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Abstract

Benign prostatic hyperplasia (BPH) is the most common urologic disease among elderly men.

A well-established in vitro cell model is required to determine the therapeutic mechanism of

BPH inflammation. In this study, we attempted to establish an immortalized human prostate

stromal cell line by transfecting with HPV-16 E6/E7 and designated as ihPSC. No significant

difference was found in fibroblast-like morphology between primary hPSC and ihPSC. The

ihPSC possessed a significantly higher cell proliferation rate than primary hPSC. The prostate-

specific markers and proteins including cytoskeleton (α-SMA and vimentin) and smooth mus-

cle (calponin), especially the androgen receptor (AR) were also examined in ihPSC, almost

identical to the primary hPSC. To create an in vitro model featuring chronic prostatic inflamma-

tion, ihPSC was stimulated with IFN-γ+IL-17 and then treated with the high molecular weight

hyaluronic acid hylan G-F 20 as an alternative strategy for inhibiting BPH inflammation. Hylan

G-F 20 could dose-dependently diminish the inflammation-induced proliferation in ihPSC. The

enhanced expressions of inflammatory molecules including IL-1β, IL-6, IL-8, cyclooxygenase

2 (COX2), inducible nitrogen oxide synthase (iNOS), and Toll-like receptor 4 (TLR4) were all

abolished by hylan G-F 20. For inflammatory signaling, hylan G-F 20 can also diminish the

IFN-γ+IL-17-increased expression of iNOS and p65 in ihPSC. These findings suggest that

ihPSC could provide a mechanism-based platform for investigating prostate inflammation.

The hylan G-F 20 showed strong anti-inflammatory effects by decreasing inflammatory cyto-

kines and signalings in the ihPSC, indicating its therapeutic potentials in BPH treatment in the

future.
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Introduction

Benign prostatic hyperplasia (BPH) represents the most common urologic disease among

elderly men, in which the incidence is over 70% at age 60 years and over 90% at age 70 years

[1, 2]. There is increasing evidence for the association of chronic prostate inflammation with

BPH [3–5]. Inflammation in BPH tissue includes the up-regulation of pro-inflammatory cyto-

kines such as IL-17 in infiltrating T cells [6], interferon-γ in basal and stromal cells [7], and IL-

8 in epithelial cells [8]. A variety of growth factors and cytokines have also been implicated in

BPH inflammation, such as IL-1, IL-6, IL-8, and IL-17 as well as TNF-α and TGF-β [9]. In

addition, preventing or reducing prostate inflammation might be one strategy for reducing the

risk of prostate cancer (PC) and therefore targeting inflammation sources is considered as an

attractive option. Hence, therapeutic strategy of targeting the prostate stoma, especially the

prostate stromal cells, has become emerged.

An in vitro cell model is required for preclinical study to determine the mechanism of BPH

inflammation. Unfortunately, primary human prostate cells are known very difficult to be

developed for continuously growing culture and undergo terminal growth arrest [10]. The dif-

ferentiation state also rapidly loses following in vitro culture. Thus, an immortalized prostate

cell lines with innate and stable characteristics is indispensable for BPH research. Various

approaches have been reported to reach immortalization, including the transfection of telome-

rase reverse transcriptase (TERT) and oncogene SV40LT into parental cells. However, disad-

vantages such as karyotypic instability and cell hypertrophy were commonly realized [11, 12].

To obtain immortalized cell lines retaining innate and parental phenotypes, human papilloma-
virus-16 E6/E7 (HPV-16 E6/E7) has been successfully utilized in our previous studies [13–15].

The preservation of parental characteristics, differentiation abilities, and unlimited cell prolif-

eration were elucidated after HPV-16 E6/E7-immortalization. Thus, it is feasible to use HPV-
16 E6/E7 for immortalizing human prostate stromal cells.

