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Abstract: A key feature of pulmonary arterial hypertension (PAH) is the hyperplastic proliferation
exhibited by the vascular smooth muscle cells from patients (HPASMC). The growth inducers FOXM1
and PLK1 are highly upregulated in these cells. The mechanism by which these two proteins direct
aberrant growth in these cells is not clear. Herein, we identify cyclin-dependent kinase 1 (CDK1), also
termed cell division cycle protein 2 (CDC2), as having a primary role in promoting progress of the
cell cycle leading to proliferation in HPASMC. HPASMC obtained from PAH patients and pulmonary
arteries from Sugen/hypoxia rats were investigated for their expression of CDC2. Protein levels
of CDC2 were much higher in PAH than in cells from normal donors. Knocking down FOXM1 or
PLK1 protein expression with siRNA or pharmacological inhibitors lowered the cellular expression
of CDC2 considerably. However, knockdown of CDC2 with siRNA or inhibiting its activity with
RO-3306 did not reduce the protein expression of FOXM1 or PLK1. Expression of CDC2 and FOXM1
reached its maximum at G1/S, while PLK1 reached its maximum at G2/M phase of the cell cycle.
The expression of other CDKs such as CDK2, CDK4, CDK6, CDK7, and CDK9 did not change in
PAH HPASMC. Moreover, inhibition via Wee1 inhibitor adavosertib or siRNAs targeting Wee1, Myt1,
CDC25A, CDC25B, or CDC25C led to dramatic decreases in CDC2 protein expression. Lastly, we
found CDC2 expression at the RNA and protein level to be upregulated in pulmonary arteries during
disease progression Sugen/hypoxia rats. In sum, our present results illustrate that the increased
expression of FOXM1 and PLK1 in PAH leads directly to increased expression of CDC2 resulting
in potentiated growth hyperactivity of PASMC from patients with pulmonary hypertension. Our
results further suggest that the regulation of CDC2, or associated regulatory proteins, will prove
beneficial in the treatment of this disease.

Keywords: CDC2; CDK1; FOXM1; PLK1; smooth muscle cells; pulmonary arterial hypertension; cell
cycle; vascular remodeling

1. Introduction

Vascular remodeling is a primary feature of pulmonary arterial hypertension (PAH).
The disease is fatal and debilitating, with limited effective treatments. Remodeling involves
thickening of the pulmonary vascular media and blockage of the vessel lumen due at least
in part to cellular invasion. The pulmonary arterial smooth muscle cells (HPASMC) are
known to be important contributors to this process [1]. Our laboratory and others have
described the hyperplastic phenotype of PASMC from subjects with PAH as continuing to
proliferate under normally non-proliferative conditions [2–7]. Studies have pointed out vast
differences in proliferative phenotype between PAH and normal control HPASMC [2,6,8,9],
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their migration [10–12], DNA repair/cell survival [13–16], ion channel signaling [17–19],
and PDGF signaling [20,21]. Recently, the PAH HPASMC were found to have increased
expression of the transcription factor FOXM1 and the proto-oncogene polo-like kinase 1
(PLK1) [5,13,22]. Both proteins are potent cell growth activators [23–26]. This observation
supports the etiology and course of the disease which exhibit cellular overgrowth and
blockage of the pulmonary artery [27–30]. We formerly illustrated that the expression of
FOXM1 and PLK1 is interactive, and inhibition of their expression highly diminishes the
proliferation of these cells [5]. Communications published by others have supported these
observations [31–33].

Both FOXM1 and PLK1 are linked to cell cycle regulation [25,34–36]. FOXM1 is a tran-
scription factor that transcribes multiple genes involved in cell cycle progression [25,37–39].
PLK1 has been reported to work with FOXM1 by phosphorylating and inducing its activ-
ity [34]. The cell cycle is controlled through the temporal interactions of cyclins with their
corresponding serine/threonine kinases, called cyclin-dependent kinases (CDK) [40,41].
Human cells contain 20 CDKs, of which CDK1, CDK2, CDK3, CDK4, CDK6, and CDK7 are
directly involved in cell cycle regulation, while other CDKs act in regulating transcription,
RNA processing, translation, neurogenesis, and apoptosis [41,42]. Of the numerous CDKs,
cyclin-dependent kinase-1 (CDK1), also termed cell division cycle protein 2 (CDC2), is
responsible for the transition through G2 when complexed with cyclin A and through
mitosis when complexed with cyclin B [43–45]. Diril et al. reported that CDC2-knockout
MEF cells after starvation and released to growth with serum were able to enter the S phase
but were arrested in G2 phase without entering mitosis [46]. It turned out that CDC2 was
necessary for cytoskeletal rearrangement and rounding of the cell body during mitosis but
not DNA replication during the S phase. In late S and G2 phases, CDK-activating kinase
(CAK), which consists of subunits CDK7 and cyclin H, phosphorylates CDC2/cyclin B
complex at position Thr161 to initiate its activation [47]. After this, CDC2 is kept inactive by
phospho-kinases Myt1 and Wee1 dependent phosphorylation of its Thr14 and Tyr15 sites
(residues located in its catalytic subunit) [48,49]. As the cell progresses towards mitosis a
series of events take place including the inactivation of Myt1 and Wee1 and the complete
activation of CDC2 by the CDC25 phosphatase family [50]. Once activated, CDC2/cyclin B
phosphorylates FOXM1 at positions Thr596 and Ser678, allowing for PLK1 binding. The
binding of PLK1 leads to more phosphorylation of FOXM1 during G2/M transition and
activation of FOXM1 and expression of mitotic genes [34,51]. These events in sum lead to
mitosis and eventual cell division.

