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Hyperglycemia is a condition known for the impairment of insulin secretion and is responsible for dia-
betes mellitus. Various small molecule inhibitors have been discovered as glucokinase activators.
Recent studies on benzamide derivatives showed their importance in the treatment of diabetes as glucok-
inase activator. The present manuscript showed a computation study on benzamide derivatives to help in
the production of potent glucokinase activators. In the present study, pharmacophore development, 3D-
QSAR, and docking studies were performed on benzamide derivatives to find out the important features
required for the development of a potential glucokinase activator. The generated pharmacophore hypoth-
esis ADRR_1 consisted of essential features required for the activity. The resultant statistical data showed
high significant values with R2 > 0.99; 0.98 for the training set and Q2 > 0.52; 0.71 for test set based on
atom-based and field-based models, respectively. The potent compound 15b of the series showed a good
docking score via binding with different amino acid residues such as (NH. . .ARG63), (SO2. . .ARG250,
THR65), and p-p staking with (phenyl. . .. . .TYR214). The virtual screening study used 3563 compounds
from ZINC database and screened hit compound ZINC08974524, binds with similar amino acids as shown
by compound 15b and crystal ligand with docking scores SP (-11.17 kcal/mol) and XP (-8.43 kcal/mol).
Compounds were further evaluated by ADME and MMGBSA parameters. Ligands and ZINC hits showed
no violation of Lipinski rules. All the screened compounds showed good synthetic accessibility. The pre-
sent study may be used by researchers for the development of novel benzamide derivatives as glucoki-
nase activator.
� 2022 The Author. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Glucokinase is a hexokinase isozyme, consist of 465 amino acids
(molecular weight = 50 kD) present in pancreatic b-cells and liver
(postprandial state). Glucokinase catalyzes a reaction that involve
the transfer of phosphate from ATP to glucose and the generation
of glucose 6-phosphate which is the first step in the direction of
synthesis of glycogen and glycolysis (Matschinsky 1996; Antoine
and Boutin 2009). This reaction is also representing the first rate-
limiting step in glucose metabolism. Glucokinase activator (GK-
A) worked through two different mechanisms known as lowering
the blood glucose level in the liver and increasing insulin secretion
in pancreatic b-cells. Therefore, it becomes an interesting target in
the present scenario to treat diabetes. Various GK-As have been
synthesized, some are under clinical studies and showed promising
results to lower blood glucose levels in healthy people and type-2
diabetes mellitus (T2-DM) patients. Glucokinase activator is
responsible for several side effects such as hypoglycemia and tes-
ticular toxicity (American Diabetes Association 2009; Waring
et al. 2011). To eliminate these side effects, frequent dose regimens
and dose titration are preferred. There are two different
approaches described to treat hypoglycemic state, one is related
to the designing of partial activators (Pfefferkorn et al. 2011) and
the second approach is to restrict liver-selective glucose activators
(Bebernitz et al. 2009; Massa et al. 2011; Pfefferkorn et al. 2012;
Park 2012; Park et al. 2013).

In the direction to treat diabetes, various benzamide derivatives
have been developed as GK-As (Matschinsky et al. 2010; Mao et al.,
2012). Park, et al. identified a novel phenylethyl benzamide GK-A
(Park 2012; Park et al. 2013). Furthermore, Park et al. synthesized
a series of pyrazole benzamide derivatives as GK-A having 3-
methylpyridine and 4-phenoxymethyl sulfone groups for the treat-
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Table 1
In vitro IC50 and PIC50 values for GK activity of pyrazole benzamide derivatives (Park 2012; Park et al. 2013).

15a-18k
19a-19e

13a1-22e1

C R1 R2 AP-A (IC50, mM) AP-A (pIC50) C R1 R2 AP-A (IC50, mM) AP-A (pIC50)

16a H H 0.095 7.02 16b1 – 0.301 6.52

16b H F 0.238 6.62 16c1 – 0.025 7.60

15a H 0.103 6.99 18a1 – 0.021 7.68

15b H 0.005 8.30 18b1 – 0.012 7.92

18a H 50 4.30 18c1 – 0.03 7.52

18b H 0.212 6.67 18d1 – 0.034 7.47

18c H 0.688 6.16 19 – 0.027 7.57

18d H 2.43 5.61 21 – 0.039 7.41

18e H 7.46 5.13 20a1 – 0.037 7.43

18f H 50 4.30 20b1 – 0.163 6.79

18 g H 0.008 8.10 20c1 – 0.006 8.22
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Table 1 (continued)

