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Abstract: We proposed in this work the introduction of a new vision of stochastic processes through
geometry induced by dilation. The dilation matrices of a given process are obtained by a composition
of rotation matrices built in with respect to partial correlation coefficients. Particularly interesting is
the fact that the obtention of dilation matrices is regardless of the stationarity of the underlying process.
When the process is stationary, only one dilation matrix is obtained and it corresponds therefore
to Naimark dilation. When the process is nonstationary, a set of dilation matrices is obtained.
They correspond to Kolmogorov decomposition. In this work, the nonstationary class of periodically
correlated processes was of interest. The underlying periodicity of correlation coefficients is then
transmitted to the set of dilation matrices. Because this set lives on the Lie group of rotation matrices,
we can see them as points of a closed curve on the Lie group. Geometrical aspects can then be
investigated through the shape of the obtained curves, and to give a complete insight into the space
of curves, a metric and the derived geodesic equations are provided. The general results are adapted
to the more specific case where the base manifold is the Lie group of rotation matrices, and because
the metric in the space of curve naturally extends to the space of shapes; this enables a comparison
between curves’ shapes and allows then the classification of random processes’ measures.

Keywords: nonstationary processes; spectral measure; differential geometry; shape manifold; square
root velocity function; Lie group

1. Introduction

The analysis and/or the representation of nonstationary processes has been tackled for four or
five decades now by time-scale/time-frequency analysis [1,2], by Fourier-like representation when the
processes belong to the periodically correlated (PC) subclass [3,4], or by partial correlation coefficients
(parcors) series [5,6], to cite a few. One of the advantages of dealing with parcors resides in their strong
relation to the measure of the process by the one-to-one relation with correlation coefficients [7,8].
They consequently appear explicitly in the Orthogonal Polynomial on the Real Line/Unit Circle
decomposition of the measure [9,10], on the Matrices Orthogonal Polynomials on the Unit Circle [11]
and its applications [12], are the elements for the construction of dilation matrices that appear in
the Cantero Moral, and Velazquez (CMV)/Geronimus, Gragg, and Teplyaev (GGT) matrices [13],
for the Schur flows problem with upper Hessenberg matrices [14] that are also seen in the literature as
evolution operators [10] or shift operator [15], and finally appear in the state-space representation [7,16].
The dilation theory takes its roots from the operator theory [17], which bridges the process’s measure and
unitary operators. In its simplest version, the dilation theory corresponds to Naimark dilation [17,18],
and states that given a sequence of correlation coefficients, there exists a unitary matrix W such that
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Rn , (1 0 0 · · · )Wn(1 0 0 · · · )T where ·T denotes the transposition. When the process is not stationary,
its associated correlation matrix is no more Toeplitz structured, a set of matrices is required [16]
and the previous expression becomes Ri,j , (1 0 0 · · · )Wi+1Wi+2 · · ·Wj(1 0 0 · · · )T. The matrices
Wi are theoretically understood as infinite rotation matrices, which become finite when the correlation
coefficients sequence is itself finite. In that particular case, the matrices Wi belong to SO(n) or SU(n),
the special orthogonal or unitary group, respectively, and the process’s measure is totally described by the
set of Wi. As a consequence, the measure of the process is beautifully characterized for the nonstationary
case, by a sampled trajectory induced by the dilation matrices on the appropriate Lie group. When the
process is periodically correlated, the sequence of parcors is periodic, as well as the sequence of dilation
matrices, which yields a closed path as illustrated in Figure 1. This raises the question of comparison of
processes by means of their dilation matrices. Many efforts have been made in the last decade to exploit
the hyperbolic geometric structure not of the correlation matrices directly but of the related parcors
when obtained in stationary conditions [8,19–22], as well as the information geometry structure that is
closely related to it [23–25]. As the Kullback–Leibler divergence let do, the comparison of stationary
processes is then made by comparing curves, whose sampled points are parcors sequences, defined
on several copies of the Poincaré disk through geodesics deformation. Treatment of the nonstationary
case has not been tackled to our knowledge with the previously mentioned approaches. In this paper,
we hope to initiate interest in filling this gap by extending the representation and the characterization of
the processes’s measure in a nonstationary context, inspired on the one hand by information geometric
application and interpretation of parcors [19,20] or correlation matrices [26–28], and on the other hand
by theories and applications dealing with curves on manifolds [29,30], closely related to some aspects of
Euler’s equations [31]. Therefore, we combine Constantinescu’s approach to dilation and shape analysis
to the propose of seeing stochastic processes as elements of a Lie group. Characterizing the time-varying
measure of the process is now tackled by studying curves (or sampled curves) on special groups.

To support the reader, some insights on dilation theory are given in Section 2. Practical implementations
of dilation matrices according to the operator theory approach [16,18] or the lattice filter structure
approach [32,33] are also discussed and the strong connection between parcors and the dilation matrices is
emphasized. Section 3 focuses on the geometry of the curves induced by the dilation on particular manifolds.
The general framework is first introduced by recalling concepts of distances and shape of curves when the
ambient space is not flat. Next, the square root velocity (SRV) functions are developed and adapted to the
Lie group, and a procedure to compare nonstationary processes through their time evolution trajectory
is presented. Finally, a conclusion is drawn in Section 4 and the reader will find some technical tools in
Appendices A and B.
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Figure 1. Illustration of a sampled closed trajectory drawn in SO(n) or SU(n) that materializes the
time varying of the Periodically Correlated (PC) measure for a stochastic process. Each Wi is a dilation
matrix built through the parcors. Recall that a PC process is a process such that Rs,t = Rs+T,t+T for a
certain T, where R·,· stands for the correlation function of the process.
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2. The Structure of Semi-Positive-Definite Matrices and the Dilation Theory

2.1. Outline of the Dilation Theory

Let us give some insights into the dilation theory. In its fundamental definition, the dilation theory
consists of a Hilbert spaceH and an operator-valued function f , i.e., an L(H)-valued function, to find
a larger Hilbert space H and another application F such that f is the orthogonal projection of F :

f (t) = PHF (t), t ∈ Z (1)

where PH denotes the orthogonal projection onto the Hilbert space H. The ideas of the dilation
theory are:

• there exists a larger space from which the original function (or matrix) is deduced;
• we can choose the “dilated” function to be simpler. For instance, when dealing with matrices,

each of its coefficients can be expressed as the projection of a larger unitary matrix. In this case,
we obtain a unitary dilation. This approach has been for example developed in [34–36] for the
stationary dilation of periodically-correlated processes.

