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� Abstract
Multidimensional single-cell analysis requires approaches to visualize complex data in intu-
itive 2D graphs. In this regard, t-distributed stochastic neighboring embedding (tSNE) is
the most popular algorithm for single-cell RNA sequencing and cytometry by time-of-
flight (CyTOF), but its application to polychromatic flow cytometry, including the recently
developed 30-parameter platform, is still under investigation. We identified differential dis-
tribution of background values between samples, generated by either background calcula-
tion or spreading error (SE), as a major source of variability in polychromatic flow
cytometry data representation by tSNE, ultimately resulting in the identification of errone-
ous heterogeneity among cell populations. Biexponential transformation of raw data and
limiting SE during panel development dramatically improved data visualization. These
aspects must be taken into consideration when using computational approaches as discov-
ery tools in large sets of samples from independent experiments or immunomonitoring in
clinical trials. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of Inter-

national Society for Advancement of Cytometry.
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THE advent of powerful single-cell technologies, such as single-cell RNA-seq
(scRNAseq) and cytometry by time-of-flight (CyTOF), and the recent improvement
of polychromatic flow cytometry to measure up to 30 parameters simultaneously,
required the development of new tools to visualize complex multidimensional data
in 2D space (1). t-Distributed stochastic neighboring embedding (tSNE) is widely
used in this regard and enables to define heterogeneity within a cell population as
well as the rapid identification of similarities and differences between samples (2).
Despite its capability to reduce dimensionality, tSNE maintains the original geome-
try of the high-dimensional data and has the advantage to identify rare subpopula-
tions if they are sufficiently distinct from the rest of the cells at the
immunophenotypic or gene expression level (2). This is particularly useful in poly-
chromatic flow cytometry, where virtually unlimited number of cells can be analyzed
owing to reduced costs and increased throughput as compared to scRNAseq or
CyTOF. These aspects render flow cytometry a technology of choice for the mea-
surement of multiple parameters in large clinical trials where dozens of samples are
to be analyzed.
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In the last years, much effort has been dedicated to har-
monize flow cytometry assays for basic science and clinical
trials, especially in regard to machine standardization (3–6),
reagents (7), protocols (8), and data analysis (9,10). The tech-
nology is extremely robust and reproducible in identifying
rare cell populations in independent experiments performed
by different operators (11), rather much variability is intro-
duced when independent users analyze the same data due to
subjective gating (9). As a consequence, unsupervised algo-
rithms for the identification of cell populations in high-
dimensional data sets would provide an objective approach
for data analysis (9). As these approaches make the use of
every single cell in the input, technical variability between
independent experiments or measurement errors may easily
generate artefacts and lead to the misidentification of cell
populations. Here, we tested the applicability of tSNE to
27-parameter single-cell flow cytometry data.

MATERIALS AND METHODS

Sample Collection
All experiments using human buffy coats were approved

by the Humanitas Research Hospital IRB. Peripheral blood
mononuclear cells (PBMCs) were isolated from buffy coats by
Ficoll separation and frozen in liquid nitrogen according to
standard procedures, as described in Ref. (11).

Flow Cytometer Quality Control (QC)
Machine QC was performed according to the protocol

developed by Perfetto et al. (3). Briefly, optimal voltage set-
tings of PMTs were determined in two steps: first, by defining
the separation of dimly stained Cytocal beads (Thermo Fisher
Scientific, Waltham, MA, USA) over unstained compensation
beads (Compbeads; BD Biosciences, San Jose, CA, USA) at
50 V intervals (range 350–800 V), and second, by defining
the separation of quantum simply cellular beads (QSCB; pre-
viously stained with fluorescently conjugated monoclonal
antibodies) over unstained Compbeads at �25 V of the target
voltage defined in the first step. Inter-experiment QC was
performed by running single-peak Rainbow beads (Spherotec,
Lake Forest, IL, USA) and unstained Compbeads and by
adjusting PMT voltages to reach target values. Laser delays
were adjusted manually.

