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Microorganisms are the most abundant and diverse organisms in soils and have important 
effects on soil fertility. In this study, effects of the long-term fertilization treatments no 
fertilizer (CK), chemical fertilizer (nitrogen–phosphorus–potassium (NPK)), and organic–
inorganic fertilizer (NPK and organic fertilizer (NPKM)) on rice yield and soil bacterial and 
fungal community diversity, structure, composition, and interaction networks were 
evaluated. Of the three treatments, the highest rice yield was in NPKM. Bacterial richness 
was significantly higher in NPKM than in NPK. Fertilization treatment significantly altered 
β diversity of communities, species composition of bacterial and fungal communities, and 
structure of soil microbial networks. The most complex bacterial and fungal interaction 
co-occurrence network with the highest average degree and numbers of edges and nodes 
was in NPKM. Relative abundance of the plant growth-promoting fungus Trichoderma 
increased significantly in NPKM compared with CK and NPK. The results of the study 
indicate that bacterial richness and microbial community member interactions (network 
complexity) might be suitable indicators of soil biological fertility. This research provides 
new insights on the effects of different fertilization regimes on responses of soil bacterial 
and fungal communities and their contributions to crop yield. New indicators such as 
bacterial richness and complexity of microbial interaction networks are also identified that 
can be used to evaluate soil biological fertility.

Keywords: fertilization regimes, soil biological fertility, co-occurrence network, microbial community, rice

INTRODUCTION

Chemical fertilizer is often used to compensate the loss of soil nutrients during growing stages 
of crops in which chemical fertility is the primary focus. By contrast, organic fertilizer is 
typically applied as a base fertilizer before crop growth. Many studies indicate that organic 
fertilizer plus chemical fertilizer treatment can increase yields compared with only chemical 
fertilization, even when total nitrogen (N), phosphorus (P), and potassium (K) contents are 
the same (Pan et  al., 2009; Xie et  al., 2016; Zhao et  al., 2016). Addition of organic fertilizer 
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with chemical fertilizer can slow the release of nutrients in 
the chemical fertilizer and thus reduce N loss and increase 
N use efficiency (Pan et al., 2009). The combination of fertilizer 
types can also optimize soil aggregate structure by increasing 
organic matter and thus improve soil physical structure (Bronick 
and Lal, 2005). However, how addition of organic fertilizers 
influences soil biological fertility has not been determined.

Microorganisms are the most abundant and diverse soil 
organisms. On average, 1 g soil contains 1010 cultivable cells 
and approximately 104 microbial species (Liu et al., 2012; Saleem 
et  al., 2019). As the most active component of an ecosystem, 
microorganisms have essential roles in energy flow, particularly 
in decomposition of organic matter, and biogeochemical cycling 
of nutrient elements (Morris and Blackwood, 2015). Therefore, 
growth and metabolism of microbial communities can directly 
and indirectly affect crop growth (Ahn et  al., 2012). The most 
significant effects of soil microorganisms are on the 
decomposition of organic matter and the release of minerals. 
Soil microorganisms regulate decomposition of organic matter 
and release of minerals and are essential in forming humus 
and improving structure and cultivability of soil, which ultimately 
promote crop growth. Simultaneously, crops secrete 
biosynthesized organic matter and other substances into soils 
through the root system to provide soil microorganisms with 
sources of nutrients such as carbon (C) and N. Those root 
exudates can enrich and increase the growth of bacterial flora 
that are beneficial to plant growth and help resist infection 
by pathogenic bacteria (Hou et  al., 2021). Thus, soil microbial 
activities and crop growth and yield are interdependent, and 
it is therefore important to consider activities of microorganisms 
when conducting research on crop yields in agroecosystems.