In this communication, we show that CDC2 expression is sharply increased in pul-
monary artery smooth muscle cells from patients with PAH in comparison to normal
PASMC cells. The expression of CDC2 is coordinated with increased expression of FOXM1
and PLK1 so that strong growth of the cells within the pulmonary artery is assured. These
present novel pathways contribute strongly to HPASMC hyperplasticity in PAH.

2. Results
2.1. Expression of CDC2 in HPASMC

One of the hallmarks of PAH is the uncontrolled proliferation of vascular cells, re-
sulting in blood vessel blockage. In a former communication, we illustrated the increased
expression of proliferation-associated proteins FOXM1 and PLK1 in PAH. [5]. These two
proteins have been reported to be associated with the expression of CDC2 [51]. In turn,
CDC2 has been known to regulate the cell’s progression through the cell cycle leading to
mitosis. In the case of HPASMC obtained from PAH patients, we are finding that their
protein levels of CDC2 are much higher than in cells from control donors Figure 1A. This
is seen in cell cultures grown in low proliferative (quiescence) medium 0.2% fetal bovine
serum (FBS) and high -proliferative growth medium (5% FBS). As seen in Figure 1A the
expression of CDC2 consists of three bands, suggesting multiple phosphorylation isoforms.
The two high molecular weight bands are more clearly visible in PAH cells but very faint
in control donor cells (Figure 1A). The scatter plot in Figure 1A quantifies these top bands
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in cells growing in quiescence showing that the PAH group (n = 5) had significantly higher
intensity bands compared to the donor control group (n = 5). The lower molecular weight
band is visible in both disease and control donor cells under growth conditions but largely
absent under quiescence conditions (Figure 1A). To better identify what these CDC2 bands
represent, duplicate samples were run on opposite sides of the same blot. The blot was
cut into two, separating the two sets of samples, and one half of the blot was probed
with an antibody against total CDC2 and the other blot was probed with an antibody
against phospho-CDC2 (p-Tyr 15-CDC2). The result is shown in Figure 1B with the PAH
5% FBS samples run on the blot edges for better visualization of migration distance (molec-
ular weight) comparison. The lower band of total CDC2 found predominantly in cells
treated with 5% FBS corresponds in molecular weight with the Tyr15 phosphorylated
CDC2 (Figure 1B) (as shown by an arrow pointing between red circles). The exact nature
of these phosphorylation species is presently unclear.
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h post-stimulation. PAH HPASMC showed a steady high expression of CDC2 with a peak 
at 24 h post-growth stimulation (Figure 2A). The expression of other associated proteins 

Figure 1. Overexpression of CDC2 in PAH HPASMC. (A) Western blot showing CDC2 protein expression in PAH and
non-PAH donor control HPASMC under 0.2% FBS and 5% FBS growth conditions. Scatter plot representing relative CDC2
protein levels in n = 5 non-PAH and n = 5 PAH HPASMC grown in 0.2% FBS medium. (B) Blots show the proper size
of p-CDC2 (Tyr15) compared to total CDC2 bands. Duplicates of the same samples were run on a single SDS-PAGE and
transferred onto a single blot. The blot was then cut into sections A and B with each containing one set of the duplicate
samples. Blot A was probed for p-CDC2 (Y15) and Blot B was probed for total CDC2. The arrow points to the same
migratory distance (molecular weight) indicated by red circles between Blot A and Blot B. Images are representative of at
least duplicate experiments. **-p < 0.01.

2.2. Effect of Timing, Cell Cycle Arrest, and FOXM1/PLK1 Inhibition on Expression of CDC2

To determine whether the differences in CDC2 expression between control donor and
PAH HPASMC were merely a reflection of their stage in the cell cycle, we looked at CDC2
expression at 0, 4, 24, and 48 h following growth stimulation with 5% serum. Figure 2A
shows a faint but significant increase in expression of CDC2 in normal HPASMC at 48 h
post-stimulation. PAH HPASMC showed a steady high expression of CDC2 with a peak
at 24 h post-growth stimulation (Figure 2A). The expression of other associated proteins
was also measured a 0, 24, and 48 h. PLK1 expression peaked at 48 h and FOXM1 and
Aurora A (transcriptionally regulated by FOXM1) peaked at 24 h after growth stimulation
(Figure 2B).
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Figure 2. Effect of timing, cell cycle arrest, and FOXM1/PLK1 inhibition on the expression of CDC2. (A) Western blots
showing expression of CDC2 in control and PAH HPASMC at time 0, 4, 24, or 48 h after release from 48 h serum starvation.
(B) Western blots showing expression of FOXM1, PLK1, Aurora A, and beta actin in PAH HPASMC at 0, 24, and 48 h after
release from serum starvation. (C) Western blots showing expression of CDC2, p-CDC2 (Tyr15), FOXM1, PLK1, Aurora A,
and beta actin after arrest in G0 (serum starvation), arrest G1/S (amphicolin treatment), arrest G2/M (nocodazole treatment),
FOXM1 inhibition (thiostrepton treatment), PLK1 inhibition (volasertib treatment), or released in 5% FBS (no arrest control).
Images are representative of at least triplicate experiments. Bar graphs indicate group means for these experiments and the
error bars represent the standard deviation. *-p < 0.05, **-p < 0.01, ***-p < 0.001, and ****-p < 0.0001.

