification, ensemble approach with PSO search is
proposed and tested in this work. Näıve Bayes provided a
better accuracy compared to RF and SVM. Ensemble feature
selection is performed with C4.5 tree having binary split
and pruning with minimum description length technique.
Random forest ensemble is implemented with 100 to 1000
trees. Out of bag error reduced and remained constant with
600 and more number of trees. Support vector machine is
implementedwith LIBSVM.TheRadial Basis Function (RBF)
kernel was used for classification. RBF kernel showed higher
accuracy than other kernels. Kernel parameters C and 𝛾
values are optimized with grid search.

Given pair of values 𝑥
𝑖
, 𝑥
𝑗
, RBF kernel to find the sepa-

rating hyperplane is defined as follows:

𝑘 (𝑥
𝑖
, 𝑥
𝑗
) = exp (−𝛾 𝑥𝑖 − 𝑥𝑗
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It was observed that the sensitivity of J48 for each class was
higher, compared to NB, SVM, and RF. Hence J48 is selected
as the base classifier for feature selection and classification.
J48 is the base ensemble classifier used in CPEMM.

Phase II. An overview of the steps in Phases II and III
is presented in Figure 2. Ensemble feature selection is per-
formed with C4.5 having binary split and pruning. Number
of iterations in PSO search done is experimented in the range
60–100. Feature subsets were reduced in size as the number
of iterations increased. With smaller number of iterations,
ensemble search selected subsets with more features. As the
iterations increased to find the best optimal solution, PSO
resulted in generating subsets with lesser number of features.
PSO search combined with NB, RF, and C4.5 ensembles gen-
erated the feature subsets. Feature subsets were sorted based
on merit given by the search technique. It was observed that
C4.5 ensemble selected the optimum subsets with Particle
Swarm Optimisation with minimum number of iterations
compared with NB and RF. RF ensemble returned good
subsets in 2-class dataset. Binary split at node implemented
in C4.5 selected relevant features with minimum iterations.
CPEMM technique is presented as an Algorithm 1 following
the overview of Phases II and III in Figure 2.

Phase III. For each classifier, subset with the highest merit is
considered for evaluation by the base classifier C4.5 and the
accuracy is stored for further comparison.

Case 1. If subsets have equal merit, each subset is evaluated
individually and also as a single subset after merging. If the
merged subset does not increase accuracy, individual subsets
are selected as relevant feature set.

Case 2. If more than 50% of subsets at the top of the sorted
subset list have the same merit, the number of iterations
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Phase I
Multivariate dataset

Preprocessing

Dataset with CDR Dataset without CDR

Classification with
SVM, NB, RF, and C4.5

Classification with
SVM, NB, RF, and C4.5

Evaluate performance

Division of dataset

Select base classifier for ensemble feature
selection

Figure 1: Selection of base classifier for ensemble feature selection.

is increased to get a minimal feature subset for evaluation.
One limitation is that if the increase in iterations did not
return reduced subset, this case should be probed further for
enhancing feature selection.

Case 3. If there is a successive subset with much lower merit,
the search for subset is terminated.

5-fold cross validation ensured that all the instances
are used in the model development [41]. Alternate records
are left out and trained with remaining records in every
consecutive execution of the loop. Ensemble classifiers which
are implemented in Weka tool is run in Pentium processor
with 2.53Ghz speed, 4GBRAM, and 64 bit operating system.
Statistical analysis of feature selection methods and perfor-
mance of classifiers were implemented in 𝑅.

4. Results

The results are evaluated based on the performance of the
classifier by feeding the different sets of feature set selected
by

(i) C4.5, NB, and RF coupled with PSO,
(ii) features selected by the CPEMM approach.

Accuracy, precision and recall of the classifier is evaluated
with four datasets listed in Table 3.

4.1. Performance Measures. All classification results could
have an error rate and will either fail to identify dementia or
misclassify a normal patient as demented. It is common to
describe this error rate by the terms True Positive and False
Positive and True Negative and False Negative as follows.

True Positive (TP) is as follows: the result of classification
is positive in the presence of the clinical abnormality. True
Negative (TN) is as follows: the result of classification is
negative in the absence of the clinical abnormality. False
Positive (FP) is as follows: the result of classification is positive
in the absence of the clinical abnormality. FalseNegative (FN)

is as follows: the result of classification is negative in the
presence of the clinical abnormality.