18 h H 0.033 7.48 20d1 – 0.006 8.22

18i H 0.463 6.33 20e1 – 0.006 8.22

18j H 0.106 6.97 20f1 – 0.02 7.70

18 k H 50 4.30 20 g1 – 0.039 7.41

19a CH3 – 0.807 6.09 20 h1 – 0.009 8.05

19b – 50 4.30 22a1 – 0.053 7.28

19d – 0.441 6.36 22b1 – 0.046 7.34

19e – 0.315 6.50 22c1 – 0.006 8.22

13a1 – 1.87 5.73 22d1 – 0.007 8.15

13b1 – 0.006 8.22 22e1 – 0.016 7.80

16a1 – 7.7 5.11

C: Compound; AP-A: Antiproliferative activity.
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ment of T2-DM. Grewal et al. synthesized a series of benzamide
3,5-disubstituted analogues and evaluated them for GK activation
activity. These analogues showed considerable antihyperglycemic
activity in the animal models (Grewal et al. 2019). In a study, Char-
aya et al. synthesized thiazole-2-yl benzamide derivatives from
benzoic acid and evaluated them for GK activation activity
(Charaya et al. 2018). A benzamide derivative PF-04937319 (1) is
under phase-1 clinical trial for the treatment of diabetes.
On the basis of previously synthesized compounds (Park 2012;
Park et al. 2013), structure-based drug design was performed with
pharmacophore development, 3D QSAR, and docking simulations
for the determination of potent GK-A by using the PHASE module
(Schrodinger). Pharmacophore development determines the
important features required for the activity and can be used for
3D QSAR and virtual screening studies. Field and atom-based 3D-
QSAR models were developed for the determination of statistical
data results of correlation between molecules and their properties.
A virtual screening study on the ZINC database generated the
potent compounds as GK-A. Docking study revealed the important
interactions with amino acids required for activity. On the other
hand, the MMGBSA (Molecular Mechanics Generalized Born Sur-
face Area) method was used to predict the binding free energy of
the docked molecules. The current findings of the study may be
utilized as a guiding tool for the development of novel and effective
GK-A.
Fig. 1. (1A) Common scaffold alignment of 43 benzamide derivative
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2. Methodologies

2.1. Software

The 3D-QSAR, pharmacophore modeling and docking were per-
formed by Schrodinger module (Park et al. 2014; Park et al. 2015).

2.2. Dataset

A dataset of 43 benzamide derivatives was taken for the devel-
opment of pharmacophore, 3D-QSAR, virtual screening, and dock-
ing studies (Table 1). The IC50 values taken from biological
activities were converted into pIC50. Data set were divided into
active for ‘higher activity’ and inactive for ‘lower activity’ com-
pounds and the remaining were counted in the category of inter-
mediate. The alignment on common scaffold of 43 benzamide
derivatives is given in Fig. 1A. The PDB ID-3A0I was used for the
docking studies. The crystal ligand of this protein used for compar-
ison of docking outcomes are presented in Fig. 1B (Andreoli et al.
2014).

2.3. Preparation of ligands

The molecular structure of benzamide derivatives was con-
verted from 2D to 3D by using LigPrep of Schrodinger software.
The OPLS_2005 force field was taken for the preparation of ligands.
Further, the prepared molecules were taken for 3D-QSAR and dock-
ing simulations (Schrodinger 2017; Ali and Ali 2021).

2.4. Pharmacophore development

The pharmacophore model was developed by using PHASE
module, where all 43 ligands were aligned on common scaffold
and generated conformers using the macromodel search method
(Ali and Ali 2021). PHASE module consists six different pharma-
cophore features including hydrogen bond acceptor (HBA), hydro-
gen bond donor (HBD), aromatic ring, hydrophobic group, positive
ionizable, and negative ionizable groups (Rajeswari et al. 2014).
The maximum number of sites was fixed to 5 which further
s; (1B) Binding interactions of crystal ligand with protein 3AOI.



