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Abstract: Although studies show an annual trend for immunosuppressive drugs, particularly during
different seasons, no data are available for antiretroviral drugs exposures in different periods of the
year. For this reason, the aim of this study was to investigate an association between seasonality
and antiretroviral drugs plasma concentrations. Antiretroviral drugs exposures were measured with
liquid chromatography validated methods. A total of 4148 human samples were analysed. Lopinavir,
etravirine and maraviroc levels showed seasonal fluctuation. In detail, maraviroc and etravirine
concentrations decreased further in summer than in winter. In contrast, lopinavir concentrations had
an opposite trend, increasing more in summer than in winter. The etravirine efficacy cut-off value of
300 ng/mL seems to be affected by seasonality: 77.1% and 22.9% of samples achieved this therapeutic
target, respectively, in winter and summer, whereas 30% in winter and 70% in summer did not reach
this value. Finally, age over 50 years and summer remained in the final multivariate regression
model as predictors of the etravirine efficacy cut-off. This study highlights the seasonal variation
in antiretroviral drugs plasma concentrations during the year, leading to a better understanding of
inter-individual variability in drug exposures. Studies are required in order to confirm these data,
clarifying which aspects may be involved.
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1. Introduction

Seasonality has been documented in many biological markers such as hormones; in
fact, an annual fluctuation was highlighted for different environmental factors such as
infections, ultraviolet (UV) exposure and other factors such as vitamin D (VD) [1]. Particu-
larly, some studies in the literature have illustrated correlations between clinical conditions
or drug plasma levels and seasonality. In this context, Bauer et al. described the seasonal
variability of asthma exacerbation in patients suffering from uncontrolled pathology, moni-
toring lung functions metrics and asthma symptoms. The authors highlighted a progressive
worsening of uncontrolled asthma towards winter, unlike surges in asthma exacerbations
during spring and autumn periods [2].

Concerning inflammatory bowel disease (IBD), season of birth seems to be associated
with a higher or lower risk of developing this autoimmune disease (AD), considering the
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variation of VD levels in different seasons. The majority of IBD patients were born in winter
(particularly in January and February); in contrast, a nadir for IBD positivity was registered
in autumn [3].

Specifically, considering HIV and AIDS, some studies showed a seasonal pattern [4,5].
For example, a study performed in Africa evidenced a seasonal AIDS distribution, with
outbreaks in particular geographic areas in the first eight months of the year [6]. In this
context, it is important to highlight that a possible relationship between AIDS annual
spreading and seasonal antiretroviral drug (ARV) concentrations have not been proposed
yet. In fact, in this field, the study of Lindh et al. showed that two immunosuppressive
drugs, tacrolimus and sirolimus, have an annual variation in concentrations; specifically, in
spring/summer, their levels are lower than in autumn/winter [7]. Drug fluctuation seems
to show an opposite trend compared to levels of VD, which modulates the expression of
genes encoding cytochromes (CYPs, e.g., CYP3A5) and transporters (e.g., ABCB1), involved
in tacrolimus and sirolimus metabolism and transport [8]. In fact, in vitro studies indicate
that VD induces CYPs and drug transporter gene expression through its receptor (VDR)-
mediated increase in transcription; this activity results in higher CYPs drug substrates
metabolism and transport [9,10].

Considering that immunosuppressive drugs such as ARVs are administered for a long
period (all lifelong), studies have to clarify a possible role of seasonality in affecting ARV
concentrations.

For this reason, the aim of this study was to evaluate the anti-HIV drug plasma level
trend during the year through a therapeutic drug monitoring (TDM) repository in order to
understand if they could have a seasonal variation, similar to what has been suggested for
immunosuppressive drugs.

Furthermore, it was assessed whether the season, in addition to other patient-related
factors, will be able to predict the concentration cut-offs associated with ARV efficacy
or toxicity.

2. Materials and Methods
2.1. Study Design

TDM is a clinical practice able to quantify drugs in different biological matrices,
particularly in plasma, leading to dose optimisation in order to achieve efficacious treat-
ment, avoiding toxicity. A TDM record of 10 years was analysed: samples collected from
people living with HIV (PLWH) treated at the Amedeo di Savoia (Turin, Italy) were eval-
uated. Samples of patients with age > 18 years, good general condition (without other
diseases), on ARV therapy for >7 days, absence of any interacting drugs (such as rifampicin,
methadone or erythromycin), no co-infection, drug intake before blood withdrawal and
reported medication adherence above 90% were considered (Ethics Committee approvals:
(CS2/325 del 8/8/2017).

For each patient, the following data were provided in the register: demographics (sex,
age), concomitant medications at the time of the visit, antiretroviral therapy in progress
and time and date of the last administration of ARVs.

2.2. ARV Plasma Concentrations

Samples were selected considering patients who were not supplemented with VD.

