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Purpose: Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the fibrillin-1
(FBN1). In addition to typical phenotypes such as ectopia lentis (EL) and aortic dilation, patients with MFS are
prone to ocular posterior segment abnormalities, including retinal detachment (RD), maculopathy, and posterior
staphyloma (PS). This study aims to investigate the correlations between FBN1 genotype and posterior segment
abnormalities within a Chinese cohort of MFS.

Design: Retrospective study.
Participants: One hundred twenty-one eyes of 121 patients with confirmed FBN1 mutations between

January 2015 and May 2023 were included.
Methods: Comprehensive ophthalmic examination findings were reviewed, and the incidence of RD, atro-

phic, tractional, and neovascular maculopathy (ATN classification system), and PS was analyzed between
different genotype groups. Only the more severely affected eye from each patient was included.

Main Outcome Measures: Clinical features and risk factors.
Results: Of 121 patients, 60 eyes (49.59%) exhibited posterior segment abnormalities, including RD (4,

3.31%), maculopathy (47, 38.84%), and PS (54, 44.63%). The mean age was 11.53 � 11.66 years, with 79.34% of
patients <20 years old. The location and region of mutations were found to be associated with the incidence of
maculopathy (P ¼ 0.013, P ¼ 0.033) and PS (P ¼ 0.043, P ¼ 0.036). Mutations in the middle region had a lower
incidence of maculopathy and PS (P ¼ 0.028 and P ¼ 0.006, respectively) than those in C-terminal region.
Mutations in the transforming growth factor-b (TGF-b) regulating sequence exhibited a higher incidence of
maculopathy and PS (P ¼ 0.020, P ¼ 0.040). Importantly, the location and region of mutations were also
associated with the incidence of atrophic maculopathy (P ¼ 0.013 and P ¼ 0.033, respectively). Mutations in the
middle region had a significantly lower probability of atrophic maculopathy (P ¼ 0.006), while mutations in the
TGF-b regulating region had a higher incidence of atrophic maculopathy (P ¼ 0.020).

Conclusions: Maculopathy and PS were associated with the location and region of FBN1 mutations. Pa-
tients with mutations in the TGF-b regulating region faced an increased risk of developing retinopathy.
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Marfan syndrome (MFS) is a relatively rare autosomal
dominant genetic disorder, impacting approximately 1 in
5000 individuals.1,2 Predominantly, around 97% of MFS
cases arise from mutations in the pathogenic gene fibrillin-
1 (FBN1) (Online Mendelian Inheritance in Man
#134797), revealing a spectrum of over 3000 reported
mutations, each linked to a distinct array of phenotypes.3

Consequently, the phenotypes of MFS are diverse, ranging
from the common occurrences like ectopia lentis (EL),
aortic dilation, and skeletal abnormalities to rarer instances
of posterior staphyloma (PS), retinal detachment (RD),
and maculopathy. Understanding the correlation between
genotypes and phenotypes is pivotal.4e6

Maculopathy refers to macular alteration that are char-
acterized by atrophy, traction, and neovascularization,
potentially leading to irreversible macular photoreceptor
ª 2024 by the American Academy of Ophthalmology
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/). Published by Elsevier Inc.
damage and central visual loss. A primary cause of macul-
opathy is PS. Posterior staphyloma has a radius of curvature
smaller than the peripheral curvature of the eyeball, like a
local outpouching of the eyeball. Posterior staphyloma is
common in, but not limited to, patients of high myopia.7,8 In
addition to maculopathy, individuals with MFS are more
predisposed to the development of RD compared with the
general population.9 Retinal detachment is one of the most
severe and prevalent sight-threatening complications,
impacting 5% to 11% of all patients with MFS.4e6,9,10

Previous studies have extensively demonstrated correla-
tions between FBN1 genotypes and phenotypes. Mutation in
in-frame regions are more likely to develop EL.11 Longer
axial length (AL) was associated with mutations in
cysteine residues, calcium-binding epidermal growth factor
(cbEGF)elike domain, C-terminal region, and transforming
1https://doi.org/10.1016/j.xops.2024.100526
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growth factor b (TGF-b) regulating region.12,13

Furthermore, mutations in functional regions tend to
exhibit severe ocular and systematic manifestations, with
neonatal mutations carrying a significantly poorer
prognosis than in other regions.14e17 These findings sug-
gest significant correlations between specific FBN1 muta-
tions and phenotype.18e20 However, it remains unclear
whether such correlations extend to ocular posterior
segment phenotypes in MFS; there is a lack of research
specifically addressing the correlation between FBN1 mu-
tations and posterior segment manifestations.21 Discovering
the correlations is crucial for developing personalized
surgical and clinical management strategies, enabling early
identification of individuals to improve the prognosis.22

This study intended to investigate the influence of ge-
notypes on the onset and development of ocular posterior
segment abnormalities in MFS patients, and determine the
higher risk genotypes to raise clinical awareness of the
seriousness of posterior segment lesions.