In agroecosystems, soil microbial biomass and diversity are 
potential indicators of soil quality (Bending et al., 2004), which 
is associated with soil productivity and crop growth and yield 
and can reflect soil vitality, health status, and biological fertility. 
Soil biological fertility is the core component of soil fertility, 
the key to sustainable use of agricultural land, and the foundation 
of a future agricultural revolution (Hatfield and Walthall, 2015). 
As decomposers and material cyclers of soil ecosystems, soil 
microorganisms are the core of soil biological fertility and are 
essential in regulating biological fertility. However, microbial 
community indicators that can be used to evaluate soil biological 
fertility have not been determined. To date, most studies have 
focused on effects of different fertilization treatments on soil 
bacterial communities (Gu et al., 2009; Zhao et al., 2014, 2016), 
whereas effects on soil fungal communities and their functions 
have largely been ignored. Many studies have examined how 
different fertilization regimes shape soil microbial community 
diversity, structure, and composition (Ge et al., 2008; Gu et al., 
2009; van der Bom et  al., 2018). However, few studies focus 
on interactions among community members. Community 
member interactions are largely dependent on nutrient and 
energy supplies in a soil (Qiu et  al., 2021) and therefore might 
be  an important indicator of soil biological fertility.

In this study, a long-term field fertilization experiment was 
set up in paddy field that included three treatments: no 
fertilization, chemical fertilization, and chemical fertilization 

plus organic fertilizer addition. In addition to determining 
rice yields, high-throughput sequencing was used to investigate 
diversity, structure, composition, and interaction networks of 
soil bacterial and fungal communities. The aims of the study 
were to understand how different fertilization regimes influence 
soil microbial communities and rice yields and to determine 
which microbial community parameters might be  used as 
indicators of soil biological fertility.

MATERIALS AND METHODS

Site Description
The study was conducted in a long-term experimental field 
site in Changshu, Jiangsu Province, China (31°18′N, 120°37′E). 
The site is at the center of the Tai Lake plain region, where 
the cropping regime is a rotation of summer paddy rice and 
winter wheat. The climate is humid subtropical monsoon with 
average annual rainfall of 1,063 mm and annual mean minimum 
and maximum temperatures of 3.1°C and 33°C, respectively 
(Chen et  al., 2016; Wang et  al., 2016a). The field was tilled 
to an average depth of 20 cm before either sowing wheat or 
transplanting rice seedlings. Rice plots were flooded with 5 cm 
of standing water from July to September (Wang et al., 2016b). 
Rice was transplanted in June using two seedlings per hill at 
13 cm × 28 cm spacing (Wang et  al., 2016a). Following rice 
harvest, wheat was sown with seeds at 150 kg ha−1 in October 
or November every year. A sickle was used to manually harvest 
crops at ground level, and aboveground biomass was removed 
from plots. Fertilizers were applied as basal fertilizer after 
harvest of both rice and wheat (Wang et  al., 2016b).

Field Experiment and Soil Sampling
Three treatments with four replicates were established in a 
randomized block design in 2005, and each replicate plot was 
16 m2 (4 × 4 m). To avoid margin effects, yield was measured 
in a 4-m2 (2 m × 2 m) area only in the middle of each plot, 
with yield converted to yield per hectare. Experimental treatments 
included CK (no fertilizer control), NPK (240 kg N ha−1, 90 kg 
P2O5  ha−1, and 120 kg K2O ha−1), and NPKM (The NPK and 
NPKM treatments contained the same total amounts of nutrients. 
NPKM contained 4,500 kg ha−1 organic fertilizer). The organic 
fertilizer was derived from composted pig manure with rice 
straw and contained 26.4% organic C, 2.5% total N, 1.6% 
P  (P2O5), and 1.3% K (K2O).

Soil samples were collected at 0 to 20 cm after rice harvest 
in October 2015. Four soil cores (5-cm diameter) were randomly 
collected in each 4 × 4-m plot. Soil samples from different 
treatments were mixed separately and sieved (2 mm) to remove 
plant materials, roots, and stones. To minimize changes in 
soil communities after sampling, DNA was immediately extracted 
from fresh soil. Subsamples were frozen at −80°C.

DNA Extraction
Soil DNA was extracted from 0.25 g of fresh soil with a MoBio 
Powersoil™ DNA Isolation Kit (MoBio Laboratories, Carlsbad, 
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CA, United States of America) using the bead-based homogenizer 
protocol according to the manufacturer’s instructions. Quantity 
and quality of DNA extracts were assayed by a Nanodrop 
ND-2000 UV–VIS Spectrophotometer (NanoDrop Technologies, 
Wilmington, DE, United  States of America), and DNA was 
stored at −80°C until analysis.