Sampling was performed at a steady state before drug dose administration (Ctrough).
Plasma samples were obtained from a lithium-heparin tube (7 mL) and were stored in
cryovials at —20 °C before analysis. The following drugs were quantified: etravirine
(ETV), maraviroc (MVC), lopinavir (LPV), darunavir, atazanavir, ritonavir, raltegravir,
dolutegravir, abacavir, tenofovir, nevirapine, lamivudine and emtricitabine.

Drug concentrations were determined by ultra/high-performance liquid chromatogra-
phy (UPLC/HPLC), according to previously described and fully validated methods [11-13].
Samples with undetectable concentrations were considered non-adherent and were ex-
cluded from the analyses.
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Therapeutic ranges for analyzed drugs were considered in accordance with those
reported by Pretorius et al. [14].

2.3. Statistical Analysis

All the continuous variables were tested for normality with the Shapiro-Wilk test.
The correspondence of each parameter was evaluated with a normal or non-normal distri-
bution through the Kolmogorov-Smirnov test. Non-normal variables were described as
median values and interquartile range (IQR), and categorical variables as numbers and
percentages. Kruskal-Wallis and Mann-Whitney tests were adopted for differences in con-
tinuous variables between seasons, considering a statistical significance with a two-sided
p-value < 0.05.

Stepwise multivariate logistic regression analyses were performed to predict drug
cut-off values (ETV).

All tests were performed with IBM SPSS Statistics for Windows v.26.0 (IBM Corp.,
Chicago, IL, USA).

3. Results

In this study, 4148 samples were considered; their characteristics are provided in
Table 1. Percentages of treatment combinations are summarised in Table S1.

Table 1. Characteristics of the described population.

Characteristics
Number of patients (1) 4148
Age (years), median (range interquartile [IQR]) 52 (47-55)
Male sex, 1 (%) 2846 (69%)
Female sex, n (%) 1302 (31%)
Weight, median [IQR] 69 [58-78]
Height, median [IQR] 170 [164-176]
Concomitant drugs, 1 (%) 1572 (37.9%)
Proton-pump inhibitors, n (%) 225 (5.4%)
Patients treated with nevirapine, n (%) 165 (4%)
Patients treated with raltegravir, n (%) 518 (12.5%)
Patients treated with darunavir, n (%) 412 (9.9%)
Patients treated with ritonavir, n (%) 936 (22.6%)
Patients treated with atazanavir, n (%) 721 (17.4%)
Patients treated with etravirine, n (%) 102 (2.5%)
Patients treated with abacavir, n (%) 137 (3.3%)
Patients treated with tenofovir, n (%) 1612 (38.9%)
Patients treated with emtricitabine, n (%) 1547 (37.3%)
Patients treated with maraviroc, n (%) 340 (8.2%)
Patients treated with lopinavir, n (%) 191 (4.6%)

LPV, ETV and MVC concentrations showed a seasonal trend (p = 0.006, p = 0.002 and
p = 0.001, respectively, Figure 1). In detail, LPV, ETV and MVC median concentrations are
reported in Table 2. Particularly, MVC and ETV concentrations were lower in summer than
in winter (p = 0.033 and p < 0.001, respectively). On the other hand, LPV concentrations
showed an opposite trend (p = 0.003, Figure 2).
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Figure 1. Lopinavir, etravirine and maraviroc concentrations according to seasonal variation. Circles
and stars indicate “out” values (small circle) and “far out” values (star).

Table 2. Lopinavir, etravirine and maraviroc median concentrations (ng/mL) in relation to seasonality.

Season Lopinavir Median Etravirine Median Maraviroc Median
Concentrations (ng/mL) [IQR] Concentrations (ng/mL) [IQR] Concentrations (ng/mL) [IQR]
Winter 5015 [2009-7541] 562 [410-1133] 178.5 [84.5-456.5]
Spring 6829 [4839-11148.5] 447 [234.5-660] 135 [42-273]
Summer 7608 [4396-1012.5] 265 [179-448.5] 125 [57-259.5]
Autumn 6906 [3678-10312] 602 [372.25-854] 99 [46.75-240.25]
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Figure 2. Lopinavir, etravirine and maraviroc levels in winter vs. summer. Circles and stars indicate
“out” values (small circle) and “far out” values (star).

Furthermore, our other aim was to evaluate if seasonality could have a role in affecting
the achievement of concentrations associated with drug efficacy or toxicity. ETV was the
only ARV showing statistical significance (p < 0.001) considering its therapeutic efficacy
cut-off value of 300 ng/mL.

Plasma samples with an ETV higher than 300 ng/mL were 37 (77.1%) in winter but 11
(22.9%) in summer; samples with concentrations lower than this cut-off were 6 (30%) in
winter but 14 (70%) in summer (Figure 3).