Table 2
The generated pharmacophore hypotheses.

N. Hypothesis Phasehypo-S Survival-S Inactive-S Site-S Vector-S Volume-S Selectivity-S

1 DHHRR_1 1.25 5.061 1.433 0.689 0.927 0.537 2.063
2 ADRR_1 1.18 5.032 1.234 0.982 0.922 0.409 1.955
3 AHHRR_1 1.17 4.964 1.283 0.725 0.957 0.502 1.936
4 AAHHR_1 1.16 4.829 1.329 0.772 0.957 0.521 1.733
5 ADHRR_1 1.15 4.813 1.698 0.775 0.898 0.411 1.775
6 ADHHR_1 1.14 4.805 1.237 0.696 0.926 0.544 1.793
7 ADHHR_2 1.13 4.798 1.269 0.701 0.983 0.465 1.804
8 AAHHR_2 1.11 4.777 1.333 0.607 0.937 0.525 1.864
9 ADHHR_3 1.10 4.764 1.464 0.671 0.961 0.491 1.797
10 AAHRR_1 1.09 4.719 1.298 0.854 0.724 0.481 1.883
11 AADHR_1 1.09 4.713 1.778 0.985 0.951 0.480 1.451
12 HHRR_1 1.09 4.572 1.391 0.742 0.923 0.554 1.509
13 AHHR_1 1.08 4.531 1.129 0.873 0.905 0.545 1.363
14 DHRR_1 1.07 4.524 1.645 0.824 0.846 0.410 1.489
15 AHHR_2 1.07 4.508 1.616 0.740 0.900 0.537 1.485
16 DHHR_1 1.06 4.469 1.513 0.668 0.944 0.548 1.465
17 ADHR_1 1.06 4.459 1.548 0.996 0.928 0.467 1.222
18 AAHR_1 1.06 4.426 1.766 0.995 0.937 0.465 1.183
19 AHRR_1 1.00 4.394 1.683 0.762 0.886 0.409 1.383
20 AHRR_2 0.96 4.389 1.386 0.923 0.695 0.498 1.495

S: Scores

Fig. 2. Pharmacophore model (ADRR_1). Model represents various features by
arrow like acceptor (A; pink-colour), donor (D: grey colour), hydrophobic and
aromatic ring (R: brown colour) features.
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responsible for the generation of the topmost 20 different hypothe-
ses. For the generation of these hypotheses, ligands were catego-
rized into active, inactive, and intermediate.
Table 3
Statistical data generated by atom based (A.B.) and field based (F.B.) models.

P.F. R2 R2 CV Q2 SD

A.B. F.B. A.B. F.B. A.B. F.B. A.B. F.B.

1 0.80 0.63 0.59 0.40 0.41 0.72 0.59 0.55
2 0.95 0.86 0.57 0.54 0.45 0.61 0.57 0.56
3 0.98 0.94 0.59 0.61 0.50 0.69 0.59 0.31
4 0.99 0.98 0.62 0.64 0.52 0.71 0.62 0.19

P.F.: PLS factor; A.B.: Atom based; F.B.: Field based
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The active ligand was set as for those which had pIC50 value of
more than 8 whereas inactive ligands considered for those had
pIC50 value less than 6.6, except these all-other ligands were set
as intermediates. The final data consisted of 9 actives and 14 inac-
tive ligands. The hypothesis was generated by using 9 actives and
1 Å box size and 2 Å site distance. The all-generated hypotheses
were ranked based on different scores depicted in Table 2 (Crisan
et al. 2019; Sakkiah et al. 2014). The hypothesis ADRR_1 (Fig. 2)
showed the top scoring features with one HBA, one HBD, and
two aromatic rings. The hypothesis determines the essential fea-
tures required for the binding with receptor for a particular activ-
ity. A total of 20 pharmacophore hypotheses were developed
which were ranks according to the score hypothesis (Table 2).
2.5. 3D-QSAR

3D-QSAR models were developed by two techniques known as
field-based and atom-based QSAR. The developed models were
showed the essential parameters required for activity by correlat-
ing the structure features with biological activity. All 43 benzamide
derivatives were separated into a training set with 75% and test set
with 25% compounds using 4 PLS factors (Kar et al. 2010). Best
models were generated by QSAR models (atom and field-based)
described in Table 3. Statistics for atom-type fraction and field type
fraction were summarized in Tables 4 and 5. In the atom-based
model, 35 molecules were selected for the training, and 8 mole-
cules for the test set, whereas in field-based 31 and 12 molecules
were taken for the training and the test set, respectively (Table 6).
RMSE Stability P-r F

A.B. F.B. A.B. F.B. A.B. F.B. A.B. F.B.