We then proceeded to determine CDC2 expression within different phases of the
cell cycle. Cells were growth-arrested by serum starvation (G0), treatment with aphidi-
colin (G1/S) or treatment with nocodazole (G2/M), and CDC2 protein expression was
determined (Figure 2C). All proteins measured were low at G0. At G1/S total CDC2,
phosphorylated CDC2 (Tyr15), aurora A, and FOXM1 expression were at their peak. At
G2/M, PLK1 expression was at its peak.

Furthermore, the inhibition of both FOXM1 and PLK1 expression with pharmacologi-
cal inhibitors, thiostrepton (specific for FOXM1) [52] and volasertib (specific for PLK1) [53],
respectively, reduced the protein expression of CDC2, p-CDC2 (Tyr15), FOXM1, PLK1, and
Aurora A (Figure 2C).

2.3. Effectors of CDC2 Expression

To determine whether the expression of these two growth inducers (FOXM1, PLK1) is
related to CDC2 expression, we knocked down FOXM1 or PLK1 expression with siRNA in
PAH HPASMC. Both knockdowns lowered the expression of CDC2 significantly by more
than 50% (Figure 3A). On the other hand, knockdown of CDC2 expression with siRNA or
inhibition of CDC2 activity with RO3306 [54] did not significantly reduce FOXM1, PLK1,
or Aurora A expression below the level of untreated control (5% FBS) (Figure 3B,C). This
demonstrates that CDC2 expression is downstream of both FOXM1 and PLK1 and is
independent of Aurora A expression.
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Figure 3. Effectors of CDC2 expression in PAH HPASMC. (A) Western blot showing the effect of FOXM1 and PLK1
knockdown on the expression of CDC2 in PAH HPASMC. (B) Western blot showing the effect of CDC2 knockdown on
the expression of PLK1, FOXM1, Aurora A, and beta actin in PAH HPASMC. (C) Western blot showing the effect of
CDC2 inhibitor (RO-3306) on the expression of PLK1, FOXM1, Aurora A, and beta actin in PAH HPASMC. Images are
representative of at least triplicate experiments. Bar graphs indicate group means for these experiments, and the error bars
represent the standard deviation. *-p < 0.05, **-p < 0.01 and ****-p < 0.0001.

2.4. Expression of Other CDKs

We then looked at the expression of other CDK in control and PAH HPASMC. These
other CDKs have a variety of roles in regulating the cell cycle [40,41]. Results show that
there is no major difference in expression between normal and PAH HPASMC, under 0.2%
and 5% FBS growth conditions (Figure 4). The expression of CDK4 remained the same in
both 0.2% and 5% FBS. However, increased expression of CDK6, CDK7, and CDK9 was
noticed in normal HPASMC cells when stimulated with 5% FBS (Figure 4). The change due
to FBS concentration was less prominent in PAH HPASMC.
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CDK4, CDK9, CDK6, CDK2, and beta-actin in non-PAH (CON) and PAH HPASMC. Images are
representative of at least duplicate experiments.
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2.5. Regulators of CDC2

We then examined the effect of the major regulators of CDC2 activity on CDC2 ex-
pression. The primary regulators of CDC2 activity are kinases, Myt1 and Wee1, and
phosphatases, CDC25A, CDC25B, and CDC25C [48–50]. These enzymes act through phos-
phorylation or dephosphorylation of CDC2 and control CDC2 activity. Previous studies
have shown that the pharmacological inhibitor, adavosertib, inhibits Wee1 activity by
effectively reducing the level of CDC2 Tyr15 phosphorylation [55]. In this study, treat-
ment of PAH HPASMC with adavosertib significantly reduced both CDC2 expression
and its phosphorylation at Tyr15 (Figure 5A). Likewise, using siRNAs targeting Wee1,
Myt1, CDC25A, CDC25B, or CDC25C in PAH HPASMC also significantly reduced CDC2
expression compared to control siRNA (Figure 5B). CDC25B and to a lesser extent CDC25A
maintain only a lower band possibly containing phosphorylation at Tyr15.
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the expression of CDC2 in PAH HPASMC. T-test performed on siCON vs. each siRNA. Images are representative of at least
triplicate experiments. Bar graphs indicate group means for these experiments and the error bars represent the standard
deviation. *-p < 0.05, **-p < 0.01 and ****-p < 0.0001.