2.1.1. Dilation and Rotation of Contractions

For an operator T on a Hilbert spaceH, we denote by T∗ the adjoint operator, i.e., the operator
on H such that 〈Tx, y〉 = 〈x, T∗y〉 for all x, y ∈ H. An operator T ∈ L(H) is said to be a contraction
if || T ||≤ 1 where || · || is the operator norm. We deduce the expression for the defect operator
DT = (I − T∗T)1/2 and its adjoint DT∗ = (I − TT∗)1/2.

One of the easiest results is that, given a contraction Γ, the following unitary operator

J(Γ) =

(
Γ DΓ∗

DΓ −Γ∗

)
(2)

satisfies, for all n ∈ N

Γn =
(

1 0
)

J(Γ)n

(
1
0

)
. (3)

In other words, the elementary rotation of a contraction also corresponds to the unitary dilation
operator of the contraction. This operator is called the Julia operator, and corresponds to the Halmos
extension [15] of a contraction.

2.1.2. Dilation and Isometries

Following the idea and the formulation of Naimark, the dilation theory can be restated in terms
of dilation of the sequence of operators or sequence of numbers when the dimension of the underlying
Hilbert space is 1. A sequence of operators {Rn}∞

n=1 acting onH is said to be positive if

+∞

∑
i,j=0
〈Ri−jhi, hj〉 ≥ 0 for all hi ∈ Hi. (4)

Assuming now that R∗n = R−n and R0 = I, leads to the following Toeplitz matrix:

R(m) =


I R1 · · · Rm−1

R∗1 I · · · Rm−2

· · · · · ·
· · · · · ·

R∗m−1 R∗m−2 · · · I

 (5)
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which is positive-definite. Remark that this matrix can be seen as the correlation matrix of a stationary
process, as it is positive and Toeplitz [37]. Owing to this property, we obtain the existence of an operator
U such that [18,38] and Theorem 1.1 in [39]:

Rn = PHUn |H, for all n ≥ 0 and U an isometry on K (6)

as a result of the Naimark dilation theorem [17]. Furthermore, if K =
∨

n≥0
UnH, where

∨
denotes the

linear span, then U is unique up to an isomorphism.

2.1.3. Dilation and Measure

From Bochner’s theorem [37], we know a matrix of type (5) can be seen as the Fourier
coefficient of a given positive Borelian measure. This is also known as the moment or trigonometric
problem [16]. Therefore, we can restate the dilation problem in terms of measure. If we denote by Eλ

an operator-valued distribution function on [0, 2π], then the function

Rn =
∫ 2π

0
einλdEλ. (7)

is positive-definite. This shows the strong correspondence between the spectral measure and the
dilation theory. There hence exists a unitary operator on a Hilbert space K such that Rn = PHU(n)
where PH stands for the orthogonal projection. With the spectral representation of unitary operators,
U =

∫ 2π
0 eiλdEλ and we have

∫ 2π

0
einλd〈Eλu, v〉 =

∫ 2π

0
einλd〈Fλu, v〉 (8)

or, in an equivalent form:
Eλ = PHFλ. (9)

Note that the operator-valued measure Fλ is in fact an orthogonal projection-valued measure
because all its increments are orthogonal. With dilation matrices having been introduced, we give in
the next section a methodology to understand how they are obtained.

2.2. Construction of Dilation Matrices

As mentioned previously, given an SPD matrix R =
(

Ri,j
)

i,j∈N, it is possible to build a sequence of

matrices {Wi}i∈N such that Ri,j =
(

1 0 0 · · · 0
)

WiWi+1 · · ·Wj−1

(
1 0 0 · · · 0

)T
. Let the

general framework where Ri,j is a complex operator satisfying Ri,j ∈ L(Hj, Hi) with {Hn}n a sequence
of Hilbert spaces and L the set of linear applications. For example, consider the stochastic process
{Xn}n, where Xn ∈ L2(P) is a squared integrable random variable with respect to the probability space

(Ω,F ,P). Then the stochastic process can be viewed as an operator:
∼
Xn : C → L2(P),

∼
Xnλ = λXn,

and the correlation kernel becomes Ri,j =
∼
X
∗
i
∼
X j.

To start the construction, let first the following theorem

Theorem 1 (Structure of a positive-definite block matrix). Let X and Z be positive operators in L(HX)

and L(HZ) respectively. Then the following are equivalent:

• The operator A =

(
X Y
Y∗ Z

)
is positive

• There exists a unique contraction Γ in L(R(Z),R(X)) such that

Y = X1/2ΓZ1/2 (10)
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Proof. Appendix A

Let us now apply this relation repeatedly on an SPD matrix. To fix ideas, let the R be the 3× 3
(block-)matrix :

R =

R1,1 R1,2 R1,3

R∗1,2 R2,2 R2,3

R∗1,3 R∗2,3 R3,3

 (11)

and apply Theorem 1 to

(
R1,1 R1,2

R∗1,2 R2,2

)
,

(
R2,2 R2,3

R∗2,3 R3,3

)
and finally to

(
R1,2 R1,3

)
. Note that when

a square root of a (block-)matrix has to be chosen, it is done according to the Schur decomposition given
in Appendix A. For example, we have R1,2 = R1/2

1,1 Γ1,2R1/2
1,1 . At each step, a contraction Γi,j is generated

with respect to the indices of the upper and lower (block-)matrices of the main diagonal, e.g., Γ1,2 for

the first

(
R1,1 R1,2

R∗1,2 R2,2

)
(block-)matrix. We thus obtain a one-to-one correspondence between the SPD

matrix R and the set of contractions
{

Γi,j
}

i=1,2 j=3. Regarding the huge work of Constantinescu [16],
we will call these contractions the Schur-Constantinescu parameters. We consider now unit variance
and arbitrary size n× n for the SPD matrix, which allows us to write the correspondence as:



R1,1 R1,2 R1,n

R∗1,2 R2,2
. . .

. . . . . . Rn−1,n

R∗1,n R∗n−1,1 Rn,n


←→



0 Γ1,2 Γ1,3 · · · Γ1,n
0 0 Γ2,3 Γ2,4 · · · Γ2,n
...

. . . . . . . . .
Γn−2,n

0 Γn−1,n
0 0 · · · 0


. (12)

Once (12) is established, each dilation matrix Wi is built-up as a product of Givens rotations of
a sequence of Schur-Constantinescu parameters in the following way:

Wi = G(Γi,i+1)G(Γi,i+2) · · ·G(Γi,j), (13)

where GΓi,i+l denotes the Givens rotation of Γi,i+l as follows:

G(Γi,i+l) = I ⊕
(

Γi,i+l DΓ∗i,i+l

DΓi,i+l −Γ∗i,i+l

)
⊕ I =



1 0 0 0 0 · · · 0
0 1 0 0 0 · · · 0

. . . 0
0 · · · 0 Γi,i+l DΓ∗i,i+l

0 · · · 0

0 · · · 0 DΓi,i+l −Γ∗i,i+l 0 · · · 0
0 · · · 0 0 1 0 · · · 0
...