Polychromatic Flow Cytometry for the Detection of
Surface and Intracellular Antigens

All data were acquired between January and December
2017 on a FACS Symphony A5 flow cytometer
(BD Biosciences) equipped with five lasers (UV, 350 nm; vio-
let, 405 nm; blue, 488; yellow/green, 561 nm; red, 640 nm; all
tuned at 100 mW, except UV tuned at 60 mW) or with a
FACSAria cell sorter equipped with four lasers (violet,
405 nm; blue, 488; yellow/green, 561 nm; red, 640 nm; all
tuned at 50 mW). Flow cytometry data were compensated in
FlowJo by using single-stained controls (Compbeads incu-
bated with fluorescently conjugated antibodies), as described
in Ref. 12.

Cells previously frozen in liquid nitrogen were used in
all experiments. Vials of PBMCs from three different donors
were thawed in five independent, replicate experiments and
stained with a 25-color flow cytometry panel of antibodies as
described below. Cells were added to RPMI1640 supplemen-
ted with 10% fetal bovine serum and 1% penicillin–strepto-
mycin, 1% L-glutamine, and 20 μg/ml deoxyribonuclease I
from bovine pancreas (Sigma-Aldrich, St. Louis, MO, USA).
Subsequently, cells were extensively washed and stained
immediately with the Zombie Aqua Fixable Viability Kit
(BioLegend, San Diego, CA, USA) in phosphate-buffered
saline for 15 min at room temperature (RT). Cells were then
washed and stained with the combination of antibodies, pur-
chased from BD Biosciences, BioLegend, or eBioscience, as
indicated in Supporting Information Table S1. Antibodies
were previously titrated to define optimal concentration, as
described in Refs. 12,13. Staining of CXCR5, CCR7, and
CXCR3 was performed for 20 min at 37�C, while all other
surface markers (except CD3) were stained for 20 min at
RT. Ki-67, CD3, and transcription factors were detected intra-
cellularly following the fixation of cells with the FoxP3/tran-
scription factor staining buffer set (eBioscience, Waltham,
MA, USA) according to manufacturer’s instructions and by
incubating with specific antibodies for 30 min at 4 �C.

High-Dimensional Single-Cell Data Preprocessing and
Analysis by tSNE

27-Parameter Flow Cytometry Standard (FCS) 3.0 files
were imported into FlowJo software version 9 or 10 and left
untreated or biexponentially transformed (the same transforma-
tion for all files, performed in version 10) prior to tSNE analysis.
Alternatively, background fluorescence events below the arbi-
trary threshold of 100, the maximum common value for all fluo-
rescence parameters that is below the threshold of positive
antigen expression in this dataset, were transformed by a process
referred to as “background randomization.” Briefly, all fluores-
cence events comprised in the interval between the lowest value
of the log distribution (as obtained from the machine) and
100 were randomly distributed evenly across all channels. Repli-
cate samples are expected to contain a similar number of events
in this interval, although with different distributions across fluo-
rescence channels, and for this reason are forced to have the
same distribution by background randomization.

Following transformation, 27-parameter samples were
assigned with a computational barcode for their unique iden-
tification, concatenated (3,000 CD8+ T cells per sample for a
total of 45,000 CD8+ T cells) and visualized with tSNE
(Barnes–Hut implementation) in FlowJo. The following
parameters were tuned in preliminary experiments (14), then
used at default values (unless otherwise specified) as we
observed no substantial changes in the final distribution: iter-
ations, 1000; perplexity, 40; initialization, deterministic; theta,
0.5; eta, 200. In some experiments, perplexity was changed to
determine variability in tSNE cluster distribution and data
display/representation (Figure 3a). All parameters except for
lineage markers (CD3, CD4, and CD8), Aqua dead cell
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marker and Eomes transcription factor, were included in the
analysis.