Another critical issue is to develop in vitro BPH inflammation model. The infiltration of

immune cells including T cells, B cells, and macrophages has been demonstrated in contribut-

ing BPH formation [16]. Most importantly, IFN-γ and IL-17 secreted by CD4+ cells could up-

regulate IL-6, IL-8, and CXCL10 production in BPH cells and create a positive feedback loop

for enhancing BPH inflammation [17]. Thus, IFN-γ and IL-17 were cooperatively used to cre-

ate in vitro BPH inflammatory model on ihPSC.

Considering the importance of the stromal elements in the development and progression of

BPH, the present study was aimed to create an immortalized human prostate stromal cell (des-

ignated as ihPSC) model by employing the human papillomavirus type 16 (HPV16) E6/E7

gene. The phenotypes and growth profile of this ihPSC cell line was further verified to evaluate

its potential for functional studies and for prospective applications, such as a screening tool to

identify potential agents with anti-inflammatory activities. For BPH treatment, high molecular

weight-hyaluronic acid (HMW-HA) with strong anti-inflammation potentials was utilized to

explore its molecular mechanism for anti-inflammation and for future therapy by using the

ihPSC model.

Material and methods

Primary culture of prostate stromal cells

The study protocol was approved by the Joint Institutional Review Board at the Taipei Medical

University, Taiwan (TMUH-JIRB 103-01-R1). Specimens were collected by transurethral resec-

tion of the prostate (TURP) from patients who signed an informed consent to the approved

study protocol. Histology of respected specimens was confirmed by pathological report from a
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surgical pathologist in which a benign inflammatory prostate tissue with proliferation of pros-

tatic acini and fibromuscular stroma were evident.

Primary human prostate stromal cells (hPSC) were isolated from specimens with histologi-

cal diagnosis within 4 h of resection. Tissues were transferred to sterile vessels in growth

medium containing DMEM/F12 (1:1) medium (Invitrogen) supplemented with 10% fetal

bovine serum (FBS), 2mM L-Glutamine and antibiotics) and finely chopped using scissors.

Suspensions containing tissue fragments were then digested at 37˚C in 200 IU/ml type I colla-

genase (Sigma) for 18 hours. The collagenase digested tissue was then washed three times in

PBS and the supernatant containing stromal cells was centrifuged at 250×g (or 500 rpm) for 5

minutes. Cell pellet was re-suspended and plated in growth medium and incubated at 37˚C in

a 5% CO2/humidified incubator. After 12 hours, non-adherent material was removed by wash-

ing with fresh medium. After the cells were grown to confluence, stromal cells were harvested

by trypsinization and then removed and expanded under routine conditions. After cultivation

for 2 passages, a homogenous stromal cell population was established.

Immortalization of primary hPSC by transfecting with human

papillomavirus (HPV-16)-E6/E7

Transduction of the HPV-16 E6/E7 was conducted as previously described [15, 18]. In brief, the

HPV-16 E6/E7 retroviral vector (LXSN16E6E7) [18, 19] produced by PA317 cell line (purchased

from the American Type Culture Collection, ATCC, Manassas, VA, USA) was expanded in

DMEM with 10% FBS (Gibco). The isolated primary polyclonal human prostate stromal cells

(hPSC) were recovered by trypsinization, and then seeded on six-welled plates at a density of

2.5 x 105 cells per well. After infection with 1mL virus stock in medium containing 8 μg/mL

polybrene for 48 hours, the virus was removed and the medium was replaced with DMEM/F12

supplemented with 10% FBS. The cells were passaged on the next day and harvested when obvi-

ous clones were present three weeks later. The transfected cells, designated as ihPSC, were con-

tinuously grown in the same medium as used for primary culture and passaged at a ratio of 1:3

when the cells appeared subconfluently.