. . .
...

0 · · · 1


(14)

where the “non-identity” part, consisting of a Julia operator
(

DΓi,i+l =
(

I − Γ∗i,i+lΓi,i+l

)1/2
)

is located

at the entry (i, i). When the SPD matrix is Toeplitz, which corresponds to a stationary underlying
process, then all dilation matrices Wi are identical and take the form
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Wi = U =



Γ1 DΓ∗1
Γ2 DΓ∗1

DΓ∗2 Γ3 DΓ∗1
DΓ∗2 DΓ∗3 Γ4 · · ·

DΓ1 −Γ∗1Γ2 −Γ∗1 DΓ∗2 Γ3 −Γ∗1 DΓ∗2 DΓ∗3 Γ3 · · ·
0 DΓ2 −Γ∗2Γ3 −Γ∗2 DΓ∗3 Γ4 · · ·
0 0 DΓ3 −Γ∗3Γ4 · · ·
0 0 0 DΓ4 · · ·
· · · · · · ·
· · · · · · ·


(15)

which is nothing less than the Naimark dilation introduced in the first part, i.e., Ri,j = Rj−1 =

[1 0 0 · · · ]U j−i[1 0 0 · · · ]T . For the sake of completeness, we give the correspondence between the
coefficients of the SPD matrix (the left-hand side of (12)) and the Schur-Constantinescu parameters:

Theorem 2. The matrix R(n) = [Rk,j]
n
k,j=1, satisfying R∗j,k = Rk,j is positive if and only if

• Rkk > 0 for all k
• there exists a family {Γk,j | k, j = 1, · · · n, k 6 j} of contraction such that

Rk,j = B∗k,k(Lk,j−1Uk+1,j−1Ck+1,j + DΓ∗k,k+l
· · ·DΓ∗k,j−l

Γk,jDΓk+1,j · · ·DΓj−1,j)Bj,j (16)

where Bk,k is the Cholesky’s square-root of Rk,k.

and
Lk,j = [Γk,k+1 DΓ∗k,k+l

Γk,k+2 · · · DΓ∗k,k+l
· · ·DΓ∗k,j−1

Γk,j] (17)

a row contraction associated to the set of parameters {Γk,m | k < m ≤ j},

Ck,j = [Γj−1,j Γj−2,jDΓj−1,j · · · Γk,jDΓk+1,j · · ·DΓj−1,j ]
T (18)

a column contraction associated to the set of parameters {Γm,j | m = j− 1, · · · k}, and finally

Uk,j = G(Γk,k+1)G(Γk,k+2) · · ·G(Γk,k+j)
(

Uk+1,j ⊕ I
)

(19)

Proof. This theorem is proved in ([16], Theorem 5.3).

A different approach leading to the same results can be found in [40], using directly the
Kolmogorov decomposition. In [32] the Naimark dilation is constructed using the lattice filter and
finally applications of this decomposition in quantum mechanics are to be found in [41,42] for example.

We now give some remarks to conclude this part:

• If R(n) is a semi-positive definite complex-valued Toeplitz kernel, then all the {Γn} are
complex-valued and respect |Γi| < 1. The structure and the construction procedure for obtaining
such a complex-valued parameter is identical whether the kernel is real or complex.

• The framework proposed by Constantinescu and recalled previously is quite general and can
be extended to Matrix Orthogonal Polynomial on the Unit Circle (MOPUC) development.
By referring to ([43], Section 3.1), matrix polynomials stem from a Szëgo recursion akin to
the scalar case and thus provide a sequence of Verblunsky coefficients, or parcors that are
matrices. Again in ([43], Section 3.11), a correspondence between MOPUC and CMV matrices [13]
is provided, which are equivalent to dilation matrices. The construction procedure remains
the same for the dilation matrices, but the parcors become in that case matrices (they are
matrix-valued Verblunsky coefficients), which can be obtained by a matrix version of the
Schur/Geronimus algorithm [44].

Dilation matrices being now fully introduced, we focus the attention of the reader on the hidden
information contained in their timely geometrical dissemination.
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3. Analysis of Curves on a Manifold Induced by the Dilation

Parcors, composing dilation matrices, have already been given a geometrical point of view, as,
for example, in [8] where the sequence of parcors associated with a stationary process is seen as a point
onto the Poincaré polydisk Pn, that is, the product of the Poincaré disk. To give geometrical settings,
a distance to characterize individual parcors is then proposed and discussed. In [45], a stochastic process
is studied under the local stationarity assumption. To each stationary slice of the process corresponds
a sequence of parcors, represented as a point in the Poincaré polydisk Pn as well. A trajectory
is then generated on that space which materializes a curve on the manifold Pn. The underlying
computations are quite intricate because of the product manifolds, and the question of nonstationarity
arises. Based on the works of Le Brigant [45,46], Celledoni et al. [47] and Zhang et al. [48], we propose
then to give particular attention to this question. We first make use of the dilation theory introduced in
Section 2. When the process under study is nonstationary, a set of matrices Wi is obtained. The basic
idea for having geometric information on the nonstationary process is therefore to characterize the
trajectory formed by the set of dilation matrices. These matrices are theoretically operators of infinite
dimension, but as we dispose of only a finite set of parcors, the theoretical matrices of (15) are truncated.
Matrices respecting (15) are general rotation matrices that become perfect rotation operators belonging
to SO(n) for real processes and SU(n) when dealing with complex processes, when their dimensions
are reduced to n× n. Our aim is finally to analyse those curves living on the Lie group of rotation
matrices and emphasize the geometry or, more precisely, the intrinsic geometry formulation of these
objects. For example, we aim at comparing different curves coming from different processes or at
resuming many realizations of a stochastic process (multiple measurements) through the computation
of the mean of the associated several curves. The question as to computation complexity still exists,
but many results have been proposed recently to overcome this difficulty and to propose closed-form
formulations [30,49]. In particular, it is predicated to extract the shape of the trajectory for it contains
the essential information, in a topologic sense.

To allow the curves comparison, we have based our development on the works of Le Brigant [45]
and Celledoni et al. [47]. First, we define the manifoldM given by the set of all curves in the base
manifold. This leads to another space, the shape space, for which the manifoldM will be a principal
bundle. We dispose then of a metric in M from which a metric on the shape space is deduced.
These steps are now explained in the following.