Gene Amplification and Deep Sequencing
Amplification of the 16S rRNA gene V4 hypervariable region 
was performed using a PCR reaction solution containing 12.5 μl 
of Master Mix (Qiagen Inc., Valencia, CA, United  States of 
America), 0.5 μl (10 mM) of 515F primer (5′-GTGCCAGCMGCC 
GCGGTAA-3′), 0.5 μl (10 mM) of 806R primer (5′-GGACTACHV 
GGGTWTCTAAT-3′; Caporaso et al., 2012), 1 μl of DNA template 
(10 ng μl−1), and 10.5 μl of ddH2O to a final volume of 25 μl. 
The PCR protocol was performed in triplicate using the following 
conditions: 10 min at 95°C for initial denaturing, followed by 
35 cycles of 95°C for 15 s, 56°C for 15 s, and 72°C for 30 s, with 
a final extension at 72°C for 5 min.

Amplification of the fungal ITS1 (Internal Transcribed Spacer 
I) region was performed using a PCR reaction solution containing 
12.5 μl of Master Mix (Qiagen Inc.), 0.5 μl (10 mM) of ITS1F 
primer (5′-CTTGGTCATTTAGAGGAAGTAA-3′; Gardes and 
Bruns, 1993), 0.5 μl (10 mM) of ITS2 primer (5′-GCTGCG 
TTCTTCATC-GATGC-3′; Baldwin, 1992), 1 μl of DNA template 
(10 ng μl−1), and 10.5 μl of ddH2O to a final volume of 25 μl. 
The PCR protocol was performed in triplicate using the following 
conditions: 10 min at 95°C for initial denaturing, followed by 
35 cycles of 95°C for 15 s, 56°C for 15 s, and 72°C for 30 s, 
with a final extension at 72°C for 5 min. The Illumina sequencing 
adapter-ligated reverse primer contained a 6-bp bar code specific 
to each sample for identification (Caporaso et  al., 2012). After 
amplification, triplicate PCR products were pooled and purified 
using a PCR Cleanup Kit (Axygen Biosciences, Union City, 
CA, United  States of America). Bacterial and fungal PCR 
products were pooled separately for sequencing. Sequencing 
was performed on a single lane of an Illumina MiSeq platform 
at Personal Biotechnology Co., Ltd. (Shanghai, China). All 
sequence data have been deposited in the NCBI (National 
Center for Biotechnology Information) Sequence Read Archive 
database. The accession numbers are SRP359136 for bacterial 
data and SRP359138 for fungal data.

Bioinformatics Analysis and Statistics of 
High-Throughput Sequencing Data
High-throughput sequencing data were processed using 
USEARCH v.10.0 (Edgar, 2010), VSEARCH v.2.13 (Rognes et al., 
2016), and in-house scripts (Zhang et  al., 2018). First, the 
--fastq_mergepairs command was used to merge paired-end 
sequences of the sequencing data and rename them. Then, the 
--fastx_filter command was used to remove the double-ended 
primers and bar codes and to perform quality control to make 
the error rate less than 1%. The --derep_fulllength command 
was used to reduce sequence redundancy. Redundant sequences 
were clustered into operational taxonomic units (OTU) with 
97% similarity by using the -cluster_otus command, and chimeras 

were removed simultaneously. UPASE (Edgar, 2013) was used 
to select representative sequences, and then an OTU table was 
generated by the --usearch_global command. Species annotations 
were conducted using the -sintax command of VSEARCH with 
the SILVA database (Quast et  al., 2013) for bacteria and the 
UNITE database (Abarenkov et  al., 2010) for fungi.