2.6. Expression of CDC2 in Pulmonary Arteries from Sugen/Hypoxia-Treated Rats

To determine if CDC2 is involved in the regulation of smooth muscle hyperplasia at
the physiological level, CDC2 expression was determined in pulmonary arteries obtained
from rats exposed to hypoxia and Sugen 5416, which models the progression of pulmonary
hypertension (PH). Control and PH model rats were sacrificed at 48 h and 1 week after
injection with Sugen 5416 and exposure to 10.5% O2. Main trunk pulmonary arteries
were removed and tested for RNA and protein expression of CDC2. Results are shown
in Figure 6. In comparison to normal, ambient air (normoxia) rats, the sugen/hypoxic
rat main trunk pulmonary arteries showed increased expression of CDC2 at both RNA
(Figure 6A) and protein (Figure 6B) levels with a maximum taking place at 48 h of hypoxia.
This shows that CDC2 is upregulated upon induction of PH in rats’ pulmonary arteries.
Based on our experiments and other published evidence, we present a hypothesized
schematic for CDC2 signaling in PAH HPASMC in Figure 7.
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B during mitosis where it phosphorylates and affects downstream targets. One target FOXM1 gets phosphorylated at 
positions T596 and S678 allowing for PLK1 binding. The binding of PLK1 leads to more phosphorylation of FOXM1 during 
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sible that FOXM1/PLK1 might be activated independently by other molecules such as MAP kinases. The top black arrow 
indicates cell cycle phase at which occurrences take place. 

Figure 6. Expression of CDC2 in pulmonary arteries of rat PH model. SD Rats were treated with sugen/hypoxia for 48 h or
1 week or vehicle in normal air (norm) over the same period. Main trunk pulmonary arteries from these rats were tested for
expression of CDC2 at the RNA (A) and protein (B) levels. All treatments were done in triplicate, and the experiments were
done in duplicate. Representative experiments are shown. n = 3 for each group. Bar graphs indicate group means for these
experiments and the error bars represent the standard deviation. **-p < 0.01 and ****-p < 0.0001.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 7 of 17 
 

 

 
Figure 6. Expression of CDC2 in pulmonary arteries of rat PH model. SD Rats were treated with sugen/hypoxia for 48 h 
or 1 week or vehicle in normal air (norm) over the same period. Main trunk pulmonary arteries from these rats were tested 
for expression of CDC2 at the RNA (A) and protein (B) levels. All treatments were done in triplicate, and the experiments 
were done in duplicate. Representative experiments are shown. n = 3 for each group. Bar graphs indicate group means for 
these experiments and the error bars represent the standard deviation. **-p < 0.01 and ****-p < 0.0001. 

 
Figure 7. Hypothesized schematic of CDC2 signaling in PAH HPASMC. CDC2 complexed with cyclin B (Cyc B) is acti-
vated via a complex series of events which involve (1) Myt1 and Wee1 phosphorylating CDC2 at positions T14 and Y15 to 
protect CDC2 protein but keep it inactive, (2) CDK7 in G2 before mitosis phosphorylates at position T161 to initiate acti-
vation, and (3) CDC25 phosphatase removes phosphates at T14 and Y15 leaving CDC2 to be active in complex with cyclin 
B during mitosis where it phosphorylates and affects downstream targets. One target FOXM1 gets phosphorylated at 
positions T596 and S678 allowing for PLK1 binding. The binding of PLK1 leads to more phosphorylation of FOXM1 during 
G2/M transition and activation of FOXM1 and expression of mitotic genes leading to cell cycle progression. It is also pos-
sible that FOXM1/PLK1 might be activated independently by other molecules such as MAP kinases. The top black arrow 
indicates cell cycle phase at which occurrences take place. 

Figure 7. Hypothesized schematic of CDC2 signaling in PAH HPASMC. CDC2 complexed with cyclin B (Cyc B) is activated
via a complex series of events which involve (1) Myt1 and Wee1 phosphorylating CDC2 at positions T14 and Y15 to protect
CDC2 protein but keep it inactive, (2) CDK7 in G2 before mitosis phosphorylates at position T161 to initiate activation, and
(3) CDC25 phosphatase removes phosphates at T14 and Y15 leaving CDC2 to be active in complex with cyclin B during
mitosis where it phosphorylates and affects downstream targets. One target FOXM1 gets phosphorylated at positions
T596 and S678 allowing for PLK1 binding. The binding of PLK1 leads to more phosphorylation of FOXM1 during G2/M
transition and activation of FOXM1 and expression of mitotic genes leading to cell cycle progression. It is also possible that
FOXM1/PLK1 might be activated independently by other molecules such as MAP kinases. The top black arrow indicates
cell cycle phase at which occurrences take place.
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3. Discussion

In this communication, we found that HPASMC from PAH patients has increased
expression of CDC2 compared to control donor cells (Figure 1A). CDC2 expression is
upregulated in certain cancers [41,46,56]. This is important as CDC2 is known to be
associated with both FOXM1 and PLK1 (oncogenes) which have been shown to be enhanced
in these cells [32,57–59]. In combination, these three proteins are important in promoting
cell cycle progression through mitosis [51]. Previous studies have demonstrated that CDC2,
when bound to cyclin B, phosphorylates FOXM1 and allows for PLK1 to bind it [34]. These
series of events allow for FOXM1 to be activated and begin transcribing mitotic genes [34].
Interestingly, some of the genes that FOXM1 transcribes are FOXM1, PLK1, and CDC2,
promoting a positive feedback loop when activated. Our results for the timing of expression
of these three proteins support this fact. After starvation, in PAH cells, CDC2 has a modest
expression, which peaks at 24 h corresponding with FOXM1 peak expression also at 24 h.
Then, PLK1 expression comes up at 24 h but peaks at 48 h (Figure 2A,B).