Cell growth assay

The cell viability was estimated using MTT assay (Sigma, USA), which provides a relative

measure of cell growth by quantifying cellular conversion of a tetrazolium salt into a forma-

zan product. Cells (4 × 103 cells/ well) were seeded into 96-well plates and allowed to grow

cultured for different times. The growth rate was determined in triplicate on days 1, 3, 5,

and 7 after inoculation, respectively. MTT reagent (20 μL/ well) was added and incubated

for another 4 hours at 37˚C in a 5% CO2 incubator. 150 μL of DMSO (Sigma, USA) was

added to each well to lyse cells and dissolve the crystals. Viable cells were determined by

reading the absorbance of the cell lysates at 570 nm by using a Multiskan PC (Thermo Lab-

system). Cell population doubling time was calculated using the following function as previ-

ously described [18]:

Doubling time ¼
ðT � T0Þ log2

logN � logN0

where T–T0 indicates the length of time between two measurements and N0 and N denote

the OD value at the initial seeding time point and the final time point. The experiments

were repeated three times.
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Senescence-associated β-galactosidase (SA-β-gal) staining

Cell senescence was characterized by changes in SA-β-gal activity and performed using a histo-

chemical staining kit (Sigma). Briefly, hPSC and ihPSC cells were incubated with fixation

buffer for 6–7 minutes at room temperature. After washing with PBS, the cells were incubated

with β-gal chromogenic substrate solution for 12 h at 37˚C without CO2. PBS was then added

to stop the reaction and the stained cells were counted. The experiment was repeated times

and the mean percentage of cells expressing β-Gal was calculated.

Reverse transcriptase polymerase chain reaction (RT-PCR)

Total RNA was extracted using TRIzol reagent (Invitrogen Life Technologies, Carlsbad, CA)

according to the manufacturer’s instructions. Extracted RNA was quantified spectrophotomet-

rically at 260nm, dissolved in sterilized ddH2O and stored at −80˚C until use. Reverse tran-

scription (RT) was performed with SuperScriptTM III Reverse Transcriptase (Invitrogen Life

Technologies) and an Oligo d(T)12-18 primer according to manufacturer’s instructions. Six

micrograms of cDNA was used in PCR amplification in a final volume of 50 μL containing 2.5

mM dNTP, 25 mM MgCl2, upstream/downstream primers (see Table 1) and Taq DNA poly-

merase (Invitrogen Life Technologies). Following an initial denaturation at 95˚C for 5 min,

the DNA was amplified in the Touchgene Gradient (Techne, Cambridge, UK) using 35 cycles

of 1 min at 94˚C for denaturation and extension at 72˚C for 1 min. This was followed by a

final extension at 72˚C for 5 min. Primer sequences were shown in Table 1. Quantification was

normalized using Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as an internal con-

trol. PCR products were then run on 2% agarose gels (Agarose I, AMRESCO, UT, USA) with

Table 1. Primer sets for PCR amplification.

Genes Primer sequences (5’!3’)

HPV-16 E6/E7 ATG CAT AGT ATA TAG AGA TGG GAA T
CTG CAG GAT CAG CCA TGG TAG A

Vimentin CTA CAT CGA CAA GGT GCG CTT
TGC CAG AGA CGC ATT GTC AA

α-SMA CCA GCT ATG TGA AGA AGA AGA GG
GTG ATC TCC TTC TGC ATT CGG T

human basic (h1) Calponin GAG TGT GCA GAC GGA ACT TCA GCC
GTC TGT GCC CAA CTT GGG GTC