Accuracy defines the overall correctness of the model.
Precision defines the number of correct classification
obtained for each class. Its value falls between 0 and 1. Recall
corresponds to the True Positive rate. Consider

Accuracy = No. of correct classification
Total no. of classification

, (3)

Precision = TP
(TP + FP)

, (4)

Recall = TP
(TP + FN)

. (5)

Receiver optimistic curves (ROC) are used to analyse the
prediction capability ofmachine learning techniques used for
classification and clustering [42]. ROC analysis is a graphical
representation comparing the True Positive rate and False
Positive rate in classification results. Area under the curve
(AUC) characterizes the ROC of a classifier. The larger the
value of AUC is, the more effective the performance the
classifier will be. Press’ 𝑄 test was used to evaluate the
statistical significance of the difference in accuracy yielded by
the classifiers. Given “𝑚” samples, “𝑛” correct classification,
and “𝑝” groups, test statistic was evaluated as follows:

𝑄 =
(𝑚 − 𝑛𝑝)

2

𝑚(𝑝 − 1)
∼ 𝜒
2
. (6)

Näıve Bayes, C4.5 Decision Tree, Random forest, and SVM
yielded statistically significant accuracy. It was found that
feature selection by CPEMM considerably increased the per-
centage of records thatwere correctly classified. C4.5 classifier
combined with CPEMM methodology provided the highest
statistically significant difference in performance when com-
pared with PSO and the conventional ensemble based feature
selection technique as shown in Figure 3. Higher Median of
0.987 was yielded by the proposed combination of CPEMM
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Phase III Select subsets with minimal difference
in merit feature subsets

Select the feature with highest 
ranking and evaluate 

Evaluate accuracy of the classifier

Merge the next feature subset from 
the sorted list with the current set 

Terminating 
condition true

Classify with new subset

Finalize best subset for normal, MCI,
and dementia

Yes 

No

Phase II

PSO search

Optimized feature subsets

Ensemble feature selection
NB, SVM, RF, and J48

Dataset 

Figure 2: Steps in Phase II and Phase III.
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Algorithm CPEMM (DS, threshold)
Input: DS → dataset, merit threshold → meritvalue,

acc threshold → accuracy threshold, flag = 1
Output: ffs → finalised feature set
𝐴 → Accuracy vector, MS → merged set vector,
bs → bootstrap vector
𝑚 → merit subsets obtained from wrapper feature selection,
𝑁 → Sorted subset list in descending order
𝑆
𝑖
→ subset with highest ranking,

𝑘 ← no of subsets generated (1, . . . , 𝐾)
(1) Initialize subset 𝑠 = null
(2) Generate feature subsets with Ensemble

Initialise no. of iterations 𝑛
Repeat

Generate subset pset
𝑘
from DS

Verify merit
𝑆
𝑘
← pset

𝑘

Optimization of feature subset
𝑚
𝑘
←merit of psetk

Until 𝑛 iterations
(3) Evaluate accuracy of classifier with subset 𝑠.
𝑖 = 1,𝑚

𝑖
= 𝑚(1), 𝑗 = 2

Evaluate accuracy 𝐴
𝑖
of 𝑆
𝑖

Repeat
Repeat
diff =𝑚

𝑖
− 𝑚
𝑗

MS
𝑖𝑗
← 𝑆
𝑖
and 𝑆

𝑗
merged

𝐴MS𝑖𝑗 ← Evaluate accuracy of MS
𝑖𝑗

If 𝐴
𝑖
≤ 𝐴MS𝑖𝑗

Append MS
𝑖𝑗
to ffs

flag = 1
else

flag = 0
Append 𝑆

𝑖
to ffs

endif
Increment 𝑗

until flag != 0 or 𝑗 < 𝑘 or diff ≥ threshold
Increment 𝑖

until 𝐴
𝑖
≥ acc threshold

(4) bs
𝑖
← bootstrap vector from ffs

Repeat
Train classifier c

𝑖
with bs

𝑖

Evaluate out of bag error
Until 𝑛 sets are bootstrapped

with 5-fold cross validation

Algorithm 1
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Figure 3: Accuracy of classifiers with features selected by PSO, CPEMMmethods.
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Table 4: Results with the maximal feature subset obtained by divide and merge feature selection technique.

Classifier Normal class Dementia Mild Cognitive Impairment
Acc Pre Rec Acc Pre Rec Acc Pre Rec

J48 0.963 0.963 0.963 0.978 0.953 0.967 0.966 0.968 0.987
J48-TT 0.983 0.972 0.977 0.986 0.973 0.963 0.977 0.976 0.977
J48-CV 0.965 0.954 0.945 0.966 0.956 0.955 0.964 0.954 0.945
TT: training and testing; CV: cross validation.
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Figure 4: Comparison of area under the curve obtained by ordinary ensemble vs CPEMM for the four datasets.

and C4.5 ensemble classifier, while the other classifiers tested,
that is, NB, RF, and SVM, had a median approximately above
0.75 to 0.88.