Arresting cells with aphidicolin, which is a DNA polymerase inhibitor that blocks
the cell cycle at early S phase revealed FOXM1 and CDC2 to be at peak expression. On
the other hand arresting cells in G2/M with nocodazole, a disruptor of mitotic spindle
polymerization, resulted in PLK1 being at its peak expression (Figure 2C). Aurora A is
another mitosis-related protein [60] known to be transcribed by FOXM1 [38], which showed
a similar expression pattern to FOXM1 and CDC2 (Figure 2C). Interestingly, inhibition with
CDC2 inhibitor RO-3306 is known to induce G2/M arrest and prevent mitosis [54,61]. This
evidence reinforces CDC2 as necessary for cell cycle progression through mitosis. Based on
the known functions of these proteins, it is possible that their upregulation reinforces the
hyperplastic, proliferative nature of these PAH HPASMC.

One remarkable observation in these results was the presence of multiple molecular-
weight protein bands for CDC2 in HPASMC (Figure 1A). This was only observed using
a human-specific CDC2 antibody (reference in methods). Two larger bands were present
mainly in PAH cells under low growth (0.2% serum) conditions, and a third lower band
was present in all cells under growth conditions (5% serum) conditions (Figure 1A). These
bands were consistent over multiple experiments and are unlikely to be artifacts. They
more likely represent different phospho-isoforms of CDC2. Therefore, when samples were
run in parallel and probed with either a phospho-specific Tyr15 antibody or total CDC2
antibody, we found the lower total CDC2 band migrated similarly with p-Tyr15 CDC2
band (Figure 1B). This means the lower band, which appears under growth conditions,
likely contains a phosphate at Tyr15 and is the inactive form of CDC2. Before mitosis,
CDC2 is phosphorylated at Thr14 by Myt1 [48] and at Tyr15 by Wee1 [49] kinases. As
mitosis approaches, both kinases’ activities are suppressed [62]. Wee1 is phosphorylated by
CDC2, PLK1, and CK2 (casein kinase 2) at positions Ser123, Ser53, and Ser121, respectively,
leading to proteasome-dependent degradation [63]. Myt1 is also hyperphosphorylated
and inactivated in part by PLK1 [64,65]. At G2/M, CDC25 is activated through a series
of steps that involve CDK2 phosphorylation and removal of 14-3-3 protein, resulting in
dephosphorylation of CDC2. Once dephosphorylated, CDC2 complexed with cyclin B is
active and will further phosphorylate CDC25, both directly and through a MAP kinase
pathway, keeping CDC25 active during mitosis [66]. This is supported by our data showing
Tyr15 phosphorylation of CDC2 is elevated in G1/S arrested PAH HPASMC (Figure 2C).
The phospho-band being lower means the other bands contain other combinations of
phosphorylation sites that may or may not be characterized at this time. The meaning
of these bands and their possible combinations of phosphorylation sites is currently not
clear, but due to their elevated expression in PAH cells, they represent an important CDC2
regulatory role. This role will be explored in future studies.

The expression of CDC2 in PAH HPASMC was greatly abolished by both pharmaco-
logical inhibition with thiostrepton blocking FOXM1 expression and volasertib blocking
PLK1 expression (Figure 2C) and siRNAs knocking down expression of FOXM1 and PLK1
(Figure 3A). This is in line with previous studies that show FOXM1 transcribes the CDC2
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gene [51], and we have previously shown that PLK1 works in tandem with FOXM1 to
transcribe Aurora B, cyclin B1, and cyclin D1 in PAH HPASMC [5]. Furthermore, PLK1 has
been reported to phosphorylate Wee1, Myt1, and CDC25, which regulates FOXM1 activity
via CDC2 activation before mitosis [63,64,67–69]. These results demonstrate that FOXM1
and PLK1 are in part responsible for the elevated expression of CDC2 and the proliferative
phenotype of PAH HPASMC.

Using siRNA, targeting CDC2 did not reduce FOXM1, PLK1, or Aurora A expression
(Figure 3B). Furthermore, inhibition of CDC2 activity with pharmacological inhibitor
RO3306 did not reduce expression of FOXM1, PLK1, or Aurora A (Figure 3C). Other studies
have demonstrated that CDC2 is important for activation of FOXM1, but these results do
not support that fact. However, it is possible that when reducing CDC2 expression with
siRNA or its activity with an inhibitor that a redundant mechanism of activating FOXM1 is
occurring in its place. For example, another CDK, such as CDK2, that has a similar T-loop
structure could perform in place of CDC2. It has been observed that many CDKs are able
to compensate each other’s function upon deletion [70,71]. However, the compensation
is usually CDC2 compensating for the loss of CDK2 and not the other way around. It is
therefore most likely the redundancy in the mitosis entry molecular network, or the fact
that there was only partial inhibition/knockdown of CDC2, that explains why FOXM1,
PLK1, and Aurora A expression was unaffected. One example of this redundancy in
FOXM1 activation is that the Raf/MEK/MAPK pathways also are known to phosphorylate
FOXM1 during S through G2 phase, raising its transcriptional activity [72–74].