3.1. Preliminaries on Lie Groups

As we are going to deal with curves on a Lie group, we start with some preliminaries.
A metric 〈·, ·〉 on a Lie group is said to be left invariant if:

〈u, v〉b = 〈(dLa)bu, (dLa)bv〉ab (20)

where (dLa)b is the derivative in the manifold field sense (so the tangent map) of the left translation La

at b. A left-invariant metric gives the same number whenever the vectors are translated on the left. It is
straightforward to adapt this definition to a right-invariant metric. A metric that is both left and right
invariant is called a bi-invariant metric. A Lie group endowed with a bi-invariant metric has plenty of
import properties that can be exploited for our study of curves on shape spaces. We list some of them
in the following [50].

• The geodesics through e (the identity element) are the integral curves t 7→ exp(tu), u ∈ g, that is,
the one-parameter groups. In addition, because left and right are isometries and isometries maps
geodesics to geodesics, the geodesics through any point a ∈ G are the left (right) translates of the
geodesics through e

γ(t) = La (exp(tu)) , u ∈ g. (21)
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Of course, we have
γ′(0) = (dLa) e(u). (22)

• The Levi-Civita connection is given by: ∇XY =
1
2
[X, Y], ∀X, Y ∈ g

where [·, ·] denotes the Lie bracket. We can now link these formulas to our base manifold SO(n). The
Killing form, B, of a Lie algebra is the symmetric bilinear form B : g× g −→ C given by B(u, v) =
tr(ad(u) ◦ ad(v)), where tr denotes the trace operator and ad denotes the adjoint representation of the
group, namely, the map ad : G −→ GL(g) such that, for all a ∈ G ada : g −→ g is the linear isomorphism
defined by ada = d(R−1

a ◦ La)e. If we now assume B to be negative-definite, then -B is an inner product
and is adjoint invariant. Thus, it is a classical result of the compact semi-simple Lie theory that -B
induces a bi-invariant metric on G.

The Lie algebra of SO(n) is the set of skew-symmetric matrices which verifies MT = −M.
The Killing form on SO(n) is given by Bso(n) = (n− 2)tr(XY), and as a result of the skew symmetry,
we have −Bso(n) = (n − 2)tr(XYT). Therefore, it induces a bi-invariant metric and the previous
formula can be plugged into the expression of the metric on the space of curves. In the sequel,
the manifold that supports the curves is SO(n) endowed with its bi-invariant metric.

3.2. Basic Outline of Geometry

Curves of interest are those living in the Lie group of real rotation matrices; this yields c : [0, 1]→
SO(n). For the sake of clarity, assume that c ∈ C∞([0, 1], SO(n)) , we will come back to the case of
discrete curves later. To study the geometrical features of such curves, we interest ourselves with the
set of all curves lying in SO(n) (where SO(n) is seen as a manifold) with nonvanishing velocity, i.e.,
M = {c ∈ C∞([0, 1], SO(n)) : c′(t) 6= 0 ∀t}, this is in fact a sub-manifold of C∞([0, 1], SO(n)). A curve
c is thus a particular point inM. The tangent space at a curve c is given by

TcM =
{

v ∈ C∞([0, 1], TSO(n)) : v(t) ∈ Tc(t)SO(n)
}

(23)

where TSO(n) denotes the tangent bundle of the base manifold SO(n). Note that a tangent vector
is a curve in the tangent space of SO(n) (see Theorem 5.6 in [51]). When comparing two curves,
it is natural that the distance between these two curves should remain the same if the curves
are only reparametrized, that is, if we define other curves that pass through the same points
than the original curves but at different speeds. When the curve is discretized as we will see in
the sequel, doing a reparametrization is equivalent to changing the chosen points (see Figure 2).
A reparametrization is represented by increasing diffeomorphism φ ∈ D : [0, 1]→ [0, 1] acting on the
right of the curve by composition. In other words, we required that the Riemannian metric g onM
satisfies the following property:

gc◦φ(u ◦ φ, v ◦ φ) = gc(u, v) (24)

for all c ∈ M, u, v ∈ TcM and φ ∈ D.

b

b

b

b

b

b

b
b
b
b
b

b

b

b

b

b

b

b

Figure 2. Example of a reparametrization of a curve. Here, it consists in changing the discretization
with nonlinear time sample.
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This property is called reparametrization invariance. We insist on the fact that g is the metric on
M, the space of all curves on SO(n) and not on SO(n) itself. In terms of distances, this gives

dM(c0 ◦ φ, c1 ◦ φ) = dM(c0, c1) (25)

where dM denote the distance onM corresponding to the metric g. The reparametrization introduced
above induces an equivalence relation between points inM such that

c0 ∼ c1 ⇐⇒ ∃φ ∈ D : c0 = c1 ◦ φ. (26)

with this equivalence relation, a quotient space can be constructed as the collection of equivalence
classes; it is named the shape space and has the following writing:

S =M/ ∼, or S =M/D. (27)

A distance function on the shape space is obtained from the distance onM as follows:

dS ([c0], [c1]) = in f
φ∈D

dM(c0, c1 ◦ φ) (28)

where [c0] and [c1] are representatives of the equivalence classes of c0 and c1 respectively. It can be
shown that this distance is independent of the choice of the representatives. Some precautions has to be
taken here: whereasM is a submanifold of the Fréchet manifold C∞([0, 1], SO(n)), has proven by [52],
Theorem 10.4, the shape space S is not a manifold and the principal bundle structure π =M→ S
is not formally defined. However, a manifold structure can be obtained if we only consider free
immersion [53]. As the metric defined on the shape space is reparametrization-invariant, it is constant
along the “fibers” (the origin point is fixed). Further explanations on the Riemannian submersion can
be found in [54]. Closed curves being of main interest in this work, we can also define the set

Mc =
{

c ∈ C([0, 1], SO(n)) : c′(t) 6= 0, c(0) = c(1)
}

. (29)

Basically, the closure of a curve just imposes the equality of the first and the last point of it, and not
of their first derivative. Consequently,MC turns into

Mc+ =
{

c ∈ C([0, 1], SO(n)) : c′(t) 6= 0, c(0) = c(1), c′(0) = c′(1)
}

. (30)

We need now to introduce the Square Root Velocity function (SRV function) [55], in which a curve
is represented by its starting point and its normalized velocity at each time t. There are several
possibilities to define the SRV of a curve. The more general definition is the following

F :M→ SO(n)× TM

c→
(

c(0), q =
c′√
|| c′ ||

)
.