Androgen receptor CAT GCA CAA GTC CCG GAT G
GGT GAG CTG GTA GAA GCG T

Interlukin1β AAA GCT TGG TGA TGT CTG GT
TCT ACA CTC TCC AGC TGT AG

IL-6 GGT ACA TCC TCG ACG GCA TCT
GTG CCT CTT TGC TGC TTT CAC

IL-8 ATG ACT TCC AAG CTG GCC GTG GCT
TCT CAG CCC TCT TCA AAA ACT TCT C

COX2 TTC AAA TGA GAT TGT GGG AAA ATT GCT
AGA TCA TCT CTG CCT GAG TAT CTT

iNOS

GAT GAG AGT GGC AGC TAC TGG GTC
TCC GCA CAA AGC AGG GCA CTG GGT C

TLR4

TGG ATA CGT TTC CTT ATA AG
GAA ATG GAG GCA CCC CTT C

GAPDH GCT CTC CAG AAC ATC ATC CCT GC
CGT TGT CAT ACC AGG AAA TGA GC

https://doi.org/10.1371/journal.pone.0178152.t001
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SYBR safe (TTDNA01, BIOTOOLS Co., Taiwan) staining and images were analyzed using

Mutigel-21 (Fluorescent Gel Image System TOP BIO Co., Taiwan). Images were analyzed

using FloGel-I (Fluorescent Gel Image System, Top BioCom, Taiwan).

Western blotting

Cells were trypsinized and lysed on ice in RIPA buffer (50 mM Tris pH 7.4, 150 mM NaCl,

0.5% DOC, 1% NP-40, 0.1% SDS), followed by centrifugation for 15 min at 12,000 rpm at 4˚C.

The upper fluid, containing total protein, was collected and quantified. The equal amounts of

protein was separated in 10% SDS-PAGE and blotted on a nitrocellulose membrane. The

membrane was treated with blocking-buffer for 2 hours and incubated with primary antibod-

ies at 4˚C overnight. β-actin or lamin B was as an internal control. After brief washing in

PBS-T, the membranes were incubated with peroxidase-labeled secondary antibody (diluted

1:5000 in PBS-T) for 2 h at room temperature. Protein bands were detected by the ECL plus-

Kit (Amersham Pharmacia) and visualized with a Biospectrum AC Imaging System (UVP

BioImaging Systems, Upland, CA). Primary antibodies included anti-AR (diluted 1:1,000,

Genetex), anti-iNOS (diluted 1:500, Genetex), anti-p65 (diluted 1:1,000, Genetex), anti-human

β-actin (diluted 1:5,000, Millipore), and anti-human lamin B (diluted 1:1,000, Cell signaling).

Immunocytofluorescence (IFC) staining

IFC staining was performed to demonstrate that stromal cells were mixed population. Cells

were fixed with 80% chilled methanol and washed twice in PBS, followed by a blocking step

using Avidin/Biotin blocking kit (Vector Laboratories, Burlingame, CA) for 20 min. Immuno-

globulin reactions were carried out using rabbit anti-human α-SMA monoclonal antibody

(myofibroblast marker; diluted 1:200, Genetex), rabbit anti-human vimentin monoclonal anti-

body (fibroblastic marker; diluted 1:200, Genetex), and calponin (smooth muscle cell marker;

diluted 1:100, Genetex) overnight as the primary antibody and anti-rabbit IgG secondary con-

jugated with Dylight 488 for 30 min at room temperature. After incubation with antibodies,

cells were then reacted with DAPI and finally observed using fluorescence microscope. Images

were acquired and processed using DPC controller software (Olympus, Hamberg, Germany).

Tumorigenicity assay

The animal experiment was conducted in compliance with the protocol approved by the Insti-

tutional Animal Care and Use Committee of Taipei Medical University. The suspended mix-

ture was injected subcutaneously into the dorsa of each SCID/NOD mice (6 mice per group), 4

to 6 weeks old, was provided by the National Taiwan University Laboratory Animal Center

(Taipei, Taiwan). The mice were maintained in sterilized pathogen-free (SPF) cages and

observed daily for tumor formation over 3 months. The primary hPSC and immortalized

hPSC cells were trypsinized from confluent monolayer cultures and re-suspended at 4 × 106

cells/mL in PBS for injection to mice. HeLa cells were injected as positive controls.