Bacterial and fungal sequences were flattened to 3,935 and 
5,837 sequences per sample, respectively, before α diversity 
indices were calculated. Chao1, Pielou’s evenness, and Shannon 
indices were calculated to evaluate community richness, evenness, 
and diversity (Lu et  al., 2020), respectively. Principal coordinate 
analysis (PCoA; Zhang et al., 2019) was used to show differences 
in microbial community structure among samples. To test the 
significance of differences in microbial community structure 
among different treatments, adonis analysis based on permutational 
multivariate analysis of variance (PERMANOVA; Zhang et  al., 
2019) was used. One-way ANOVA followed by Tukey’s post 
hoc test was performed to compare means of rice yield, α-diversity 
indices, microbial abundance, and the Proteobacteria to 
Acidobacteria ratio. Ecological networks of fungi and bacteria 
were constructed, and network topology parameters were 
calculated in R (https://www.r-project.org/) using the “igraph” 
package (Wang et  al., 2018). Pearson correlation analyses were 
performed to examine relations between rice yield and α diversity 
indices. Mantel tests (Wang et  al., 2016b) were conducted to 
test correlations between rice yield and community composition. 
All data visualization was performed in R using the “ggplot2” 
package. When considering bacteria and fungi together, OTU 
tables of fungi and bacteria were combined for calculations.

RESULTS

Effects of Different Long-Term Fertilization 
Treatments on Rice Yield
Rice yield varied among different fertilization treatments 
(Figure  1). Compared with CK, fertilization treatments 
significantly increased rice yield (Tukey’s post hoc test, p < 0.05). 
Average rice yields were 5,513 kg/ha in CK, 9,329 kg/ha in 
NPK, and 10,316 kg/ha in NPKM. Although NKP and NPKM 
had equal inputs of N, P, and K, rice yield was significantly 
higher in NPKM than in NPK (Tukey’s post hoc test, p < 0.05).

Effects of Different Fertilization Treatments 
on Microbial Alpha Diversity
Chao1, evenness, and Shannon indices were calculated to estimate 
microbial richness, evenness, and diversity, respectively (Figure 2). 
Compared with NPK, NPKM significantly increased bacterial 
richness (Tukey’s post-hoc test, p < 0.05) but decreased bacterial 
evenness and diversity, although differences were not significant. 
However, different fertilization treatments did not significantly 
affect fungal richness, evenness, and diversity. In Pearson correlation 
analyses, rice yield was positively correlated with bacterial richness 
and fungal evenness but negatively correlated with bacterial evenness 
and diversity and fungal richness and diversity, although none 
of the correlations were significant (Supplementary Figure S1).
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A B C

D E F

FIGURE 2 | Effects of long-term fertilization treatments on Chao1 richness, evenness, and Shannon diversity indices of (A–C) bacteria and (D–F) fungi. Different 
letters indicate significant differences among treatments (Tukey’s post hoc test, p < 0.05).

FIGURE 1 | Effects of long-term fertilization treatments on rice yield. Different letters indicate significant differences among treatments (Tukey’s post hoc test, p < 0.05).
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Effects of Different Fertilization Treatments 
on Microbial Beta Diversity
In the unconstrained PCoA of weighted UniFrac distance, soil 
bacterial and fungal communities formed three distinct clusters 
according to different fertilization treatments (PERMANOVA: 
p < 0.01; Figure  3). The NPKM community was significantly 

different from those in CK and NPK and separated along the 
first coordinate axis, which indicated that the greatest variation 
among treatments was most likely due to the addition of 
organic fertilizer. According to Mantel tests, rice yield was 
significantly positively correlated with bacterial community 
structure (r = 0.462, p = 0.005), whereas fungal community 

A

B

FIGURE 3 | Unconstrained principal coordinate analysis (PCoA) with weighted UniFrac distance showing effects of long-term fertilization treatments on beta-
diversity of soil (A) bacterial and (B) fungal communities.
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A B

C D

FIGURE 4 | Effects of long-term fertilization treatments on composition of bacterial and fungal communities. Phylum-level composition of (A) bacterial and 
(C) fungal communities. Analysis of differences in relative abundances of (B) bacterial phyla in A and (D) fungal phyla in C. Names of the nine most abundant phyla 
are shown, and other phyla were grouped as “Others.” Different letters indicate significant differences (Tukey’s post hoc test, p < 0.05).

structure and rice yield were not significantly correlated (r = 0.033, 
p = 0.408).