Method

Patient Eligibility and Ethics Statement

This retrospective clinical observational study adhered to
the principles outlined in the Declaration of Helsinki and
received approval from the Human Research Ethics Com-
mittee of the Eye and ENT Hospital of Fudan University
(ChiCTR2000039132). Written informed consent was ob-
tained from all participants or their guardians in subjects
<18 years old.

Patients with MFS visiting the Eye and ENT Hospital of
Fudan University from January 2015 to May 2023 were
initially recruited. The diagnosis of MFS was according to
Ghent-2 nosology.23 Patients with a heterozygous
pathogenic FBN1 mutation and sufficient clinical
information were selected. Patients with complex
mutations or a history of trauma in either eye were
excluded from the study.24,25 To avoid potential selection
bias resulting from familial clustering, only the probands
from pedigrees were analyzed. To address high binocular
correlation, only the more severely affected eye from each
proband was included.

Ophthalmic Examinations

Full ophthalmic examinations were conducted. Axial length,
corneal astigmatism, and corneal mean keratometry were
measured using partial coherence interferometry (IOL-
Master 700, Carl Zeiss Meditec AG) and rotating
Scheimpflug camera (Pentacam, Oculus Optikgeräte
GmbH). Intraocular pressure was measured with noncontact
tonometer (CT-80, Topcon Medical Systems). Posterior
staphyloma was detected by B-scan ultrasonography, fundus
photography (CLARUS 500, Carl Zeiss Meditec AG), and
OCT (Spectrialis OCT, Heidelberg Engineering and Cirrus
OCT, Carl Zeiss Meditec). When the ocular accommodation
is in a relaxed state, individuals exhibiting a spherical
equivalent refractive error of ��6.00 diopters are catego-
rized as having high myopia.26 The classification of
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atrophic, tractional, and neovascular maculopathy (ATN
classification system) was based on OCT, fundus
photography, and ultrawidefield fundus imaging (Daytona,
Optos, Inc. Enterprise Way).27,28 All patients were
examined by board-certified optometrists and ophthalmol-
ogists. Medical and family histories were meticulously
documented.

Genetic Screening

All genomic DNA samples were extracted from peripheral
blood of all probands. Panel-based next-generation
sequencing was performed, as previously reported, covering
the exon sequences of 289 genes associated with common
inherited eye diseases.25 Multiplex ligation-dependent probe
amplification was performed using SALSA MLPA Probe-
mix Kits (P065-C1/P066-C1, MRC-Holland) for patients
with suspected FBN1 mutations.25 Variants with minor
allele frequencies of <0.05 were selected for further
analysis. The candidate causal gene variants thereby
discovered were confirmed by Sanger sequencing, and
primers were designed using the Primer V.3.0 website
(http://primer3.ut.ee/). Mutations were annotated based on
biological information analysis, and mutant sites were
selected based on clinical manifestations. Protein and
genomic structures were mapped for all variants using
IBS1.0.3 illustrator.

Genotype-Phenotype Analysis

All 121 patients were enrolled in the genotype-phenotype
analysis. Maculopathy, PS, and RD were all within our
scope of study. Mutations were classified following the
American College of Medical Genetics and Genomics
guidelines. Premature termination codons include nonsense,
out-of-frame insertions or deletions, and complete allele
deletions, in-frame mutations include missense mutations,
in-frame insertions or deletions, in-frame splicing variants,
and in-frame intragenic duplications. The location criteria
were based on protein location, including the N-terminal
region (exon 1e21), middle region (exons 22e42), and C-
terminal region (exon 43e65). Patients were classified into
3 groups: cysteine-creating, cysteine-eliminating, and other
amino acids alterations. Missense mutations were mapped to
specific regions, including the neonatal region, TGF-b
regulating region, TGF-b binding region, latent TGF-b
binding protein (LTBP) region, and C-N interaction site
region. The particular region, TGF-b regulating sequence,
was compared with mutations located elsewhere.15,29

Missense mutations were classified based on the function
domains, including cbEGF-like, epidermal growth factor-
like, Hybrid module, TGF-b binding protein (TGFBP), and
4-cys motif LTBP like domains. Protein domains were
mapped using the Universal Mutation Database-FBN1
database (http://umd.be/FBN1/), as described in our pub-
lished articles.14,15

Statistical Analysis

IBM Statistics SPSS version 22.0 (IBM Corp) was used for
all statistical analysis. Continuous variables were presented

http://primer3.ut.ee/
http://umd.be/FBN1/


Table 1. Demographical Characteristic and Baseline Character-
istic of 121 Enrolled Eyes