1.06 0.65 0.89 0.91 0.67 0.88 81.90 41.30
1.02 0.77 0.63 0.77 0.75 0.82 195.20 71.20
0.97 0.69 0.63 0.72 0.80 0.87 251.20 124.50
0.96 0.66 0.65 0.70 0.82 0.86 299.80 271.90



Table 4
Statistical fraction data procured from atom based model.

Factors Hydrogen donor Hydrophobic group Positive group Electron withdrawing group Other

1 0.013 0.675 0.247 0.065 0.013
2 0.012 0.700 0.243 0.044 0.012
3 0.012 0.703 0.241 0.045 0.012

Table 5
Statistical fraction data procured from field based model.

Factors Steric Electrostatic Hydrophobic Hydrogen Acceptor Hydrogen Donor

1 0.361 0.101 0.242 0.226 0.07
2 0.411 0.098 0.262 0.151 0.077
3 0.403 0.099 0.276 0.138 0.085
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The contour maps generated by atom-based and field-based mod-
els are presented in Figs. 3 and 4, respectively. These maps are rep-
resented as hydrophobic, steric, donor, acceptor, and electrostatic
fields (Peng et al. 2017).
Table 6
The IC50 value (Actual vs predicted) generated by atom-based and field-based 3D-QSAR m

N. Ligand QSAR set (A.B.) Observed activity

1 15b Training 8.301
2 13b1 Training 8.222
3 20c1 Training 8.222
4 20d1 Training 8.222
5 20E_1 Test 8.222
6 22c1 Training 8.222
7 22d1 Training 8.155
8 18g Test 8.097
9 20h1 Test 8.046
10 18b1 Training 7.921
11 22E_1 Training 7.796
12 20f1 Training 7.699
13 18a1 Training 7.678
14 16c1 Training 7.602
15 19 Training 7.569
16 18c1 Training 7.523
17 18h Training 7.481
18 18d1 Test 7.468
19 20a1 Training 7.432
20 20g1 Training 7.409
21 21 Training 7.409
22 22b1 Training 7.337
23 22a1 Training 7.276
24 16a Training 7.02
25 15a Test 6.987
26 18j Training 6.975
27 20b1 Training 6.788
28 18b Training 6.674
29 16b Training 6.62
30 16b1 Training 6.521
31 19e Test 6.502
32 19d Training 6.356
33 18i Training 6.334
34 18c Test 6.162
35 19a Training 6.093
36 13a1 Training 5.728
37 18d Training 5.614
38 18e Training 5.127
39 16a1 Training 5.114
40 18a Training 4.301
41 18f Training 4.301
42 18k Test 4.301
43 19b Training 4.301

A.B.: Atom based; F.B.: Field based
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2.6. Target protein prediction

The potent compounds of the series were selected and submit-
ted to the Swiss-Target-Prediction tool. The said tool predicted var-
odel using PLS factor 4.

Predicted activity (A.B) QSAR set
(F.B)

Predicted activity (F.B)

6.70 Training 8.49
6.91 Training 8.18
7.50 Training 8.32
8.16 Training 8.17
8.16 Test 7.88
7.29 Test 7.26
8.12 Training 8.16
7.92 Training 8.01
7.17 Test 7.47
7.76 Training 8.05
7.85 Training 7.60
7.50 Training 7.88
7.69 Training 7.73
7.29 Training 7.29
7.60 Test 7.76
7.66 Test 7.43
7.25 Training 7.32
7.35 Training 7.62
7.52 Training 7.53
7.42 Test 7.16
7.43 Training 7.23
7.30 Training 7.16
7.28 Training 7.41
6.89 Training 6.92
6.87 Training 6.69
6.34 Test 6.62
6.64 Training 6.99
6.76 Test 6.24
6.38 Training 6.23
6.35 Training 6.18
6.60 Training 6.48
6.27 Training 6.31
6.32 Training 6.33
6.25 Test 5.16
6.29 Training 5.99
6.01 Training 5.86
5.57 Test 6.09
5.03 Test 4.65
6.72 Training 5.23
4.18 Test 5.70
5.47 Training 4.45
5.69 Training 4.37
5.23 Training 4.44



Fig. 3. 3D contour maps, atom-based: (3A) EWG; (3B) HBD group; (3C) Hydrophobic group; (3D) Positive ionic group.