Effects of Different Fertilization Treatments 
on Composition of Bacterial and Fungal 
Communities
Fertilization treatments shaped bacterial community composition 
(Figure 4A). Among all samples, the nine most abundant phyla 
of bacteria were Proteobacteria (39.5%), Acidobacteria (19.1%), 
Actinobacteria (6.5%), Chloroflexi (5.4%), Bacteroidetes (3.3%), 
Verrucomicrobia (3.2%), Firmicutes (1.1%), Latescibacteria (1.1%), 
and Gemmatimonadetes (1.0%). Addition of organic fertilizer 
significantly decreased relative abundances of Acidobacteria, 
Verrucomicrobia, and Latescibacteria (Tukey’s post hoc test, 
p < 0.05) but significantly increased those of Actinobacteria and 
Firmicutes (Tukey’s post hoc test, p < 0.05; Figure  4B).

Fungal community composition was also altered by fertilization 
treatments (Figure  4C). Among all samples, the nine most 
abundant phyla of fungi were Ascomycota (20.2%), Basidiomycota 

(9.2%), Chytridiomycota (4.1%), Mortierellomycota (2.2%), 
Rozellomycota (0.7%), Glomeromycota (0.4%), Aphelidiomycota 
(0.1%), Monoblepharomycota (0.1%), and Olpidiomycota (0.03%).

Correlation analysis revealed a genus-level core microbial 
community that was significantly correlated with rice yield (Pearson, 
p < 0.05). The genera of bacteria were Sphingomonas, Acidobacteria_
Gp1, Acidobacteria_Gp3, Acidobacteria_Gp9, Armatimonadetes_Gp5, 
Lysobacter, Lacibacterium, Arthrobacter, Desulfobulbus, Nocardioides, 
and Blastococcus, and the genera of fungi were Meliniomyces, 
Chaetomium, and Malassezia (Figure 5). Compared with CK and 
NPK, NPKM significantly increased relative abundances of Tausonia 
and Trichoderma (Tukey’s post hoc test, p < 0.05).

Effects of Different Fertilization Treatments 
on Co-occurrence Networks of Soil 
Microorganisms
Nodes in the bacterial and fungal co-occurrence network included 
seven bacterial phyla (Proteobacteria, Actinobacteria, Chloroflexi, 
Firmicutes, Nitrospirae, Gemmatimonadetes, and Acidobacteria) 
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and three fungal phyla (Ascomycota, Basidiomycota, and 
Mortierellomycota; Figure 6). A unique microbial co-occurrence 
network formed in each treatment. The most complex network 
was in NPKM, followed by those in NPK and CK. Compared 
with CK and NPK, the NPKM network had the highest 
connectivity (0.097), number of edges (114), number of 
vertices (49), and average degree (4.6; Figure  6).

To quantify differences in co-occurrence networks among 
treatments, numbers of common and unique edges of CK, 
NPK, and NPKM networks were calculated. There were few 
common edges shared by any two treatments, compared with 
many unique edges in each treatment. Networks in CK and 
NPK shared only four edges, whereas the CK network had 56 
unique edges and the NPK network had 74. Networks in CK 
and NPKM shared only three edges, whereas the CK network 
had 57 unique edges and the NPKM network had 111. Networks 
in NPK and NPKM shared only six edges, but the NPK network 
had 72 unique edges and the NPKM network had 108 (Figure 6).

The fungal genus Trichoderma was absent in NPK but 
occurred in NPKM. The sequence number of Trichoderma 
was significantly higher in NPKM than in CK and NPK (Tukey’s 
post hoc test, p < 0.05), with the lowest number in NPK (Figure 6).