The other CDKs showed increased expression under growth conditions in both disease
and normal cells (Figure 4). Weiss and colleagues found PAH HPASMC had upregulation
of p-CDK2, CDK4, and p-CDK6 compared to control cells [75]. Interestingly, they also
found the mRNA expression of CDC2 was upregulated in IPAH HPASMC compared to
controls [75]. They concluded that inhibition with a pan-CDK inhibitor might be a viable
clinical therapy for PAH. Comparison of the protein expression of all CDK between normal
and PAH HPASMC in our results indicate that only CDC2 has an important pathological
role in PAH. Using a pan-CDK inhibitor may have too many toxic side effects.

Since CDC2 expression was not reduced by its pharmacological inhibitor, inhibition of
CDC2 regulators was attempted. Wee1 is a kinase that phosphorylates CDC2 particularly at
site Tyr15 [49]. The pharmacological inhibitor adavosertib blocks Wee1 from phosphorylat-
ing CDC2 [55]. Adavosertib is an anti-cancer drug. When PAH HPASMC were treated with
adavosertib, not only was the presence of p-CDC2 reduced, but there was also a reduction
in total CDC2 under quiescent (0.2% FBS) and growth conditions (5% FBS) (Figure 5A).
This demonstrates that modulating CDC2 activity via Wee1 inhibition can indeed reduce
CDC2 expression in PAH HPASMC cells and possibly reduce their hyperplastic phenotype.

Since pharmacological inhibitors can have spurious off-target effects, specific siR-
NAs were used to observe the effect of CDC2 regulators on CDC2 expression. This also
had the advantage that multiple kinases and phosphatases are known to regulate CDC2
such as the kinases Wee1 and Myt1 and phosphatase isoforms CDC25A, CDC25B, and
CDC25C [49,50,65–69]. Each of these proteins, when knocked down, greatly reduced the
expression of CDC2 (Figure 5B). CDC25A and CDC25B were less effective. CDC25A is
known to be involved in G1/S, while CDC25B and CDC25C are known to control G2/M
transition [66]. However, studies have shown that these phosphatases are capable of
compensating for one another [76]. These results suggest that disrupting phosphorylation
or dephosphorylation events on CDC2 alters its ability to properly activate FOXM1 and
therefore promote expression of itself. CDC25 are known to be transcribed by FOXM1 and
when expressed form a positive feedback loop by dephosphorylating CDC2 leading to
more FOXM1 activity [51,68].

One potential limitation of this study is the use of human cells not derived from the
more distal pulmonary artery microvasculature. It is the distal pulmonary vessels where
much of the remodeling and vascular resistance exists within PAH patients. However,
a few studies by Sheikh and colleagues demonstrate that in mouse hypoxic PH models,
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smooth muscle progenitor cells migrate from the more proximal and medium pulmonary
arteries to distal regions [77–79]. Whether this holds true in clinical PAH remains to be
seen, but the cells in this study used by us and others have demonstrated large differences
in signaling and cell behavior compared with comparable control cells [2,4–7,10,18,22,80].

To observe whether CDC2 function is involved in smooth muscle tissue during the
development of PH, a rodent model was utilized. The rat Sugen 5416/hypoxia model of
PH is known to induce smooth muscle proliferation within the first week of exposure [81].
It was observed that pulmonary arteries after 48 h of exposure showed induction of
CDC2 compared to control rats at both the RNA and protein levels (Figure 6). While
the rat PH model shows induction at 48 h, it appears to weaken by 72 h. Clinical PAH
HPASMC appears to retain high levels of CDC2 expression over long periods of time. This
discrepancy may reflect genetic differences at the species level between humans and rats.
It is possible that rodents have better compensatory mechanisms to withstand vascular
remodeling due to PH. One study has shown that rats treated with Sugen 5416/hypoxia
for 4 weeks were able to partially recover from the effects when returned to normal
room air [82]. While rats may have better compensatory mechanisms to regulate vascular
remodeling, humans may have poorer compensatory mechanisms that allow for molecules
like CDC2 to be dysregulated and maintain expression.

It is possible that selective inhibition of CDC2 may reduce smooth muscle proliferation
and therefore pulmonary vascular remodeling. Further experiments in this area may
reconcile this possibility. Currently, the inhibitors for CDC2 are not specific or are too
toxic for non-cancer clinical use. It may be possible to utilize mimicking peptides to block
unwanted CDC2 activity [10,83–85]. As shown in Figure 5B, CDC2 requires interaction
with CDK7 (T161 phosphorylation site), Wee1, Myt1, and CDC25 isoforms (Tyr14 and Tyr15
phosphorylation sites). Using targeted peptides might disrupt any of these interactions and
lead to reduction in CDC2 activity and expression. A better understanding of these exact
mechanisms will enable the development of therapies to control this hyperplastic PASMC.