To test the influence of background fluorescence on the
final tSNE representation independently of FlowJo software,
PBMC samples from two different healthy donors were
stained with a nine-color panel (Supporting Information
Table S1) within the same experiment and acquired on a
FACSAria cell sorter. Markers were selected in a way that
CD8+ TN cells are defined only by negative expression, that
is, CD56−, HLA-DR−, CD4−, and CD45RO−. Cells were fur-
ther gated as CCR7+, although CCR7 was not included in the
analysis. In this way, only background, and not positive fluo-
rescence (i.e., protein abundance on the cell surface) defines
CD8+ TN cells in the tSNE display. Compensated FCS 3.0 files
(containing 20,000 cells/sample) were exported as .txt,
concatenated in R analyzed using the Rtsne function (from
the Rtsne package, using default options with the exception of
PCA parameter that was set equal to “FALSE”) to calculate
the coordinates for the 2D tSNE plot. Resulting data were fur-
ther converted in FCS 3.0 format and analyzed with
FlowJo 10.

Influence of Spreading Error (SE) on tSNE Map
Calculation

To test the effect of SE (15) on the tSNE map calcula-
tion, we designed a polychromatic panel where SE is contrib-
uted only by CD57 BV605 spreading into the YG610 channel
(in this experiment detecting anti-CCR7 PE-CF594;
Figure 2a). A PBMC sample was stained as above with a
backbone panel including Zombie Aqua and antibodies
directed to recognizing the following antigens: CD3, CD4,
CD8, CD27, CD45RA, CD45RO, CCR7, and CD56. After
wash, cells were split into four replicate tubes, three of which
were subsequently stained with increasing amounts of anti-
CD57 conjugated to BV605. The fourth tube was left
unstained as a control. Then, 20,000 cells from each of the
four samples (80,000 in total) were concatenated and visual-
ized with tSNE. The following markers were given as input:
CD27, CD45RA, CD45RO, CCR7, and CD56. To make sure
that the final result was dependent only on SE and not by the
abundance of CD57 expression, the CD57 parameter was
excluded from tSNE calculation.

RESULTS

We evaluated the usefulness of tSNE to determine the
heterogeneity of multidimensional single-cell data generated
by 27-parameter polychromatic flow cytometry. For this pur-
pose, PBMC samples from three healthy donors were thawed
in five independent, replicate experiments and stained with
24 different fluorescently conjugated monoclonal antibodies
directed to recognize antigens expressed by CD8+ T cells. A
viability dye was used to exclude dead cells. The full gating
strategy used to identify CD8+ T cells is depicted in Support-
ing Information Figure S1a. A single concatenated file con-
taining 45,000 events from the different experiments was
subjected to tSNE analysis (see “Methods” section for details

on the procedure). Following debarcoding of replicate sam-
ples, we noticed that tSNE maps were substantially different
in independent experiments, specifically runs 1–2, and runs
3–4 were mostly similar to each other (on the basis of the
abundance of cells identified in the arbitrary gate) and that
those from run 5 were the most different compared to runs
1–4 (Figure 1a). We thus aimed to investigate the reason at
the basis of such variability, which characterized both tSNE1
and tSNE2 dimensions (Figure 1b). First of all, we tested
whether samples from different runs harbored differential
abundance of immune populations, for example due to the
loss of certain subsets as a consequence of the freeze/thaw
procedure. Therefore, we quantified the expression of single
markers, one at a time, by standard gating and identified sim-
ilar percentages of antigen expression (Supporting Informa-
tion Figure S1b). These data also confirm the reproducibility
of the flow cytometry technology. Overall, more variability
between measurements could be observed for those markers
not having a clear separation over negative cells, in our case
T-bet and Eomes. In particular, Eomes displayed the highest
variability among replicate stainings and was thus excluded
from further tSNE analysis.