Creation of chronic inflammation model in ihPSC and inhibited by hylan

GF-20

ihPSC was finally subjected to study the inflammation mechanism related to chronic prostatic

inflammation. Briefly, to create an in vitro model featuring chronic prostatic inflammation,

ihPSC was stimulated with 20 ng/ ml IFN-γ and IL-17 for 48 hrs [17]. The high molecular

weight hyaluronic acid (HA) hylan G-F 20 with strong anti-inflammatory potentials [20] was

further treated inflammatory ihPSC for another two days. Cell proliferation, RT-PCR and

Chronic prostate inflammation model using immortalized human prostate stromal cell line
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western blotting were then utilized to evaluate the inflammation and anti-inflammation

responses in ihPSC.

Statistical analysis

The results of all experiments are shown as the mean ± standard deviation (SD). In the charac-

teristic results, differences between parental cells and ihPSC were compared using student t-
test. In the inflammation model, differences between control and treatment groups were com-

pared and evaluated using student t-test. A p value< 0.05 was considered as a significant

difference.

Results

Human prostate stromal cells (hPSC) actively contributed to organ-specific inflammatory pro-

cess in benign prostatic hyperplasia (BPH). However, primary prostate stromal cells rapidly

lose its phenotypes during passages, especially the decreased expression of androgen receptors

(AR), which exert an essential role in inducing the inflammatory responses [21, 22]. For pre-

clinical studies, we attempted to immortalize primary hPSC by transduction of HPV-16 E6/E7
retroviral vector (LXSN16E6E7). No significant difference was found in fibroblast-like mor-

phology between primary hPSC and immortalized hPSC (ihPSC) by phase contrast micros-

copy (Fig 1A). Successful immortalization was confirmed by stable expression of HPV-16 E6/
E7 mRNA in ihPSC cells by RT-PCR (Fig 1B).

Proliferative characteristics of ihPSC were demonstrated by viability assay for 7 days (Fig

2A). The growth curve of ihPSC was distinct from primary hPSC, showing an arithmetic ratio

Fig 1. Characterization of HPV16 E6/E7-immortalized human prostate stromal cells (ihPSC). (A) No

significant difference in morphological appearances of fibroblast-like cells between primary hPSC and ihPSC.

Scale bar, 500μm. (B) Successful immortalization was confirmed by stable expression of HPV-16 E6/E7

mRNA in ihPSC cells by RT-PCR. Glyceraldehyde 3-phosphate dehydrogenase (GADPH) was used as

internal control.

https://doi.org/10.1371/journal.pone.0178152.g001
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of growth up to the 7th day, while decreased proliferative ratio was observed in the primary

hPSC from day 3. The ihPSC showed a significantly shorter cell doubling time (72.07±6.85

hrs) than the primary hPSC (220.4±71.43 hrs) (P<0.01, Fig 2B). Cell senescence of the ihPSC

(12.48±3.75%) characterized by senescence-associated beta-galactosidase (SA-β-gal) activity

was lower than that of primary hPSC (37.64±8.88%, P<0.01), indicating a significant decrease

in the amount of senescent cells (Fig 2C). These results suggested that ihPSC possessed a sig-

nificantly higher proliferation rate and anti-senescence compared to primary hPSC.

After 25 passages of ihPSC culture, the markers of cytoskeleton (α-SMA and vimentin) and

smooth muscle (calponin), especially the androgen receptor (AR) were examined and found

continuously expressed in ihPSC, almost identical to the primary hPSC (Fig 3A). In Fig 3B, the

protein level of AR by western blot between the primary hPSC and ihPSC expressed equally.

Representative merged images of immunocytofluorescence (ICF) staining for α-SMA, vimentin,

and calponin in ihPSC also revealed no observable significant difference compared to primary

hPSC (Fig 3C). These results indicated that after immortalization the ihPSC still maintained the

primary characteristics of fibroblasts (vimentin-positive), myofibroblasts (α-SMA-positive), and

smooth muscle cells (calponin-positive).