Fig. 4. Different field contour maps: (4A) Electrostatic (blue {favored}, red
{disfavored}); (4B) HBA (red {favored}, magenta {disfavored}); (4C) HBD (purple
{favored}, cyan {disfavored}); (4D) Steric (green {favored}, yellow {disfavored}).

Table 7
Docking scores generated through the Glide module.

N. Ligand D.S. (XP)
kcal/mol

D.S. (SP)
kcal/mol

1 18d �8.854 �12.715
2 19b �10.686 �12.412
3 19e �11.07 �11.731
4 19a �10.768 �11.467
5 16b �9.207 �11.361
6 16a �9.261 �11.296
7 15a �9.351 �11.284
8 18k �9.258 �11.149
9 15b �9.047 �11.088
10 18h �8.742 �10.866
11 18c �8.522 �10.622
12 18e �7.234 �10.615
13 20E_1 �8.191 �10.613
14 18f �9.513 �10.536
15 18g �11.172 �10.443
16 18j �7.131 �10.427
17 18i �9.313 �10.184
18 18a1 �10.037 �9.95
19 20a1 �8.082 �9.897
20 18c1 �11.886 �9.767
21 16c1 �10.364 �9.703
22 21 �8.751 �9.679

DS: Docking score; Extra precision: XP; SP: Standard precision.
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ious protein targets, in which GK-A was the most appropriate tar-
get for the selected molecules.

2.7. Docking analysis

The PDB ID-3A0I consists a three-dimensional structure of GK-A
and was downloaded through protein data bank (Tagami et al.
2010). The docking study was performed to determine the binding
scores between ligand and receptor by using the Glide module. The
SP and XP methodologies were used for all 43 ligands with PDB ID-
3A0I (Table 7). The MMGBSA based rescoring technique was used
for the prediction of binding free energy calculation between
ligands and receptor molecule (Table 8). However, DFT studies
can give more accurate assessment of binding/docking (Van
Mourik et al., 2014).

2.8. ADME prediction studies

The top scored compounds were analyzed by different ADME
properties such as drug-likeness, solubility, and pharmacokinetic
N. Ligand DS (XP)
kcal/mol

DS (SP)
kcal/mol

23 19d �10.014 �9.62
24 13a1 �11.856 �9.56
25 13b1 �10.242 �9.519
26 18b �10.21 �9.396
27 18a �9.761 �9.059
28 19 �8.507 �9.03
29 18b1 �8.284 �9.001
30 18d1 �9.406 �8.769
31 20d1 �9.615 �8.707
32 22b1 �8.48 �8.701
33 20h1 �11.053 �8.694
34 16b1 �8.827 �8.653
35 20c1 �8.548 �8.653
36 20g1 �8.464 �8.57
37 22a1 �7.801 �8.548
38 16a1 �12.379 �8.513
39 22E_1 �9.187 �8.274
40 22c1 �7.757 �7.804
41 20b1 �5.211 �7.388
42 20f1 �10.515 �6.959
43 22d1 �7.929 �6.476



Table 8
The scores calculated by different docking methodologies used in the present study with their rescoring values calculated by MMGBSA method.