Differential distribution of events in the tSNE map among
independent, replicate samples could be due to real biological
heterogeneity (e.g., subsets composition) or to technical artifacts
in the single-cell data. To test this, we reasoned that a pheno-
typically homogeneous T-cell population would be identified by
a single island in the map. Therefore, we selected highly puri-
fied CD8+ naive T (TN) cells on the basis of a combination of
six markers that are known to be associated with naivety
(i.e., CD45RA+CCR7+CD27+CD95−Tbet−CD73+; Figure 1c)
(16,17) and plotted them on top of the tSNE map. Surprisingly,
tSNE classified TN cells into multiple putative subpopulations
(Figure 1d), despite the relative homogeneity of TN cell immu-
nophenotype (either positive antigen expression or negative
antigen expression; Figure 1e). Since data points (cells) are dis-
tributed in a stochastic way in the final tSNE map, we tested
whether the final representation is dependent on the initial seed.
To this end, we ran the algorithm several times with random
seeds, and obtained very similar results (data not shown). We
then thought of additional factors other than true biological
heterogeneity that could drive the “clustering” of high-
dimensional flow cytometry events in the tSNE space, including
differences in (1) compensation, (2) daily instrument perfor-
mance, (3) positive signals, as a consequence of point 2 but also
possibly caused by some sort of batch effect, as well as differ-
ences in background values (i.e., the biological negative fraction
not containing fluorochrome-conjugated antibodies), and
(4) SE generated by errors in the measurement of photons at
red/far red wavelengths (15).

The impact of fluorescence compensation on the final
tSNE representation is intuitive, as incorrect compensation
may result in newly generated populations of cells in the mul-
tidimensional space. Despite subtle differences in the final
compensated data may occur between samples, correct com-
pensation was generated by running experiment-specific,
single-stained controls and by carefully examining single
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pairwise combinations (12). Matrix view of all possible com-
binations of antigen expression revealed comparable fluores-
cence distribution of CD8+ T cells from two representative
experiments (run 1 and run 5; Supporting Information

Figure S2), thus suggesting that compensation is not responsi-
ble for tSNE heterogeneity in this dataset.

Daily calibration according to Perfetto et al. (3) allowed
adjusting voltages in order to obtain comparable positive and
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background fluorescence values in different experiments
(Supporting Information Figure S3). We observed slight
changes in background levels only in run 3, which can hardly
explain differential tSNE distributions across the five runs.
Positive signals from reference beads were highly comparable.
As for beads, we observed reproducible measurements of anti-
gens that are expressed on CD8+ TN cells, that is, CXCR3,
CD73, CD45RA, CD27, CCR7, and CD98 (Figure 1e), indi-
cating that a possible batch effect due to sample preparation
is negligible. Instead, we noticed substantial variability in the
distribution of the background for some parameters such as
CD25, CD57, CD69, and Ki67 (Figure 1e), which ultimately
affected the final tSNE output by erroneously identifying vir-
tual subpopulations of cells (Figure 1f, left). Such putative
heterogeneity identified by tSNE among CD8+ TN cells has
no biological meaning (indeed CD8+ TN cells express little, if
any CD69, CD25, or CD57; Figure 1e) and seems to be
driven, at least in part, by cells with very low fluorescence
values that are piled on the low end of the log scale, an effect
generally referred to as the “log artifact” (18). By plotting the
differential fluorescence intensity of background events on
top of the tSNE map depicting TN cells, as identified from

Figure 1d, it was possible to appreciate that TN “clusters”
indeed harbor different background values of CD25, CD57,
and CD69 (Figure 1f, right). Randomization of background,
that is, the redistribution of negative events evenly across all
channels below an arbitrary threshold (set at 100 for all
parameters), improved the reproducibility of the tSNE plots
(Supporting Information Figures S4a and S4b), thereby dem-
onstrating that background values are indeed a source of
variability.