To examine whether HPV-16E6/E7 genes induced tumorigenicity of ihPSC, the primary

hPSC, ihPSC, and Hela cells (8 x 106 cells/ mL) were injected subcutaneously into the dorsa of

SCID/NOD mice (Fig 4). Three months later, tumor masses were only found on the dorsa of

mice injected with HeLa cells (arrows indicated); however, both primary hPSC and ihPSC

showed no tumor mass formation. These data indicated that both primary hPSC and ihPSC

are both non-tumorigenic.

We further investigated the important role of hPSC in chronic inflammatory process in

BPH pathogenesis triggered by proinflammatory cytokines. For creating in vitro chronic BPH

Fig 2. Cell growth and senescence of ihPSC. (A) A representative growth curve, (B) population doubling

time (hrs), and (C) Senescence associated β-galactosidase (SA-β-gal) activity in ihPSC were compared to

hPSC. Results are shown as the mean ±SD for three independent experimental cultures. * indicates a

significant difference with P<0.01.

https://doi.org/10.1371/journal.pone.0178152.g002
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inflammation model, ihPSC were grown in the presence of IFN-γ+IL-17 (20 ng/ mL for each)

[17] and then the effects of IFN-γ+IL-17 on the viability of ihPSC was determined after 48 h

treatment (Fig 5A). The proliferation of ihPSC was significantly increased after IFN-γ+IL-17

Fig 3. Phenotypic characteristics of ihPSC. (A) RT-PCR analysis of specific mRNA transcripts of cell markers, including vimentin, α-smooth muscle actin (α-

SMA), calponin, and androgen receptor (AR) and their relative quantification. GADPH was used as internal control. (B) Western blot analysis for proteins isolated

from hPSC and ihPSC cells confirmed the expression of AR with anti-AR antibody. β-actin was used as the internal control. (C) Immunocytofluorescence staining

for α-SMA, vimentin, and calponin (using FITC labeled antibodies). Nuclei were counterstained with DAPI (blue). FITC and DAPI stainings were merged to show

the localization of specific proteins. Scale bar, 200 μm. No significant difference was observed among cell markers during RT-PCR analysis.

https://doi.org/10.1371/journal.pone.0178152.g003
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treatment, suggesting that IFN-γ+IL-17-mediated inflammatory response had a significant

impact on the growth of ihPSC (Fig 5B). However, the high molecular weight hyaluronic acid

(HA) hylan G-F 20 could dose-dependently diminish the induced proliferation of inflamma-

tory ihPSC.

To identify factors potentially responsible for the inflammatory effect of IFN-γ+IL-17 in

ihPSC, the pro-inflammatory molecules were examined by RT-PCR (Fig 5C). Expression of

IL-1β, IL-6, IL-8, cyclooxygenase 2 (COX2), inducible nitrogen oxide synthase (iNOS), and

Toll-like receptor 4 (TLR4) were all increased by IFN-γ+IL-17 compared with untreated cells

(CTRL). After treatment with G-F 20, the pro-inflammatory response was then almost totally

diminished by higher concentration of hylan G-F 20 at 500 μg/ml. Interestingly, little effect

was seen on IL-6 in hylan G-F 20.

During inflammation, iNOS and nuclear factor кB (NF-кB) subunit p65 cooperatively par-

ticipated in the main inflammation process. This was evidenced by western blot analysis show-

ing an increased expression of iNOS and p65 in response to IFN-γ+IL-17 in ihPSC compared

to CTRL (Fig 5D). Such induction was effectively diminished by the treatment with hylan G-F

20 (500 μg/ ml). These results indicated that the inflammation phenotypes of ihPSC could be

stimulated by IFN-γ+IL-17 and then down-regulated by hylan G-F 20.