With C4.5 as base classifier, features selected by PSO
in combination with NB, SVM, C4.5, and RF ensemble are
listed in Table 3. CPEMMmethod is applied tomerge subsets
based on merit. The resultant subsets from each dataset are
evaluated with C4.5 classifier. The accuracy obtained for
each class (NL, AD, and MCI) is evaluated in each dataset.
Sensitivity of classifier to the multiclass classification using
the CPEMM approach is tabulated in Table 4.

CPEMM was applied to the feature sets obtained by NB,
C4.5, and RF since the sensitivity of the SVM classifier was
very low compared with other classifiers. The nonlinear RBF
kernel was the best fitting kernel with SVM. Yet the accuracy
obtained was below 70%. Hence the CPEMM strategy is
applied and tested with NB, C4.5, and RF.

The discriminating efficiency of J48 with respect to the
three classes Normal, Dementia, and Mild Cognitive Impair-
ment is evaluated. Classification of Normal class had higher
sensitivity, compared to the delineation of Mild Cognitive
Impairment and Dementia. The results are given in Table 4.
Ensemble feature selection returned list of subsets with
higher merit. CPEMM technique merged and evaluated the
accuracy of successive subsets with higher merits. Efficiency
of the classifier with features selected using CPEMM and
the features selected with conventional ensemble feature
selection is given as a comparison through ROC analysis in
Figure 4. ROC area that is obtained with the four datasets
is plotted in the graph. ROC of individual ensemble feature
selection is plottedwith ROCobtainedwith CPEMM. Table 5

Table 5: Description of the J48 ensemble model used for the multi-
class classification.
Details Value
Split method Binary split
Cross validation accuracy 0.976
AUC with CV 0.971
Train and test accuracy 0.986
AUC with train and test 0.987

Common features selected by
all methods

MMSE, CDR, hippocampus
volume, and everyday
cognition measures

Features added by CPEMM
Entorhinal measures, CDRSB,
and Ray Auditory Verbal
Learning Test-immediate

describes the features of the ensemble model for classifica-
tion.

CPEMM yielded higher area under the curve values for
all the four datasets experimented in our study.

5. Conclusion

C4.5 classifier provided better accuracy and sensitivity in
multiclass classification of Alzheimer’s Dementia. Ensemble
of C4.5 classifier selected best fit subset for the evaluation
of the three different classes with the highest Recall value
98.7 for the class MCI. It was evident that features selected
by the C4.5 algorithm further increased the performance of
Random forest and Näıve Bayes classifier also. The proposed
ensemble with PSO search selected the minimal subset that
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is needed for the discrimination of diseases. Merit Merge
approach further enhanced the feature selection by identify-
ing the effective consolidated subset that could be used for
the clinical diagnosis of dementia andMildCognitive Impair-
ment that will lead to dementia. Our work also confirmed
the fact that performance of SVM in the delineation of Mild
Cognitive Impairment and Dementia is very low compared
to Random forest, Näıve Bayes, and C4.5 algorithm as men-
tioned by Williams et al. [23]. Although the performance
of Random forest was comparable to C4.5 and NB in the
discrimination of 2-class data, accuracy of approximately 75%
was provided for the 3-class problem. CPEMM was able to
predict the relevant features for all datasets especially the
CIDS. The proposed split and merge ensemble approach can
be applied for any 3-class classification problem. It can be
extended for the classification of high-dimensional datasets
like microarray data also with preliminary feature reduction.

Classification with NB for discrimination of Dementia
and MCI by previous study resulted in accuracy of around
80% and sensitivity of approximately 70% [14, 23]. Our
CPEMMbased on Bagging ensemble of J48withMeritMerge
technique yielded higher accuracy of 98.7% in train and test
method [43]. Bagging approach with learning from more
than one classifier found the minimal subset for effective
diagnostics. Merit Merge approach found highly relevant, all
possible subsets that contribute towards the multiclass classi-
fication. Proposed approach yielded a statistically significant
difference with amean area under the curve of approximately
0.977 in the multivariate classification of Dementia.

Bagging ensemblemodels provide a promising, error free,
statistically significant machine learning method for disease
diagnosis. The proposed methodology can be for applied
disease state prediction even with class imbalanced datasets.
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