4. Materials and Methods
4.1. Chemicals and Reagents

The pharmacological inhibitor thiostrepton was purchased from Santa Cruz Biotech-
nology, Inc. (Dallas, TX, USA). Pharmacological inhibitors adavosertib, RO-3306, and
volasertib (BI 6727) were purchased from Selleckchem (Houston, TX, USA). Pharmacologi-
cal inhibitors aphidicolin and nocodazole were purchased from Cayman Chemical (Ann
Arbor, MI, USA). Silencer Select siRNAs targeting FOXM1 (s5250), PLK1, Myt1 (s224087),
Wee1 (s21), CDC25A (s2750), CDC25B (s2754), and CDC25C (s2758) and negative control,
Lipofectamine RNAiMAX and Opti MEM were purchased from Thermo Fisher Scientific
(Waltham, MA, USA). CDC2 siRNA (Cat # 3500S) was purchased from Cell Signaling
Technologies (Danvers, MA, USA).

4.2. Cell Culture

Human pulmonary artery smooth muscle cells (HPASMC) derived from non-PAH,
hereditary PAH (HPAH), and idiopathic PAH (IPAH) were isolated as described by
Comhair et al. 2012 [86]. They were a generous gift from Drs. Erzurum and Comhair
of the Cleveland Clinic (Cleveland, OH, USA) and Dr. Marlene Rabinovitch of Stanford
University under the Pulmonary Hypertension Breakthrough Initiative. Details of the
cellular derivation can be found in a previous communication Yu et al. 2013 [18]. Briefly,
the cells were isolated from elastic pulmonary arteries (>500-µm diameter) from explanted
lungs of PAH patients and non-PAH donors. Two additional control donors HPASMC
were purchased from Cell Applications Inc. (San Diego, CA, USA) (Cat# 352-05a, Lot#
1189, and Lot# 1487). Cells were cultured in 15 mM HEPES buffered DMEM/F12 (50:50)
media (Thermo Fisher Scientific, Cat # 11330032, Waltham, MA, USA) containing 10%
fetal bovine serum (Atlanta Biologicals, Cat # S115500, Lot # A17004, Flowery Branch, GA,
USA), and 2.5% Antibiotic-Antimycotic (Thermo Fisher Scientific Cat # 15240, Waltham,
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MA, USA). Cells were passaged at 60–90% confluence by dissociation from plates with
0.05% trypsin and 0.53 mM EDTA. Primary cultures, passages 6–10, were used herein.
The smooth muscle cell phenotype of these cells was confirmed via immunostaining for
alpha smooth muscle actin [6,86]. All cell strains in this study and other published stud-
ies (not used directly here) have consistently shown that PAH HPASMCs exhibit sizably
increased proliferation, survival, and anti-apoptosis in culture akin to their behavior in
vivo [2–4,6,10,12,13,19,20,22,87–90]. Specific information about the cell donors used in this
study is shown in Table 1.

Table 1. List of HPASMC Donor Information.

Subject Code ID Gender Age Germline
Mutation

CON1 C128 Male 36 None
CON2 A678 Male 39 None

CON3 TRL-CON-4,
E352 Female 48 None

CON4 Lot#1189 Female 17 None
CON5 Lot#1487 Male 21 None
PAH1 D355 Male 42 None
PAH2 ST012 F281 Female 26 Smad-8 R294X
PAH3 CCF005 E037 Female 47 None
PAH4 IPAH16 F518 ? ? None
PAH5 CC008 ? ? None

The HPASMCs were maintained at 0, 0.2, and 5% FBS concentrations as needed to
examine expression and behavior under proliferative and non-proliferative conditions.
While the PAH HPASMCs were stimulated to grow at 0.2% FBS, the non-PAH cells were
not and required 5% FBS for robust growth. For experiments, cells were synchronized via
serum starvation for 48 h followed by treatment with growth medium at respective times.

4.3. Transfection with siRNA

Validated Silencer Select pre-designed siRNAs targeting CDC2, FOXM1, PLK1, Myt1,
Wee1, CDC25A, CDC25B, and CDC25C and negative control siRNAs (60 pmol in 6 well
plates or 2.5 pmol in 96 well plates) were transfected into HPASMC using Lipofectamine
RNAiMAX Transfection Reagent (Thermo Fisher Scientific, Waltham, MA, USA) for 48 h
according to the manufacturer’s recommendations. The knockdown efficiency was deter-
mined by Western blot analysis.

4.4. Real-Time qPCR

RNA was isolated from rat tissue with TRIzol reagent according to manufacturer’s
instructions (Thermo Fisher Scientific, Waltham, MA, USA). Real-time quantitative PCR
was performed by generating cDNA from 500 ng total RNA using the High-Capacity cDNA
Reverse Transcription Kit (Thermo Fisher Scientific, Waltham, MA, USA) according to
the manufacturer’s instructions. The samples were run on a QuantStudio 3 instrument to
determine gene expression using the PowerUp SYBR Green Master Mix (Thermo Fisher
Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. Human
GAPDH and rat β-actin were used as endogenous controls for mRNA detection. The
expression of each gene was quantified by measuring Ct values and normalized using the
2ˆ(-∆∆ct) method relative to β-actin. Rat primer sequences used are the following: CDK1
For- ATGGATTCTTCGCTCGTT; CDK1 Rev- TCTGCCAGTTTGATTGTTC; β-actin For-
CCGTAAAGACCTCTATGCC; β-actin Rev- GACTCATCGTACTCCTGCT.