Characteristics
Mean ± Standard

Deviation (Range) or Number (%)

Demographics
Sex (male/female) 76/45
Age group 11.53 � 11.66

<20 96 (79.34%)
�20 25 (20.66%)

Family history Positive 44 (36.36%)
Negative 77 (63.64%)

Ocular biometrics Right/left 64/57
Ectopia lentis 98 (80.99%)
High myopia 75 (61.98%)

AL/mm 23.49 � 6.27
Z-AL 1.73 � 3.43

BCVA, logMAR 0.89 � 0.33
IOP/mmHg 14.59 � 3.19
ACD/mm 3.12 � 0.59
WTW/mm 12.04 � 0.58

Km/D 39.69 � 2.48
AST/D 1.88 � 0.98

Comorbidity Posterior staphyloma 54 (44.63%)
Maculopathy 47 (38.84%)

Retinal detachment 4 (3.31%)

ACD ¼ anterior chamber depth; AL ¼ axial length; AST ¼ corneal
astigmatism; BCVA ¼ best corrected visual acuity; IOP ¼ intraocular
pressure; Km ¼ mean keratometry; logMAR ¼ logarithm of minimal angle
of resolution; WTW ¼ white-to-white measurement; Z-AL ¼ Z-score of
axial length.
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as means � standard deviation, while categorical variables
were described as counts or proportions. Chi-square test,
Yates’ correction, or Fisher exact test was employed to
compare the category variables. The Wilcoxon Mann-
Whitney U tests and Kruskal-Wallis test were employed
to compare the incidence of different maculopathy types
among different mutation groups. Binomial logistic regres-
sion analysis was performed to analyze the correlation of
different mutation groups and ocular abnormalities present,
while ordinal logistic regression analyses were constructed
with atrophic maculopathy, tractional maculopathy, and
neovascular maculopathy as the dependent variable to ac-
cess the association with genotypes. Unmeasurable or un-
reliable values because of incoordination or incorporation
were annotated as missing. P < 0.05 was the threshold of
statistical significance.

Results

Cohort Demographics

Table 1 summarizes the demographic and clinical
characteristics of the 121 enrolled eyes. The mean age of
the cohort was 11.53 � 11.66 years, comprised 76 males
and 45 females, and 79.34% of the patients were <20
years old. Thirty-six point thirty-six percent of patients
had a positive family history of MFS. The enrolled eyes
exhibited deviations from normal reference ranges in Z-
score of AL (1.73 � 3.43 mm), intraocular pressure
(14.59 � 3.19 mmHg), corneal mean keratometry
(39.69 � 2.48 diopters), and corneal astigmatism
(1.88 � 0.98 diopters).18,19,30 The AL was 23.49 � 6.27
mm, and the average white to white was 12.04 � 0.58
mm. Among the study sample, 60 eyes (49.59%) had
retinopathy and 98 eyes (80.99%) had EL. Posterior
staphyloma was detected in 54 eyes (44.63%) and
maculopathy in 47 eyes (38.34%). Other comorbidities
included microspherophakia (10, 8.26%), macrophthalmia
(2, 1.65%), cataract (7, 5.79%), ciliary body cyst (6,
4.96%), and glaucoma (1, 0.83%). Moreover, high myopia
was identified in 61.98% of the examined eyes.
Figure 1AeI provides fundus photography and OCT
examples of enrolled eyes with different maculopathy
types and RD. Figure 1J showed the proportion of ATN
classification, with 3.31% of eyes ultimately developing
RD in the last follow-up data.

Genetic Analysis

A total of 100 different mutations in 121 patients (including
11 recurrent mutations in 32 patients) were detected (Fig 2).
The most prevalent mutation was c.184C>T/p. Arg 62 Cys
in exon 2 and 4-cys motif LTBP like domain (7/121,
5.79%). Figure 2A illustrates the site of FBN1 mutations in
this cohort and the structure of fibrillin-1. Figure 2B shows
the frequency of FBN1 mutations per exon. Figure 2C marks
4 mutations not included in previous studies. Cross-analysis
of each genotype revealed that 45 patients with cysteine-
eliminating mutations had mutations in the cbEGF-like
domain, and 30 patients with cysteine-eliminating muta-
tions had mutations in the N-terminal region. Additionally,
14 patients had mutations located in the LTBP region and
belonged to cysteine-creating mutations (Fig 2DeG). The
majority were primarily distributed in the N-terminal
region (60, 49.59%) and middle region (43, 35.54%) (Fig
3C). Among these patients, the most common mutations
were missense (112, 92.56%), followed by nonsense (4,
3.25%) (Fig 3B). Additionally, 60.71% of missense
mutations affected cbEGF-like domains (Fig 3E). Among
the 112 patients with missense mutations, 83.04%
involved cysteine, with 56.25% being cysteine-eliminating
mutations and 26.79% being cysteine-creating mutations
(Fig 3D). Furthermore, 111 (99.11%) patients had mutations
in exact protein domains, and 78 (58.75%) patients had
mutations in functional regions (Fig 3E, F).