(31)

However, we can go further and benefit from the specific case of the Lie group. In this section,
we will denote the base manifold G = SO(n) to emphasize its group structure, and g an element of the
group. As in [47], we consider only curves that start at the identity; this is because other curves can
be reduced to this case by right or left translation. In these settings, it is interesting to turn the SRV
function into the Transported SRV function (TSRV). This is basically the SRV that has been parallel
transported to a reference point. Different versions have been given in [47,48,56] which differ in the
choice of their reference point. For our case of study, the identity is our natural curve starting point
and is thus a particularly good choice for being the reference point. In a Lie group, a parallel transport
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operation can be defined, here again, by the right (or left) translation. This justifies that we can take,
as suggested in [47], a TSRV function of the following form:

FLie : C∞([0, 1], G) −→ SO(n)× {q ∈ C∞([0, 1], g), q(t) 6= 0, ∀t ∈ [0, 1]}

FLie(c)(t) = (c(0), q(t)) =

c(0),
R−1

c(t)∗(c
′(t))√

|| c′(t) ||

 =

(
c(0),

Tc(t)→I
c (c′(t))√
|| c′(t) ||

)
,

(32)

where g is the Lie algebra, R is the right translation on the group, Rg1(g2) = g2g1, Rg∗ = TeRg is the

tangent map at the identity, || · || is a norm induced by a right-invariant metric on G, and Tc(t)→I
c

denotes the parallel transport from c(t) to the identity according to the curve c. A curve is now
represented pointwise as an element of the tangent bundle (c(0), q(t)) ∈ M× g (recall that q draws
a curve in the tangent bundle), and c(0) is the identity element of the Lie group. The inverse of the
SRV function is then straightforward: for every q ∈ C∞([0, 1], TM), there exists a unique curve c such
that F(ci) = qi and c(t) =

∫ t
0 q(r) || q(r) || dr where || · || is the norm in SO(n).

3.3. Metric and Distance overM and S
We now give insights on a relevant metric that should be used onM to compare different closed

trajectories. The following development and expression of metrics and distances can be found in [45].
The distance on the shape space is used to compare how the curves are intrinsically different. It has
been seen in [57] that the simple L2 metric onM given by

gL2

c (u, v) =
∫
〈u, v〉 || c′(t) || dt (33)

where 〈·, ·〉 is the Riemannian metric on SO(n), induced a vanishing metric on the shape space, that is,
we cannot differentiate shape with this metric. To overcome this difficulty, the family of elastic metric,
derived from the Sobolev metric [58,59], has been investigated for it is non-vanishing on the shape
space. In the case of a Euclidean space Rn, it admits the expression:

ga,b
c (u, v) =

∫ (
a2〈DluN , DlvN〉+ b2〈DluT , DlvT〉

)
|| c′(t) || dt, (34)

where Dlu = h′/ || c′ ||, DluT = 〈Dlu, w〉w, with w = c′/ || c′ || and DluN = Dlu− DluT . Here,
we are only interested in the special metric that has been proposed in [45], and which is an adaptation
of the elastic metric for the Riemannian manifold. In our case this gives:

gc(u, v) =
∫ (
〈∇luN ,∇lvN〉+ 1

4
〈∇luT ,∇lvT〉

)
|| (c′t) || dt, (35)

where∇ is the Levi-Civita connection that corresponds to 〈·, ·〉;∇lu =
1
|| c′ ||∇c′h,∇luT = 〈∇lu, w〉w,

w = c′/ || c′ ||. For the computations being done now in a manifold space, the Levi-Civita connection
replaced the ordinary derivative of Rn.

Once geometry has been settled inM, the geometry of the shape space can be derived from its
quotient structure. Let the tangent bundle be decomposed into a vertical and a horizontal subspace:
TM = HM ⊕ VM, with VM = ker (Tcπ) and Tc the tangent map, π :M→ S the principal bundle,
andHM = (VM)⊥, see Figure 3. This metric is reparametrisation invariant, that is, constant along the
fibers, hence we have

gc(uH, vH) = [g]π(c) (Tcπ(u), Tcπ(v)) (36)

where [g] denotes the metric on the shape space.
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T[c]M
[c]

HM

S

Figure 3. The tangent space T[c]M at a point [c] in the shape space S is isomorphic to the horizontal
partHM of the tangent space at a point on the associated fiber.

A similar result in a different (but still close) context is used in Lemma 1 of [60]. In terms of
distances, this can be understood in the following sense. The geodesic s 7→ [c](s) between [c0] and
[c1] in the shape space is the projection of the horizontal geodesic linking c0 to the fiber containing c1.
In fact, the horizontal geodesic between c0 of c1 intersects the fiber at c1 at the reparametrized version
of c1, c1 ◦ φ which gives the distance in the shape space:

[d]([c0], [c1]) = dg(c0, c1 ◦ φ) (37)

where [d] denotes the distance in S , and dg denotes the distance on the space of curves induced by the
aforementioned Riemannian metric. In the TSRV formulation, the distance problem of Equation (37)
yields an optimisation problem:

[d]([c0], [c1]) = in f
φ∈D

(∫ 1

0
|| q0(t)− q1(φ(t))

√
φ′(t) ||2

)1/2

, (38)

which is solved by a traditional gradient descent algorithm or a dynamic linear programming [47].
Finally, we have to mention that in a practical situation, the above formula has to be discretized. This is
the object of [46]. Formulae are essentially similar, but in this setting, a curve is now represented by
a set of points cdisc(x0, x1, · · · , xn) and the tangent space turns into

TdiscM = {v = (v0, v1, · · · , vn), vi ∈ Txi SO(n), ∀i} . (39)

Concerning the metric on the space of curves, it becomes

gcdisc(u, v) = 〈u0, v0〉+
1
n

n−1

∑
i=0
〈∇∂c/∂squ

(
0,

k
n

)
,∇∂c/∂sqv

(
0,

k
n

)
〉 ∀u, v ∈ TdiscM (40)

where, as before, for a u ∈ TcdiscM, we define a path of piecewise geodesic curves (s, t) 7→ cu(s, t) such
that the following traditional initial conditions are fulfilled

cu
(

0,
k
n

)
= xk, and

(∂cu/∂t)
(

0,
k
n

)
= n logxk

(xk+1).
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This is the discrete analogue of the tangent vector of a continuous curve at time t. The log function
is the inverse of the exponential map on the base manifold, SO(n) for us, and here cu (s, ·) must be
a geodesic on SO(n) between xk/n and x(k+1)/n. The SRV function that appears in the formula refer to
the SRV function of the piecewise geodesics cu (s, ·). Then, the discretized version of the SRV function,
qk =

√
n logxk

(xk+1)/
√
|| logxk

(xk+1) || is such that

∇∂c/∂sq
(

s,
k
n

)
= ∇∂c/∂sqk(s) (41)