C PDB ID: 3AOI

D.S. (XP)
kcal/mol

D.S. (SP)
kcal/mol

D.S. (HTVS)
kcal/mol

dG bind
kcal/mol

18g �11.172 �10.443 �10.65 �81.31
13b1 �10.242 �9.519 �7.85 �74.62
19e �11.07 �11.73 �6.38 �83.57
19a �10.77 �11.47 �9.26 �80.57
16b �9.21 �11.36 �10.78 �84.33
16a �9.26 �11.30 �11.47 �81.96
15b �9.05 �11.09 �9.24 �89.31
ARRY-403 �10.259 �10.101 �9.26 �72.62
RO-5305552 �6.707 �9.074 �7.75 �39.15
Piragliatin �8.345 �8.144 �7.24 �39.35
Glucokinase activator 1 �3.36 �5.782 �8.37 �0.96
ZINC08974524 �8.43 �11.17 �10.26 �19.55
ZINC00656909 �8.715 �10.887 �8.62 �56.96
ZINC31812808 �8.40 �8.223 �9.37 �76.4
ZINC14791611 �8.294 �10.879 �8.28 �29.58
ZINC05204145 �7.984 �7.323 �8.32 �53.31
ZINC01114130 �7.854 �10.21 �9.65 �37.62
ZINC09712705 �7.764 �8.962 �9.78 �47.96
ZINC14462664 �7.65 �10.997 �7.47 �75.4
ZINC02474054 �6.186 �4.208 �6.25 �8158

D.S.: Docking score; XP: Extra precision; SP: Standard precision; HTVS: High-throughput virtual screening.
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studies. The QikProp software was used to calculate ADME proper-
ties (Table 9). Further, the Swiss-ADME tool was used to evaluate
additional parameters like cytochrome profile of the drug with per-
meation through different other barriers.
3. Results

3.1. Analysis of pharmacophore modeling

The generated pharmacophore hypotheses with different scores
are presented in Table 2. The hypothesis ADRR_1 was chosen as the
best hypothesis with phase hypo-score = 1.18, survival score = 5.03,
and site score = 0.98. The field-based and atom-based QSAR studies
showed reliable statistical parameters with different evaluation
factors. The results showed internal validation parameters such
as R2 values 0.99, 0.98; R2CV values 0.62, 0.64; Q2 values 0.52,
0.71; SD values 0.62, 0.19; RMSE values 0.96, 0.66 and F values
299, 271 for atom-based and field-based models, respectively
(Table 3). The scatter plots for both models are shown in Fig. 5.
Table 9
ADME predictions of top scored compounds.

C QP log Po/w1 QPP- Caco2 QP log B.B.3

18g 3.524 62.806 �1.768
13b1 3.606 2683.955 �0.698
19e 3.411 290.144 �2.14
19a 3.746 323.686 �1.674
16b 3.784 251.098 �1.595
16a 3.544 300.192 �1.505
15b 3.472 76.153 �1.903
ARRY-403 2.664 170.959 �1.879
GK-A 1 4.515 22.249 �2.361
Piragliatin 3.048 435.091 �1.217
RO-5305552 2.775 199.82 �2.015
ZINC08974524 4.32 2282.231 �0.392

Predicted [1: Octanol/water partition coefficient; 2: Caco-2 cell permeability (nm/s); 3
Human serum albumin binding]; 6: Number of metabolic reactions; 7: Percent human
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3.2. 3D-QSAR

The contour maps showed the correlation between different
bioactivities by various substituents on the core moiety (Fig. 3).
The correlation between actual and predicted activities of test
and training-set compounds for atom-based QSAR is depicted in
Fig. 5. The contour maps generated by field-based model include
HBA, HBD, steric, electrostatic, and hydrophobic fields (Fig. 4). Dif-
ferent substituent groups on the potent compound (16a) described
by various colour responsible for increase or decrease in activity.
The correlation between actual and predicted activities of test
and training-set compounds for field-based QSAR is depicted in
Fig. 5.
3.3. Docking and virtual screening studies

The PDB ID-3A0I was taken for docking purposes to evaluate
binding interactions of potent ligands and ZINC compounds. The
docking scores were compared with the observed activity. Com-
pounds, 18g, 13b1, 19e, 19a, 16b, 16a, and 15b showed binding
QPP-MDCK4 QP log Khsa5 MetR6 PHOA7

46.094 0.214 6 66.803
1438.153 �0.05 3 100
130.171 �0.097 4 78.033
146.509 0.346 2 93.806
332.05 0.266 3 92.054
262.463 0.187 3 92.039
56.786 �0.114 7 67.996

200.448 �0.156 6 82.508
47.821 0.115 3 64.54

374.987 0.038 7 92.016
174.056 �0.177 4 84.373

2329.878 0.362 4 100

: Brain/blood partition coefficient; 4: Apparent MDCK cell permeability (nm/s); 5:
oral absorption.