Despite the reproducibility of the flow cytometry assay, a
residual batch effect may still be present due to small variabil-
ity in positive fluorescence across independent experiments.
To overcome this, we analyzed two samples that were stained
within the same experiment with the same analytical work-
flow. We also validated our results independently of the flow
cytometer and the analytical platform. Also in this case, tSNE
displays of CD8+ TN cells from the two samples were distinct
(Supporting Information Figure S5a) and correlated with dif-
ferent levels of CD45RO, but not of CD56, HLA-DR, and
CD4 background levels (Supporting Information Figures S5b
and S5c). Specifically, low background levels of CD45RO were
associated with high tSNE1 axis and low tSNE2 axis values,
and vice versa. These data confirm our previous observation
that the influence of background fluorescence on tSNE dis-
play is a generalized phenomenon.

We next tested the contribution of SE to variability in
tSNE representation. SE is directly proportional to the square
root of the intensity of the staining, may vary between sam-
ples as a result of differential antigen abundance, and can
potentially generate new cell clusters as a consequence of
fluorescence spreading in the “negative” and “positive”
regions of secondary dimensions (Figure 2a). Despite having
exactly the same immunophenotypes and virtually the same
biological functions, one could hypothesize that cells in the
spread interval could be inaccurately mapped to different
tSNE regions because defined by very different values in the
multidimensional space. To test the individual contribution of
SE, we mapped “negative” and “positive” SE on the top of a
control sample that did not contain CD57 BV605 (Figure 2b).
In this way, we noticed that while cells with positive SE values
overlap to tSNE islands already occupied by other cells
(Figure 2c; indeed, cells double positive for CD57 and CCR7
may exist in the sample), cells with negative SE values fill
empty regions of the tSNE plot (Figure 2d), thus further con-
tributing to generate new islands with irrelevant biological
meaning. In conclusion, different background measurements
and SE are major sources of variability in multidimensional
single-cell polychromatic flow cytomertry data representation
by tSNE.

SE is an intrinsic physical characteristic of the dyes and
cannot be corrected following data acquisition (4). However,
SE can be minimized by mounting more powerful lasers so to
increase photon emission, and by optimizing filter/mirror
combinations or during panel development, if required in
specific flow cytometry panels so to increase detection of
dimly expressed antigens (12). In contrast, background fluo-
rescence representation can be modified by using
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computational approaches, the most common of which is
biexponential transformation (18). While positive data remain
untouched, this approach circumvents the log artifact by nor-
malizing data around zero, thus decreasing background vari-
ability between samples (Supporting Information Figure S6).
Figure 3a shows that biexponential transformation dramati-
cally improved tSNE representation of five replicate
27-parameter flow cytometry analyses. Improvement could be
also observed by correlating tSNE axes values from two
experiments with the highest variability (i.e., run 1 and run 5;
Figure 3b). Finally, CD8+ TN cells (identified as in Figure 1c)
appeared relatively homogeneous following biexponential
transformation when compared with nontransformed data
(Figures 3c). Similar results were obtained with a different
panel (Supporting Information Figure S7).

DISCUSSION

Identification of trends in multidimensional single-cell
data that are associated with a certain pathology or immune
status has been pursued since the development of flow cyt-
ometers capable of measuring more than 7–8 colors (19). The

advent of new reagents and technologies such as CyTOF and
scRNAseq extended this capability to dozens and thousands of
parameters, respectively, thus making the development of new
computational approaches for the visualization of such data a
fundamental need (20). tSNE is currently the most popular
approach in this regard as it displays single cells on an intuitive
2D graph and where relative antigen or gene expression can be
visualized by the color tone (2). Despite limited in its analysis
capability compared to the abovementioned technologies, poly-
chromatic flow cytometry, now capable to measure up to
30 parameters simultaneously, is still the most popular and
versatile single-cell technology that is available in thousands of
laboratories around the world. It is therefore anticipated that
approaches such as tSNE will be largely utilized to display such
data. While flow cytometry and CyTOF share multiple aspects
in terms of protocols, reagents, and concept, the nature of their
single-cell data is different. Since flow cytometry relies on fluo-
rescence measurements, scientists have to inevitably deal with
background fluorescence, compensation, and SE that otherwise
are poorly present in CyTOF.