3.4. The Geodesic Equation

Let us now give the geodesic equation, relative to our chosen measure. As a result of the TSRV,
the geodesic equation takes a much simpler form than what can be found in [45,46]. The formula can
be found in [47]. For the sake of completeness, we give a reformulated proof in Appendix B. Recall that
a geodesic is a particular path of curves. A path of curves is a continuous set of curve s 7→ c(s, ·) such
that for each s, c(s, ·) is a point inM, or, equivalently, a curve in M, (see Figure A1). Thus, for each
curve of the path of curves, we can defined its TSRV function. Then for all s ∈ [0, 1], we have (we omit

the letter ‘s’ for clarity): q =
Tc(t)→I

c (∂c/∂t)√
|| ∂c/∂t ||

Theorem 3. A path of curves [0, 1] 3 s 7→ (c(s, 0), q(s, t)) (t is the parameter of the curve c(s, ·))is a geodesic
onM if and only if

∇∂c/∂s (∇∂c/∂sq(s, t)) (s, t) = 0 ∀s, t (42)

Proof. Appendix B

Thus, we have a quite familiar expression for the geodesic interpolation between two curves c0

and c1, expressed in their TSRV domain:

F−1
Lie ((1− s)FLie(c0) + sFLie(c1)) (43)

for s ∈ [0, 1]. This expression is nothing but a linear interpolation on the transported tangent space.
We now have all the ingredients to give the procedure for nonstationary processes characterization

and comparison:

1. Input: a set of rotation matrices {Wi}i, seen as a partial observation of a closed trajectory on SO(n).
2. Map the set of matrices {Wi} into the a set of matrices in the Lie algebra {Vi} using the inverse

exponential map.
3. Interpolate with splines between matrices Vi [61,62].
4. Go back in the base manifold SO(n) with the exponential map.
5. Shift the interpolated curve in order to fulfill the condition c(0) = e and compute the SRV

transformation given by (41)
6. Compute the distance defined by (38). The optimization is carried out by dynamic programming.
7. Output: distance between two curves in the manifold defined by the set of curves in SO(n),

and geodesic path between the curves.

The interpolation computations are carried out in the Lie algebra, which is a vector space, and thus
it does not demand great computational resources. The discretization step, which amounts to choosing
certain values among the continuous curve, is also done in the Lie algebra. In this way, we avoid the
calculation of matrices exponential that would have been discarded at the end. We finally note that
geodesic shooting [45,63] or other path straightening methods could be applied to obtain a geodesic
path between two curves, and between the shapes of the two curves.
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3.5. Results

In order to expose how the approach of this work gives interesting results for PC processes
understanding, we propose to compare four PC processes, displayed along with Figure 4. We also
bring their corresponding SO(3) representation on Figures 5 and 6 with 200 interpolated points and
50 interpolated points respectively. For this scenario we have generated four PC processes with
1000 samples each. A classical amplitude modulated model a(t) cos(2π f / fe t) where a(t) is a zero
mean and unit variance stationary random process with a period of 20 points, a periodic AR(2) with
a period of 20 points, a periodic AR(2) (AutoRegressive) with a period of 54 points, and a periodic
ARMA(2,1) (AutoRegressive Moving Average) with a period of 20 points have been generated. We
have used the R package PerARMA to generate the periodic ARMA and AR signals and we finally
used the PerPACF function of this package to estimate the 20 (or 54) sequences of three parcors each.
The analysis of Figure 4 with Figure 5 shows that the spectral measure of the amplitude modulated
signal of Figure 4a has dilation matrices which do not spread a lot; we could think that this process is
almost stationary due to the weak distance between each matrices. A contrario, whereas the temporal
form of the PARMA(2,1) signal of Figure 4d is quite identical to the amplitude modulated signal of
Figure 4a, their representation on SO(3) is very different. The spectral measure of the PARMA(2,1)
signal spread much more. Lastly, when we observe the Figure 4b,c which are generated with the
same model but with a different period, we can see that the more the number of points per period is
important, the more the curve wraps. We also note one of the advantages of using spline interpolation.
Along with Figure 5, we can remark that the curvature is well approximated owing to more and closer
interpolated points. For this figure, we had approximatively four times more interpolated points than
original ones whereas for Figure 6 we computed roughly twice more interpolated points than the
original ones. Actually, for such a number, a change in the grid could be thought but it seems again
that the spline interpolation gives good points repartition. This is mainly illustrated by Figure 7 for
which the difference between geodesic interpolation of the curve associated with the periodic AR(2)
signal of Figure 4c for 200 interpolated points and 50 interpolated points is very weak.
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Figure 4. 1000 samples of PC processes generated by (a) a modulated zero mean and unit variance
stationary random process a(t); (b) a periodic AR(2) model with a period of 54 points; (c) a periodic
AR(2) model with a period of 20 points; and (d) a periodic ARMA(2,1) model with a period of 20 points.
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Figure 5. Representation inside the ball of radius π of the four PC processes drawn in Figure 4,
arranged in the same order with 200 interpolated points represented with green stars, the dashed
black line is the theoretical curve and the red dots are the representation of dilation matrices. (a) is the
representation of Figure 4a, (b) is the representation of Figure 4b, (c) is the representation of Figure 4c
and (d) is the representation of Figure 4d.

To end this analysis by the example, we have computed the distance defined by (38) between
the PC process of Figure 8 and all the PC processes studied and displayed on Figures 4 and 5.
The distances are reported inside Table 1. Clearly, the distances between the shapes of the curves
characterizing the spectral measure of each PC process, reveal some spectral proximity between the PC
processes benchmarked. We have gray colored the row of the PAR(2) signal model indexed by letter
(c). Whatever the number of interpolated points and the dimension of the base manifold, the spectral
representation through dilation operators of this signal is the nearest on SO(3) and the second nearest
for SO(4) and SO(5) to the PAR(2) signal of reference. The second interesting signal is the one indexed
by letter (b) and stands for a PAR(2) signal with exactly the same model parameters as that of the
signal of reference but with 54 points of periodicity instead of 20. We have lightly gray colored its
associated row on Table 1 when it had the shortest distance. The curve associated with this signal
has many wraps on its representation, and it has consequently the greatest distance on SO(3), but
increasing the dimension improves the comparison. Indeed, it finally has the shortest distance on
SO(4) and SO(5). This is particularly interesting to see that there is a competition between the curves
of a PAR(2) with different model parameters but the same periodicity and a PAR(2) with the same
model parameters but different periodicity.



Entropy 2018, 20, 717 15 of 23

Table 1. Table of the distances between all the PC processes of Figure 4 to the gold standard PC
process of Figure 8 through the distance of their curves’ shapes on SO(3), SO(4) and SO(5). We have
interpolated with roughly twice and four times the number of original points. We also applied here
a DP to solve the optimization assignment problem.