Discussion

In the present work, we attempted to establish an immortalized hPSC, designated as ihPSC, by

transduction of HPV-16 E6/E7. After 25 passages, the ihPSC was first characterized according

to the parental hPSC phenotypes. The ihPSC could stably expressed HPV-16 E6/E7 gene and

showed significantly increased proliferation rate, decreased senescence, and maintained paren-

tal phenotypes. In addition, ihPSC showed non-tumorigenic.

Primary human prostate stromal cells (hPSC) from BPH were shown to exhibit the key fea-

tures of antigen presenting cells and produce pro-inflammatory cytokines and chemokines in

Fig 4. Tumorigenicity assay of ihPSC. NOD/SCID mice were subcutaneously injected with hPSC, ihPSC,

and Hela cells (8 x 106 cells/ mL). Tumor masses were only found on the dorsa of mice injected with HeLa

cells (arrow indicated).

https://doi.org/10.1371/journal.pone.0178152.g004
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response to the stimulation of IFN-γ and IL-17 [17]. However, primary cultures of human pros-

tate stromal cells have limited lifespan and may lose their phenotypes during propagation. Thus,

to overcome these limitations and to preserve a stable culture system for investigating clinically

relevant problems, establishment of immortalized cell line mimicking the characteristics of pri-

mary cells has become an emergent strategy. Our previous results showed that the HPV-16 E6/
E7-based approach has been utilized to successfully establish several immortalized platforms,

including human articular chondrocytes (designated as hPi cells) [14] and human nucleus pul-

posus (designated as ihNP) [15]. Both cell lines can preserved stable chondrogenic phenotypes,

in which the hPi cells can be used to induce the stage-specific chondrogenesis of MSCs and

expressed the regenerative potential in platelet-rich plasma (PRP)/ collagen scaffold [13, 23]. In

addition, the ihNP cells can provide a chondrogenic recovery model as a regenerative drug

screening platform for further disc regenerative drug discovery. Thus, this study was to achieve

the goal of obtaining stable hPSC cell line for prospective applications in prostate inflammation.

The parental hPSC was originated from a patient with BPH and concurrent prostatic

inflammation. The stromal cell population in hPSC includes smooth muscle cells (calponin-

Fig 5. In vitro chronic prostate inflammation model in ihPSC induced by interferon-γ (IFN-γ) and IL-17. (A) Schematic illustration of in vitro chronic

prostate inflammation model and anti-inflammatory effects of hylan G-F 20. (B) Cell proliferation, (C) RT-PCR analysis of prostate inflammation-associated

markers and their relative quantification, GAPDH was used as internal control. (D) the expression levels of iNOS and p65 proteins (β-actin and lamin B

used as respective internal control) in ihPSC cells treated with IFN-γ and IL-17 (20 ng/ml each) for 48h in the absence or presence of 250, and 500 μg/ml of

hylan G-F 20 compared to the control (CTRL) group. Results are shown as the mean±SD for three independent experimental cultures. * and ** indicates a

significant difference with P<0.01 and P<0.001, respectively.

https://doi.org/10.1371/journal.pone.0178152.g005
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positive), fibroblasts (vimentin-positive) and myofibroblasts (α-SMA-positive) [24]. It is

known that the principal prostate stromal cells (smooth muscle cells and fibroblasts) undergo

a phenotype switching to emerge as myofibroblasts [25]. Our results showed that in ihPSC, the

mixed stromal markers including vimentin, α-SMA, and calponin were also confirmed indi-

cating the stable phenotypes of ihPSC.