Fig. 5. Correlation between test (5 A & C) and training (5B & D) set compounds by using atom and field-based 3D QSAR models.
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interactions with important amino acids required for GK-A. The
amino acids bind with both compounds 15b and 18g were
ARG250 and THR65, ARG63 as shown in Fig. 6. Compound 16a also
showed good binding interactions described in Fig. 7. The docking
score of the potent compounds of the series compared with stan-
dard drugs such as glucokinase activator 1, piragliatin, ARRY-403,
and RO-5305552 are described in Table 8. The binding interactions
of other potent compounds 19e and 19 are displayed in Fig. 8.

3.4. MMGBSA-based rescoring

The rescoring of docked structure of ligand and protein was per-
formed by the MMGBSA-based method (molecular mechanics
energies combined with the Poisson–Boltzmann or generalized
Born and surface area continuum solvation). The screened ZINC
hit compound ZINC08974524 (complex of ZINC08974524: 3A0I)
showed docking score of �8.428 kcal/mol. Other ZINC hits such
as ZINC00656909, ZINC31812808, ZINC14791611, ZINC05204145,
ZINC01114130, ZINC09712705 and ZINC14462664 showed XP
docking scores �8.715, �8.40, �8.294, �7.984, �7.854, �7.764
and �7.65 kcal/mol, respectively. All ZINC compounds showed
negative value of dG binding energies as compared with standards
(Table 8).
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3.5. ADME properties calculation

ADME properties were calculated by the QikProp module, com-
prise of one another SwissADME tool. These parameters were
within the acceptable range for ligands and ZINC hits (Table 9).
The compounds of the series showed drug-likeness properties with
no violation of the Lipinski rule. The bioavailability score of com-
pounds showed the value of 0.55.

4. Discussion

The final hypothesis consisted of one HBD, one HBA, and two
aromatic ring structures. The hypothesis (ADRR_1) showed align-
ment with other molecules of the series and displayed good corre-
lation between structure and bioactivity. The features of the
hypothesis were further taken for screening of ZINC compounds
from the ZINCPHARMER (http://zincpharmer.csb.pitt.edu/) online
tool. The atom based QSAR maps indicated the influence on bioac-
tivity by the addition of substituents on the nucleus. The blue con-
tour maps showed an increase in activity, whereas red maps
showed decrease in activity. The compound 16a showed alignment
with pharmacophore hypothesis ADRR_1 with different colours on
their substituents. The electron-withdrawing group (EWG) substi-

http://zincpharmer.csb.pitt.edu/


Fig. 7. (7A) 2D and (7B) 3D docking interactions represented by compound 16a.

Fig. 6. Ligand interaction diagram for higher scoring compound 15b (6A) and 18 g (6B) in docking study.
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tution on benzamide derivatives exhibited increase in the activity,
whereas EWG substitution on phenyl ring showed decrease in
activity, as represented by red maps (Fig. 3). The HBD group addi-
tion showed no changes in activity. The hydrophobic group addi-
tion connected to the amide group displayed increase in activity,
whereas the introduction of such group at phenyl ring decreased
the potency and showed mixed activity throughout the ring. How-
ever, the addition of positive and negative ionic groups showed
decrease in the activity.

In field based QSAR contour map electrostatic group contains
the blue colour at the amide group linked heterocyclic compounds
that showed the introduction of electron positive group at the site
responsible for increase in the activity. The phenyl ring connected
to heterocyclic ring with electron positive group may decrease or
increase the activity. The HBA group introduction at phenyl ring
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connected group may increase the activity. The addition of HBD
group at the amide group may increase the activity. The group con-
tains steric field with green color in phenyl ring substituted group
may be responsible for increase in activity. The potent compound
15b of the series showed good docking score using interactions
with amino acid residues (NH. . .ARG63), (SO2. . .ARG250, THR65),
and p-p staking with (phenyl. . .. . .TYR214). Compound 16a also
showed good binding interactions with amino acid residues such
as TRY214, ARG250, THR65, and ARG63 (docking score
�11.296 kcal/mol), important for GK-A activity (Fig. 7). The dock-
ing scores and the amino acid residues of the potent compounds
of the series compared with standard drugs such as glucokinase
activator 1 (�3.36 kcal/mol), piragliatin (�8.345 kcal/mol), ARRY-
403 (�10.259 kcal/mol), and RO-5305552 (�6.707 kcal/mol)
(Table 8). Furthermore, the other potent compounds 19e and 19



Fig. 8. Docking interactions represented by compound 19e (8A) and 19 (8B).
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from both the series showed good binding interactions with
THR65, ARG63, ARG250, and TYR214 essential amino acids that
are important for a GK-A drug (Fig. 8).