Distance to the Signal of Figure 8

SO(3) SO(4) SO(5)
Model of Signal

Displayed in Figure 4
200 pts 50 pts 200 pts 50 pts 200 pts 50 pts

(a) 5.72 4.47 97.19 26.86 526.36 95.47
(b)—100 pts instead of 50 pts 31.63 28.98 41.78 12.98 298.64 220.32

(c) 3.44 3.29 90.89 20.23 476.55 116.06
(d) 4.!9 4.50 187.42 50.36 621.51 171.73
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Figure 6. Representation inside the ball of radius π of the four PC processes drawn in Figure 4,
arranged in the same order with 50 interpolated points except for plot (b) which has been computed
with 100 interpolated points represented with green stars; the dashed black line is the theoretical curve
and the red dots are the representation of dilation matrices. (a) is the representation of Figure 4a, (b) is
the representation of Figure 4b, (c) is the representation of Figure 4c and (d) is the representation of
Figure 4d.
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Figure 7. Geodesic interpolation with respect to (43) between the green dashed curve (gold standard
signal of Figure 8) and the dashed red curve (signal of Figure 4c), first row for 200 interpolated points,
second row for 50 interpolated points. For this scenario s ∈ [1/4, 1/2, 3/4] which corresponds to
[(a–d), (b–e), (c–f)] respectively.
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Figure 8. A PAR(2) signal with a period of 20 points, 1000 samples were generated, and its
corresponding SO(3) representation inside the ball of radius π.

We end by noticing that the PARMA(2,1) has the second shortest distance to the PAR(2) signal
model of reference on SO(3). As Figure 5 shows, their spectral measure evolves in a similar way with
one major loop and a second less important loop. However, once the dimension of the base manifold
increases, the assumption that the two processes may be close is strongly rejected by the fact that the
PARMA(2,1) signal model has the longest distance. Finally, these observations leave open besides the
question of the topology of these curves and how it could be used for the classification.
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4. Conclusions

We have introduced a new vision of stochastic processes through geometry induced by dilation.
The dilation matrices of given processes were obtained by a composition of rotations whose angles
correspond to the well-known parcors, reflexion coefficients or Verblunski coefficients. The advantage
of working with these particular matrices is that they are strongly related to the stochastic measure of
the process, and thus, to its spectra. Furthermore, the dilation theory is independent of the stationarity
of the underlying process; when the signal is stationary, its dilation operator is related to the Naimark
dilation whereas when the signal is nonstationary, a set of dilation matrices is obtained and it is related
to the Kolmogorov decomposition. Rigorously, dilation matrices are infinite dimensional, although we
turn them into rotation matrices by truncation. Each of them belongs to the Special Orthogonal Group
SO(n) or the Special Unitary Group SU(n) depending on the real- or complex-valued process under
study. We focused our attention on the Periodically Correlated (PC) class of nonstationary processes for
which a timely ordered set of dilation matrices describes the process measure. This set draws a closed
curve on the Lie group of rotation matrices, and describing or classifying the different PC processes is
made by curves comparison. We use for that the Square Root Velocity (SRV) function which represents
a curve by its starting point and by its normed velocity vector on the space or curves. The metric in the
space of curve naturally extends to the space of shapes. It is then possible to compare the shape of
curves when the metric is translated into the Lie algebra, achieving therefore a closed-form expression
and easy computation. Nonstationary processes are then characterized via their embedded curves.
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Appendix A. Defect Operator, Elementary Rotation

Introducing the defect operator of a contraction T as being DT = (I − T∗T)1/2, we have the
following factorisation: (

X Y
Y∗ Z

)
=

(
X1/2 0

Z1/2Γ∗ Z1/2DΓ

)(
X1/2 ΓZ1/2

0 DΓZ1/2

)
(A1)

where X and Y are positive matrices. Note that this is a Cholesky factorisation-type result. This type of
decomposition is used as the square root of matrices in the construction of the dilation. A corollary is

that the operator

(
I T

T∗ I

)
is positive if and only if T is a contraction.

Theorem A1. Let X and Y be operators in z. The following statements are equivalent:

• There exists a contraction Γ in z such that X = ΓY,
• X∗X 6 Y∗Y.

Proof. This result can be proved by taking the contraction Γ with respect to ΓXh = Yh. [41].

As a corollary If, X∗X = Y∗Y, then there exists a partial isometry V such that VX = Y. It is easy
to see that we can choose V to be the contraction Γ defined above. Isometry V can also be assumed
unitary. For a positive operator A ∈ L(H), if we denote by A1/2 its unique positive square root,
then every L such that L∗L = A is related to A1/2 by A1/2 = VL (or A1/2 = L∗V∗).

Let us state another theorem that intervenes much in Constantinescu’s factorisation of
positive-definite kernel. Note that in the following,R(Γ) will denote the close range of the operator Γ.
We start with a basic case:
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Theorem A2 (row contraction). Let T = [T1 T2] ∈ L(H1 ⊕H2,H), then || T ||6 0 if and only if there
exists contractions Γ1 ∈ L(H1,H) and Γ2 ∈ L(H2,H) such that

T = [Γ1 DΓ∗1
Γ2] (A2)

Proof. The proof is a simple application of Theorem A1. For the if part, it is obvious that we can take
Γ1 to be T1. Then || T ||6 1 implies

I − TT∗ = I − Γ1Γ∗1 − T2T∗2 > 0 (A3)

with D2
Γ∗1

> T2T∗2 . Hence, there exists ∆ such that ∆DΓ∗1
= T∗2 . Choosing Γ2 = ∆∗ finishes

the argument.

In the same way as that of the Cholesky factorisation, we can write down the defect operator for
the whole contraction T = [T1 T2] [41] to be

D2
T =

(
DΓ1 0
−Γ∗2Γ1 DΓ1

)(
DΓ1 −Γ∗1Γ2

0 DΓ1 .

)
(A4)

Therefore, with Theorem A2, we have an operator α such that

DT =

(
DΓ1 0
−Γ∗2Γ1 DΓ1

)
α (A5)

Similarly,
D2

T∗ = (DΓ∗1
DΓ∗2 DΓ∗2 DΓ∗1

) (A6)

and the general case is:

Theorem A3 (Structure of row contraction). The following are equivalent:

• The operator Tn = [T1 T2 · · · Tn] in L(⊕n
k=1Hk,H′) is a contraction

• T1 = Γ1 is a contraction and, for k > 2, there exists uniquely determined contractions Γk ∈ L(Hk,R(γk))

such that Tk = DΓ∗1
DΓ∗2 · · ·DΓ∗k−1

Γk.