DISCUSSION

Soil microbial biomass and diversity are potential indicators 
of soil quality (Bending et  al., 2004), as well as important 

factors in maintaining integrity and stability of soil functions 
in agroecosystems (Kennedy and Smith, 1995; Nannipieri et al., 
2003; Brussaard et  al., 2007). They are associated with the 
level of soil biological fertility and thereby affect crop yields. 
In this study, in a long-term field fertilization experiment, 
effects of no fertilization, chemical fertilization, and chemical 
fertilization plus organic fertilizer treatments on rice yields 
and soil bacterial and fungal communities were evaluated. 
High-throughput sequencing was used to evaluate composition 
of microbial communities. The highest rice yield among the 
three treatments was in NPKM. Compared with NPK, combined 
application of organic and inorganic fertilizers significantly 
increased bacterial richness but decreased bacterial evenness. 
Those results suggested that application of organic fertilizer 
increased the number of species to increase bacterial richness 
and enriched certain groups that preferred organic fertilizer 
to decrease bacterial evenness. By contrast, fertilization treatments 
did not significantly affect indices of fungal alpha diversity. 
Thus, fertilizer treatments had different effects on alpha diversity 
of bacterial and fungal communities. The results are consistent 
with those of previous studies in which organic fertilizer 
additions increased soil microbial abundance but not evenness 
(Parham et  al., 2003; Sun et  al., 2004; Jangid et  al., 2008; 
Yuan et  al., 2008).

Fertilization can stimulate growth of soil microorganisms 
and thereby affect microbial community structure (Chu et al., 
2007; Esperschütz et  al., 2007; Gu et  al., 2009). In previous 
studies, long-term application of different fertilizers significantly 

FIGURE 5 | Heat map of relative abundances of genera of bacteria and fungi with positive correlations to rice yield. Relative abundances were Z-score normalized. 
Genus-level bacteria names begin with “b”, and genus-level fungi names begin with “f”.
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A

C

F

D E

B

FIGURE 6 | Co-occurrence networks of bacterial and fungal communities in (A) control (CK), (B) nitrogen–phosphorus–potassium (NPK), and (C), NPK plus 
organic fertilizer (NPKM) fertilization treatments. Each node in a network represents a genus of bacteria or fungi. Size of a node represents average relative 
abundance of a genus of bacteria or fungi. Different colors of nodes provide taxonomic information at the phylum-level. In the legend, names of bacterial phyla begin 
with “b,” and names of fungal phyla begin with “f.” (D) Common and unique edges in co-occurrence networks between each two of the three treatments. 
(E) Comparison of sequence numbers of the fungus Trichoderma in different fertilization treatments. (F) Indices related to topological structure of the co-occurrence 
interaction network of bacterial–fungal communities.

altered the structure of soil bacterial and fungal communities 
(Allison et al., 2007; Wu et al., 2011; Yu et al., 2013). According 
to the PCoA in this study, the different fertilization treatments 
altered bacterial and fungal species composition and therefore 
microbial community structure. Mantel tests indicated that 
rice yield was positively correlated with bacterial community 
structure but not with fungal community structure. Therefore, 
because the response of bacterial communities to fertilization 
treatments was greater than that of fungal communities, 
bacterial community parameters might be  suitable indicators 
of soil biological fertility.

Bacteria can be  divided into two life types according to 
life history strategy, namely copiotroph r-strategists and 
oligotroph K-strategists (Pianka, 1970; Fierer et  al., 2007). 
When soil organic matter content is high, r-strategists are 
usually the primary decomposers of organic matter, and 
microorganisms in the eutrophic group are most abundant. 
By contrast, when soil organic matter content is low and 
nutrients are lacking, K-strategists in the oligotrophic group 
have a competitive advantage (Fontaine et  al., 2003). 
Actinobacteria, α-Proteobacteria, β-Proteobacteria, and 
Bacteroidetes are generally regarded as r-strategists in the 
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eutrophic group and are generally more abundant in high-
fertility soils (Fierer et  al., 2007; Newton and Mcmahon, 
2011; Leff et  al., 2015; Zhou et  al., 2015). Acidobacteria and 
Verrucomicrobia are classified as K-strategists in the 
oligotrophic group (Ramirez et al., 2010). In a previous study, 
application of organic fertilizer significantly increased relative 
abundances of r-strategists in the eutrophic group, such as 
Proteobacteria, Bacteroidetes, and Actinobacteria, whereas 
application of inorganic fertilizers significantly increased 
relative abundances of K-strategists in the oligotrophic group, 
such as Acidobacteria (Xun et  al., 2016). In this study, the 
three most abundant bacterial groups were Proteobacteria 
(39.5%), Acidobacteria (19.1%), and Actinobacteria (6.5%), 
which together accounted for 65.1% of the bacterial community. 
In NPKM, relative abundances of r-strategists in the eutrophic 
group (Actinobacteria and Proteobacteria) increased, but 
those of K-strategists in the oligotrophic group (Acidobacteria 
and Verrucomicrobia) decreased significantly (Figure 4). The 
ratio of abundances of Proteobacteria to Acidobacteria may 
be  an indicator of nutrient status of a soil ecosystem (Smit 
et  al., 2001; Torsvik and Øvreås, 2002). In this study, the 
ratio of Proteobacteria to Acidobacteria was significantly 
higher in NPKM than in other treatments (Figure 7), indicating 
that soil nutrient status and productivity were also high. 
However, it should be  noted that considering microbial 
community response at finer resolutions (e.g., family, genus 