Here, we have identified background fluorescence and SE
to impact substantially the visualization of multidimensional

Figure 3. Biexponentlal transformation allows reproducibility of multidimensional data representation by tSNE. (a) tSNE representation

(perplexity = 100) of 27-parameter flow cytometry data across five independent replicate experiments following biexponential transformation

in Flowlo version 10. Each run shows pooled CD8+ T cells from three different donors for simplicity (3,000 cells each). (b) Linear correlation of

tSNE1 and tSNE2 axes values between Run 1 and Run 5 before and after biexponential transformation. Numbers in the plots indicate the

slope of the line. (c) tSNE map of CD8+ TN cells (red) on top of total CD8+ T cells after biexponential transformation.
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single-cell data by tSNE, specifically resulting in the genera-
tion of virtual “islands” that do not reflect real heterogeneity
at the phenotypic or biological level. Differences in back-
ground, but not positive fluorescence, could be observed
among replicate samples run in independent experiments.
This was not due to machine performance, which confirmed
to be very stable over time, rather variability in background
seems to be sample dependent (Supporting Information
Figure S4). These low (negative) fluorescence signals are irrel-
evant when analyzing data by standard gating, as no biologi-
cal information beyond the number of cells contained in the
negative fraction should be considered. Nevertheless, fluores-
cence “heterogeneity” in the negative interval may lead to
substantial confusion when displaying multidimensional data-
sets with approaches such as tSNE, where every single fluores-
cence value, being it positive or negative, is considered.

Randomizing negative events below an arbitrary thresh-
old evenly across all channels improved visualization but did
not solve the issue in full, probably because of the lack of an
algorithm capable to introduce channel-specific thresholds
(in fact, threshold of positivity is different in every single
channel; Supporting Information Figure S4c), rather biexpo-
nential transformation, which normalizes negative data
around zero without impacting the positive ones, substantially
reduces the variability among independent experiments, thus
enabling to obtain comparable tSNE plots of replicate, inde-
pendent measurements. However, it was not possible to
obtain complete overlap of tSNE plots between the biologi-
cally identical samples (Figure 3a). We attribute this to small
variations in background or positive fluorescence, compensa-
tion or SE that ultimately affect multiple combinations in the
multidimensional space and that are captured by the tSNE
algorithm. Indeed, we further identified SE as a major con-
tributor of variation in multidimensional flow data represen-
tation. This study describes a situation where a single
pairwise fluorochrome combination that is dramatically
affected by SE is sufficient to generate cell clusters with irrele-
vant biological meaning. As SE can affect multiple combina-
tions in the 30-parameter space (4) (Lugli and Roederer,
unpublished observation), it is anticipated that data represen-
tation by tSNE would be progressively worsened when
increasing the number of parameters.

A wrong assumption is that cells occupying different
areas of the tSNE display harbor intrinsic biological heteroge-
neity; therefore, it is not rare to see the use of tSNE maps to
identify putative subsets in a given population or set of
samples. On the basis of our results, gating on the tSNE map
followed by phenotypic analysis would lead to overfragmenta-
tion of immunophenotypes that complicates, rather than sim-
plifies, multidimensional data analysis. Instead, clustering
algorithms should be run in parallel to identify relevant cell
subpopulations, as it is now done for scRNAseq. Along with
this, it is of foremost importance to validate computational
results with raw data, i.e., once the clusters are identified, to
evaluate the relative abundance of antigen expression in that
specific subpopulation either by percentage or MFI, if not
both, followed by critical evaluation of immunophenotypes.

Moreover, beyond machine, reagent, and computational stan-
dardization, immunophenotyping of replicate samples must
be included in independent experiments, so to estimate the
overall variability of the assay. Integration of classical gating
and novel computational approaches will be pivotal to achieve
the discovery of novel biological insights in high-dimensional
polychromatic flow cytometry data.
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