Furthermore, the defect operators of the whole contraction T are of the form

D2
T = 

DΓ1 0 · · · 0
−Γ∗2 Γ1 DΓ2 · · · 0

...
...

. . .
...

−Γ∗nDΓ∗n−1
· · ·DΓ∗2

−Γ∗nDΓ∗n−1
· · ·DΓ∗3

Γ2 · · · DΓn




DΓ1 −Γ∗1 Γ2 · · · −Γ∗1 DΓ∗2
· · ·DΓ∗n−1

Γn

0 DΓ2 · · · −Γ∗2 DΓ∗3
· · ·DΓ∗n−1

Γn

...
...

. . .
...

0 0 · · · DΓn

 (A7)

and
D2

T∗ = DΓ∗1
· · ·DΓ∗n DΓ∗n · · ·DΓ∗1

(A8)

Proof. It can be proved straightforwardly by induction.

This construction permits to understand the apparition of the operators α and β in the publications
of Constantinescu which are used to identify the defect space of the components (the underlying
contractions of a row contraction) of a row contraction with the defect space of the row contraction

itself. Same results are readily obtained for a column contraction of the form T =

T1
...

T2

.
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Appendix B. Geodesic Equation in the Space of CurveM
To have a complete insight on the geodesic equation, we give the proof for a more general case

that arises when considering the SRV and not only the TSRV function of a curve, that is, the curves are
parametrised by their starting point and their velocity, but their starting points are not transported to
the identity.

Theorem A4. A path of curves [0, 1] 3 s 7→ (c(s, 0), q(s, t)) (t is the parameter of the curve c(s, ·))is a
geodesic onM if and only if:

∇∂c/∂sc(s, 0) +
∫ 1

0
R (q(s, t),∇∂c/∂sq(s, t)) (c(s, 0))dt = 0 ∀s (A9)

∇∂c/∂s (∇∂c/∂sq(s, t)) (s, t) = 0 ∀s, t (A10)

Similarly to [45,48], we consider a variation of the path s 7→ c(s, 0), q(s, t) starting and ending at the
same points, we denote {(c(s, 0, τ), q(s, t, τ))}. In Figure A1, to get a clear picture, we have represented
a variation of a path of curves with fixed starting and ending points. Although similar, the situation
here is a bit different because of the representation of the curve through its SRV function, which we can
hardly represent. However, the process remains similar. We emphasise the subtle difference with [45].
Here, we work directly in the tangent space representation, via the SRV representation, and not with
“the whole family” of curves c(s, t, τ).

b b
c0 c1

b

b

c0(s1, ·, τ1)

c0(s2, ·, τ2)

Figure A1. we consider a beam of curves, which consists in a slight modification of the geodesic.
The different curves are indexed by τ. The idea is to find which of these curves gives the minimal
energy to go from c0 to c1.

We denote ∂τc(s, 0, τ) =
∂c(s, 0, τ)

∂τ
, and similarly for ∂sc(s, 0, τ) and ∂τc(s, 0, τ). The energy of

the path indexed by τ is

E(τ) =
1
2

∫ 1

0
〈∂sc(s, 0, τ), ∂sc(s, 0, τ)〉+ 〈∇∂c/∂sq(s, t, τ),∇∂c/∂sq(s, t, τ)〉ds. (A11)

Recall that the derivative of the inner product is given by
d

dx
〈 f (x), f (x)〉 = 2 ∗ 〈 f (x),

d f
dx
〉. Then

E′(0) =
∫ 1

0
〈∇∂c/∂τ

∂c
∂s

(s, 0, 0),
∂c
∂s

(s, 0, 0)〉+ 〈∇∂c/∂τ∇∂c/∂sq(s, t, 0),∇∂c/∂sq(s, t, 0)〉ds (A12)

with ∇∂c/∂s (∂τc(s, 0, τ)) = ∇∂c/∂τ (∂sc(s, 0, τ)) and owing to the curvature tensor
R (∂τc(s, 0, τ), ∂sc(s, 0, τ)) (q(s, t, τ) = ∇∂c/∂τ∇∂c/∂s(q(s, t, τ))−∇∂c/∂s∇∂c/∂τ(q(s, t, τ)) we have

E′(0) =∫ 1

0
〈∇∂sc∂τc(s, 0, τ), ∂sc(s, 0, τ)〉+ 〈R (∂τc(s, 0, τ), ∂sc(s, 0, τ)) q(s, t, τ),∇∂s q(s, t, τ)〉

+ 〈∇∂sc∇∂τcq(s, t, 0),∇∂scq(s, t, 0)〉 ds. (A13)
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Integrating by parts now, allows to have

∫ 1

0
〈∇∂τc∂sc(s, 0, τ), ∂sc(s, 0, τ)〉ds = −

∫ 1

0
〈∇∂sc∂sc(s, 0, τ), ∂τc(s, 0, τ)〉ds∫ 1

0
〈∇∂sc∇∂τc(q(s, t, τ)),∇∂s q(s, t, τ)〉 = −

∫ 1

0
〈∇∂sc∇∂sc(q(s, t, τ)),∇∂τ

q(s, t, τ)〉

which yields to

E′(0) =
∫ 1

0
(−〈∇∂sc∂sc(s, 0, τ), ∂τc(s, 0, τ)〉)

+ 〈R (∂τc(s, 0, τ), ∂sc(s, 0, τ)) q(s, t, τ),∇∂s q(s, t, τ)〉
+ (−〈∇∂sc∇∂scq(s, t, 0),∇∂τcq(s, t, 0)〉)ds, (A14)

for any vector fields X, Y, Z, W, 〈R(X, Y)Z, W〉 = −〈R(W), Z〉, we consequently obtain

E′(0) = −
∫ 1

0
〈∇∂sc∂τc(s, 0, τ), ∂sc(s, 0, τ)〉

+ 〈R (q(s, t, τ),∇∂s q(s, t, τ)) (∂sc(s, 0, τ)), ∂τc(s, 0, τ〉
+ 〈∇∂c/∂s∇∂c/∂τq(s, t, 0),∇∂c/∂sq(s, t, 0)〉ds. (A15)

Geodesic corresponds to minimal energy. It means that every other path that starts and ends
at the same points should require more energy to travel than the geodesic. We then have to solve
E′(0) = 0 for every ∂τc(s, 0, τ) and every ∇∂τ

(q(s, t, τ)). This gives the result.
Now when the framework is given by the TSRV and not by the SRV, only the second part of the

geodesic equation remains as a result of the fixed starting point which corresponds to the identity
element. This very much simplifies the equation, even though the derivation is the same.
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