and species level) may be  more adequate when assigning 
life strategies to microorganisms (Ho et  al., 2017). Notably, 
abundance of the fungal genus Trichoderma increased 
significantly in NPKM (Tukey’s post hoc test, p < 0.05; 
Figure  6E). Trichoderma is a well-known plant growth-
promoting fungus (Masunaka et al., 2011) that can significantly 
increase crop growth and productivity (Hyakumachi, 1994). 
Thus, Trichoderma might be  one reason for the high rice 
yield in the organic–inorganic combined treatment.

Co-occurrence network analysis was conducted to examine 
interactions among soil microorganisms in response to different 
fertilization treatments. The most complicated network was in 
NPKM, suggesting organic fertilizer addition increased 
interactions among microbial community members (Figure 6). 
The increase in complexity was likely due to the additional 
C input in the organic fertilizer. Soil bacteria and fungi can 
use those carbon sources to generate additional energy and 
thus boost expression of soil microbial functions, which increases 
the number of microbial interactions. The results suggested 
that organic fertilizer addition increased stability of community 
structure and therefore ability to resist external interference. 
In addition, by increasing levels of cooperation within microbial 
communities, addition of organic fertilizer was likely conducive 
to developing soil biological fertility. Thus, complexity of 
microbial interaction networks might be  an indicator of soil 
biological fertility.

FIGURE 7 | Effects of long-term fertilization treatments on the ratio of Proteobacteria to Acidobacteria. Different letters indicate significant differences (Tukey’s post 
hoc test, p < 0.05).

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Ma et al. Soil Bio-Fertility: Microbial Interaction

Frontiers in Microbiology | www.frontiersin.org 10 June 2022 | Volume 13 | Article 890712

Notably, the fungal genus Trichoderma was not in  
the co-occurrence network in NPK but was in that in 
NPKM. Enrichment of the beneficial fungus Trichoderma in 
the combination organic and inorganic treatment indicated 
there were changes in the interaction network of soil 
microorganisms that could increase rice productivity. Inoculation 
of Trichoderma could be  used to improve crop productivity 
in agroecosystems.

CONCLUSION

Soil biological fertility is an important component of overall 
soil fertility. However, how to best evaluate soil biological 
fertility has not been determined. Soil microbial communities 
are important in regulating soil biological fertility. Thus, the 
responses of soil bacterial and fungal community diversity, 
structure, composition, and interactions to different fertilization 
treatments were analyzed by high-throughput sequencing. The 
inorganic and organic fertilizer treatment had the highest 
bacterial richness, the most unique bacterial and fungal 
communities due to species selection by fertilizers, and the 
microbial network with the highest complexity, and as a result, 
the highest productivity. Trichoderma was enriched in the 
NPKM treatment and might be a key contributor to the increase 
in soil fertility. The results indicate that bacterial richness and 
complexity of microbial interaction networks could be  used 
as indicators of soil biological fertility. This research provides 
new insights on responses of soil bacterial and fungal 
communities to different fertilization treatments and their 
contributions to crop yield. The study also identifies new 

indicators to evaluate soil biological fertility and indicates that 
inoculation with Trichoderma might improve crop productivity 
in agroecosystems.
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