Another critical characteristic of hPSC is the expression of androgen receptor (AR), which

assisted in promoting stromal cell growth and proliferation in prostate. Androgen also directly

regulates prostate development and growth via androgen receptor [26, 27]. In addition, stro-

mal AR could enhance the infiltration of macrophage migration toward prostate stromal cells

in promoting BPH development [28]. Our results revealed that AR was strongly expressed in

both ihPSC and parental hPSC (Fig 3). Hence, this indicates that ihPSC could be utilized as an

in vitro stromal inflammation model of BPH. IFN-γ and IL-17 were up-regulated in BPH [6,

29], which leads to the hypothesis that BPH was proposed to represent an “immune inflamma-

tory” disease. Consistent with a previous study using primary BPH cells, up-regulated IL-6 and

IL-8 in ihPSC might be triggered with IFN-γ+IL-17 (Fig 5). The promoted proliferation of

ihPSC induced by IFN-γ+IL-17 was associated with increased IL-8, which has also been pro-

posed as the link between chronic prostate inflammation and autocrine/ paracrine stromal cell

proliferation [8, 17]. Studies suggest that IL-6 is produced not only by prostate cancer epithe-

lial cells but also by stromal cells, and is elevated in patients with metastatic prostate cancer

and seems to mediate survival [30, 31]. COX-2 was found to be correlated in BPH and up-reg-

ulated within prostate cancer with chronic inflammation [32, 33]. iNOS has an increased

expression in prostate cancer and BPH cells while TLR4 are associated with the alteration of

innate immunity and inflammation in prostate cancer [34, 35]. NF-κB/ p65 expression was

also significantly increased in experimental BPH, correlated to the pathologic proliferation of

prostatic glandular and stromal tissues [36]. Taking together, currently the established ihPSC

cell model could illustrate these inflammation-associated factors that may contribute to the

activation of fibroblasts and infiltration of immune cells, which subsequently generate the

microenvironment associated with the development of prostate inflammatory lesions.

In clinical practice, anti-inflammation strategies for BPH inflammation have been widely

developed, including the uses of non-steroidal anti-inflammatory drugs (NSAID), anti-oxidant

compounds and vitamin D receptor (VDR) agonists [37], however, efficacies were still limited.

For alternative therapy, high molecular weight hyaluronic acid (HMW-HA) has been reported

to reduce inflammation through blocking the induction of inflammatory signaling [38]. The

sulfated HA also suppressed the growth and the anti-proliferative effects in prostate cancer

cells due to the inhibition of hyaluronidase activity [39]. Hence, the HMW-HA hylan G-F 20

with strong anti-inflammatory potentials [20] was further utilized for treating the IFN-γ+IL-

17-triggerred inflammatory ihPSC. Our results demonstrated that hylan G-F 20 could inhibit

the inflammation responses in inflammatory ihPSC, including the reduced cell proliferation,

inflammation phenotypes and inflammatory signaling. Since hylan G-F 20 has exerted its anti-

inflammatory effects on osteoarthritis (OA) [40, 41], we are the first to examine its effects on

BPH inflammation. It is reported that inflammation-induced PGE2 and NO concentrations

could be suppressed by hylan G-F 20 [42]. Hylan G-F 20 can also interact with membrane

receptor CD44 and intracellular adhesion molecule-1 (ICAM-1) for modulating the inflamma-

tory effects, including inhibiting the IL-induced matrix-degrading enzymes and production of

proinflammatory mediator, and also preventing cell apoptosis [43]. Collectively, hylan G-F 20

could potentially be further used for BPH treatment.

In summary, the ihPSC could provide a mechanism-based platform for investigating pros-

tate inflammation. The ihPSC exhibited the major phenotypic features of primary hPSC and

could undergo inflammatory response to pro-inflammatory cytokines (IFN-γ and IL-17) at

Chronic prostate inflammation model using immortalized human prostate stromal cell line

PLOS ONE | https://doi.org/10.1371/journal.pone.0178152 May 30, 2017 11 / 14

https://doi.org/10.1371/journal.pone.0178152


transcriptional and translational levels. It could be a promising approach to study the potential

therapeutic and protective effect of anti-inflammatory agents. Further, the HMW-HA hylan

G-F 20 showed strong anti-inflammatory effects by decreasing inflammatory cytokines and

signaling in the ihPSC, indicating its therapeutic potentials in BPH treatment in the future.
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