In addition, a statistically significant difference between the percentage of samples
with ETV levels higher and lower than 300 ng/mL was highlighted both in winter and
summer (p < 0.001 and p < 0.001).

Finally, different patients demographic, seasonal and pharmacological elements
were evaluated as predictors of ETV effectiveness cut-off value through regression anal-
ysis (Table 3). Age > 50 years, summer, winter and proton-pump inhibitor (PPI) co-
administration were retained in the univariate model, whereas age over 50 years and
summer remained in the final multivariate regression model (Figure 4).
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Table 3. Logistic regression analysis for predictors of etravirine effectiveness cut-off value. In bold, statistically significant

values.
Etravirine Efficacy Cut-Off Value of 300 ng/mL
Univariate Regression Logistic Regression
Predictive Factors p-Value OR (95% IC) p-Value OR (95% IC)
Age > 50 0.037 2.5 (1.1-6.0) 0.006 4.6 (1.5-13.8)
Gender 0.564 1.3 (0.5-3.3)
Weight > 70 kg 0.476 0.7 (0.3-1.7)
Height > 170 cm 0.091 0.5(0.2-1.1)
Summer 0.002 0.2 (0.1-0.6) 0.017 0.2 (0.1-0.8)
Winter 0.003 4.5 (1.7-12.4) 0.077 2.9 (0.9-9.3)
Proton-pump inhibitors 0.006 0.3 (0.1-0.7) 0.188 0.5(0.2-1.4)
0 ETRAVIRINE
100% CONCENTRATIONS
[E< 300 ng/mL

> 300 ng/mL
80%
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Figure 3. Etravirine efficacy concentration cut-off value of 300 ng/mL in summer vs. winter.
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Figure 4. Etravirine efficacy concentration cut-off value of 300 ng/mL in summer vs. other seasons.

No difference in ARV concentrations was suggested for monthly evaluation or gender.
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4. Discussion

Since HIV medications, similar to immunosuppressive drugs, are administered for a
long time (lifetime), we aimed to investigate if seasonality could have a role in affecting ARV
concentrations. In this context, TDM serves as a potent tool to monitor drug concentrations
in order to understand if they are within the therapeutic range or, for example, to clarify
patient compliance.

Supporting this, our group recently submitted (data not published) a study aimed
to analyse the annual trend of efavirenz (EFV) exposure. As suggested for tacrolimus
and sirolimus, also for EFV, seasonality could have an impact in terms of its plasma
variation [15].

In this study, 4148 HIV drug quantifications reported in a 10-year TDM experience
were considered: LPV exposure was higher in spring and summer and lower in autumn
and winter; in contrast, ETV and MVC had an opposite trend.

Moreover, we evaluated the association between seasonality and the achievement
of cut-off plasma concentrations related to efficacy or toxicity. ETV was the only ARV to
reach statistical significance, considering its cut-off of 300 ng/mL associated with thera-
peutic effectiveness. In winter, the percentage of samples reaching 300 ng/mL was higher
compared with non-achieving ones and vice versa in summer.

Finally, in this study, factors able to predict this ETV cut-off value were evaluated
through regression analysis. While age > 50 years, summer, winter and PPI concomitant
drugs remained in the univariate regression analysis, age > 50 years and summer were
retained in the final multivariate regression model. Particularly, the percentage of samples
with ETV > 300 ng/mL was lower in summer compared with other seasons. According
to what has been shown by Lindh et al., we could suppose a possible VD contribution,
but data have to be analysed in further studies. In fact, they showed that tacrolimus and
sirolimus immunosuppressive agent concentrations decreased with increased VD levels;
this could be due to a VD inductive effect on genes encoding for proteins involved in
these drugs’ metabolism and excretion (CYP3A5, CYP2B6 and ABCB1 genes encoding for
CYP3A5, CYP2B6 enzymes and for P-glycoprotein transporter, respectively) [7,8].

One limitation of this study is that a small number of samples were taken into con-
sideration monthly; in fact, no difference in ARV plasma exposures during the year was
evidenced according to months. Consequently, a larger number of patients have to be
enrolled monthly in future. In addition, another limitation is that water consumption is
deeply influenced by the seasons; thus, the levels of different molecules (such as drugs)
could vary. Further studies focused on this aspect have to be performed.

Finally, VD levels could be quantified in order to understand if they could impact
anti-HIV concentrations annual fluctuations.

5. Conclusions

In conclusion, this is the first study reporting the seasonal variation in ARV plasma
exposures in a cohort of PLWH in ten years, particularly for LPV, ETV and MVC. This
study could be useful to achieve a better explanation of inter-individual variability in drug
exposures, leading to superior management of patient treatment. In future, works are
required in order to better clarify this aspect.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
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