4.5. Western Blot

Cells were lysed in RIPA buffer, and rat pulmonary arteries were lysed in NP40 buffer
both containing Protease Inhibitor Cocktail and Phosphatase Inhibitor Cocktail 2 (Sigma-
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Aldrich, St Louis, MO, USA) after washing the cells with cold PBS. After incubation on ice
for 15 min, cell lysates were centrifuged at 12,000× g for 30 min at 4 ◦C. Clear supernatants
were transferred into fresh tubes, and the small portion of the clear lysate was used for
determination of protein concentration using bicinchoninic acid assay (BCA) (Thermo
Fisher Scientific, Waltham, MA, USA) based on manufacturer’s specifications.

Cell lysates were resolved by 7% or 10% SDS-PAGE with equal amounts of protein
loaded in each well. Following electrophoresis, proteins were transferred onto Immobilon-
P 0.45 um PVDF membrane (EMD Millipore, Darmstadt, Germany) at 100 V for 1 h
(for 10%) and 2 h (for 7%) at 4 ◦C. After transfer, the PVDF membranes were blocked
with 5% powdered milk in TBS-T for 1 h at room temperature. PVDF membranes were
then incubated with the respective antibodies diluted in 5% BSA-TBS-T overnight at
4 ◦C. Antibodies were purchased as follows: anti-CDC2 (1:1000, 9116, Cell Signaling
Technologies, Danvers, MA, USA), anti-CDC2 (Rat) (1:2000, ab32094, Abcam, Cambridge,
UK), anti-p-Tyr 15-CDC2 (1: 1000, 4539, Cell Signaling Technologies, Danvers, MA, USA),
anti-CDK2 (1: 1000, 2546, Cell Signaling Technologies, Danvers, MA, USA), anti-CDK4 (1:
1000, 12790, Cell Signaling Technologies, Danvers, MA, USA), anti-CDK6 (1: 1000, 13331,
Cell Signaling Technologies, Danvers, MA, USA), anti-CDK7 (1:2000, 2916, Cell Signaling
Technologies, Danvers, MA, USA), anti-CDK9 (1:1000, 2316, Cell Signaling Technologies,
Danvers, MA, USA), anti-Beta actin (1:1000, 3700, Cell Signaling Technologies, Danvers,
MA, USA). anti-PLK1 (1:1000, ab17056, Abcam, Cambridge, UK), anti-Aurora A (1:500,
3094, Cell Signaling Technologies, Danvers, MA, USA) anti-FOXM1 (1:1000, sc-502, Santa
Cruz Biotechnology Inc, Dallas, TX, USA).

Following probing with respective antisera, membranes were washed with TBS-T and
incubated further for 1 h at room temperature with the corresponding HRP conjugated anti-
rabbit or anti-mouse antibodies (7074, 7076, Cell Signaling, Danvers, MA, USA) diluted
in 1:2000 TBS-T. After 1 h of incubation, blots were washed in TBS-T and developed
using SuperSignal West Pico PLUS Chemiluminescent Substrate (Thermo Fisher Scientific,
Waltham, MA, USA) for 1 min before imaging on a Fluor Chem E system (Protein Simple,
San Jose, CA, USA). Blots containing rat tissue protein were further stained with amido
black stain for total protein quantification and normalization across all lanes.

4.6. Animal Experiments

All animal procedures were done according to Tufts University Institutional Animal
Care and Use Committee approved protocol. Sprague Dawley male rats were purchased
from Charles River Laboratory, (Wilmington, MA, USA). All rats were kept at standard
light, temperature, food, and water. Nine rats were used for each experiment. Hypoxic
rats were exposed to 15% O2 for 24 h prior to 10.5% O2 exposure. On the day of the
experiment, rats were injected subcutaneous with 20 mg/kg Sugen 5416 and placed in
hypoxia chambers set to 10.5% O2 for 48 h or one week. Control rats were kept in room air
for the same amount of time. After allotted times, rats were overdosed with 100 mg/kg
Ketamine and 10 mg/kg Xylazine and then exsanguinated. The chest was opened and
the heart and lungs were removed en bloc. Main trunk pulmonary arteries were isolated
from the left lung and snap-frozen and stored in a −80C freezer until biochemical analysis
was performed.

4.7. Statistics

Statistical significance between the means of two groups was determined by Student’s
t-test and comparisons between multiple groups were determined by one-way ANOVA
with Tukey’s post hoc test. p values less than 0.05 were considered significant. All statistical
analyses were performed using Prism 9.1.0 (GraphPad Software, La Jolla, CA, USA).
Asterisks in graphs indicate statistical significance with *-p < 0.05, **-p < 0.01, ***-p < 0.001,
and ****-p < 0.0001.
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