The ZINC library was downloaded through the Swiss screening
database. Total 3563 compounds were downloaded by ZINC data-
base and further screened by different docking methodologies
using Glide module. After applying Lipinski rule, the compounds
were filtered through HTVS docking process. The top 50% of the
compounds from this process were further taken for SP, and the
top 20% compounds were finally taken for XP. Top hit, namely
ZINC08974524 (Fig. 9) showed best docking score in SP
(�11.17 kcal/mol), XP (�8.43 kcal/mol), and HTVS (�10.26 kcal/-
mol). The binding interactions of all the ZINC compounds were
similar to crystal ligand interactions. The RMSD value was used
as a parameter to check the binding pattern of different com-
Fig. 9. SP (9A) and XP (9B) ligand interaction diagram for higher scor
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pounds from crystal ligand. These binding interactions of active
compounds and ZINC derivatives displayed similar interaction as
shown by crystal ligand of PDB ID-3A0I. The Zinc hit compounds
may be used for the in vivo evaluation as GK-A. Furthermore, ZINC
screening data suggested that the binding interactions were simi-
lar to the compounds taking for 3D QSAR study. So, these com-
pounds may be designed further for the synthesis of potent
compounds as GK-A against diabetes.

In ADME analysis, compounds showed solubility range from
low to high values. The GI absorption was low for 16a and high
for 19a compounds. The SwissTargetPrediction results exhibited
that compounds have high target specificity for GK-A. All com-
pounds showed good synthetic accessibility within the range of
2–4. These compounds may be useful for the generation of novel
compounds as GK-A. The compounds screened through ZINC data-
ing compound (ZINC08974524) screened through ZINC database.



Fig. 10. Substitutions on benzamide scaffold with different characteristic features for the development of future compounds as GK-A.
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base showed good ADME properties (Table 9). However, cyto-
chrome profiling for ZINC hits shown inhibitory activities against
CYP3A4, CYP2C19, and CYP2C9. All the compounds of the series
and ZINC hits showed noncarcinogenic activities.
5. SAR optimization

The pharmacophore model, 3D QSAR, virtual screening, and
Zinc hit compounds may be used as a basis for the production of
novel compounds as GK-A depicted in Fig. 10. The present SAR
optimized by the 3D QSAR study revealed that the substitutions
on benzamide scaffold with different characteristic features for
the development of novel GK-A. The core moiety in the place of thi-
azole ring can be replaced by some electropositive atoms and
hydrophobic groups such as long carbon chain and phenyl ring
responsible for increase in activity. The oxygen atom of the benza-
mide group is more prominent for activity, or if it is replaced by
less electronegative groups such as sulphur or nitrogen, then the
activity may be diminished. The pyridine ring connected to the
benzamide scaffold can be replaced by electropositive groups that
results an increase in activity. These features can be used for the
further development and synthesis of novel derivatives as GK-A.
6. Conclusion

The present manuscript revealed a computation study on ben-
zamide derivatives processed in a sequence to produce potent
GK-As, where ligands and ZINC hits showed no violation of the Lip-
inski rules. All screened compounds displayed good synthetic
accessibility. Based on 3D-QSAR, pharmacophore development,
SwissTargetPrediction, virtual screening, and molecular docking
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studies, we may design novel molecules with good ADME proper-
ties and low toxicity. ADRR_1 is determined as the best pharma-
cophore in the study. The 3D QSAR study showed the best
statistical data by atom-based and field-based models, consecu-
tively. The binding interactions of compounds showed important
amino acids required for activity. Fig. 10 showed the importance
of different substituents on core moiety which may help for the
development of novel compounds as GK-A. Furthermore, the pre-
sent study may be helpful for researchers as a guiding tool for
the development of novel benzamide derivatives as GK-A.
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