Incidence of Maculopathy and PS With FBN1
Mutations

The incidence of specific ocular comorbidities was analyzed
for different mutation groups. The positive rate of macul-
opathy was significantly associated with the mutation
location and region (P ¼ 0.013 and P ¼ 0.033, respec-
tively), as well as the incidence of PS (P ¼ 0.043 and P ¼
0.036, respectively) (Table 2). In comparison with
mutations in the C-terminal region, patients with
mutations in the middle region had a lower risk of
3



Figure 1. Clinical presentation of patients with FBN1 mutations and the proportion of atrophic, tractional, and neovascular maculopathy classification and
retinal detachment. A, Right eye in a 7-year-old patient with Marfan syndrome (MFS) without myopic retinal lesions (A0). B, Right eye in a 12-year-old
patient with MFS with tessellated fundus only (A1). C, Right eye in a 17-year-old patient with MFS with diffuse chorioretinal atrophy (A2). D, Left eye in
an 11-year-old patient with MFS with patchy chorioretinal atrophy (A3). E, OCT of an 8-year-old patient with MFS without macular schisis (T0). F, OCT
of an 11-year-old patient with MFS with outer foveoschisis (T1). G, OCT of a 32-year-old patient with MFS with active choroidal neovascularization
(N2a). H, OCT of a 17-year-old patient with MFS with Scar/Fuch’s spot (N2s). I, Left eye in a 17-year-old patient with MFS with retinal detachment and
diffusion chorioretinal atrophy.
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developing maculopathy (P ¼ 0.028, odds ratio [OR] 0.276,
95% confidence interval [CI] 0.087e0.871) and PS (P ¼
0.006, OR 0.193, 95% CI 0.059e0.629). Mutations in the
TGF-b regulating sequence region, in particular, seemed
Figure 2. Proportion of atrophic, tractional, and neovascular maculopathy clas
opathy. B, Distribution of tractional (T) maculopathy. C, Distribution of neov
retinal detachment; RD ¼ retinal detachment.
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to have a higher risk of maculopathy (P ¼ 0.020, OR
12.536, 95% CI 1.501e104.67) and PS (P ¼ 0.040, OR
9.273, 95% CI 1.112e77.31) (Table 3). No significant
differences were found in other groups.
sification and retinal detachment. A, Distribution of atrophic (A) macul-
ascular (N) maculopathy. D, Distribution of retinal detachment. NR ¼ no



Figure 3. Structural distribution of FBN1 mutations. A, Corresponding protein domains of recurrent FBN1 mutations. Hotspots are noted. B, Frequency of
FBN1 mutations per exon. C, Frequency of FBN1 mutations per amino acid. D, Heatmap showing the frequency of cysteine-creating and cysteine-
eliminating in different protein domains. E, Heatmap showing the frequency of cysteine-creating and cysteine-eliminating in different mutation loca-
tion. F, Heatmap showing the frequency of mutations mapped to coding sequences in the N-terminal region (exon 1e21), middle (exon 22e42), and C-
terminal (exon 43e65) regions in different domains. G, Heatmap showing the frequency of cysteine-creating and cysteine-eliminating in different regions.
cbEGF ¼ calcium-binding epidermal growth factor; FBN1 ¼ fibrillin-1; LTBP ¼ latent transforming growth factor b binding protein; TGFBP ¼ trans-
forming growth factor b binding protein.
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Incidence of Maculopathy Based on ATN
Classification System With FBN1 Mutations

The proportion of the 3 maculopathy types was then
analyzed in the different genetic groups (Table 4). There
were significant differences in the location and region of
mutation with macular atrophy (P ¼ 0.013 and P ¼
0.033, respectively). However, no statistical differences
were found between genotypes in macular traction and
neovascularization. Mutations in the middle region had a
lower risk of developing atrophic maculopathy than those
in the C-terminal region (P ¼ 0.006, OR 0.193, 95% CI
0.059e0.629). Mutations in the TGF-b regulating
sequence seemed to have a higher risk of atrophic
maculopathy than other regions (P ¼ 0.020, OR 12.536,
95% CI 1.501e104.67). Of the eligible eyes, 74, 31, 15,
and 1 had grades of A0, A1, A2, A3, and A4,
respectively; 112 and 9 had grades of T0 and T1,
respectively; and 119, 0, 1, and 1 had grades of N0, N1,
N2a, and N2s, respectively. Furthermore, the prevalence
of eyes with atrophic maculopathy was higher than those
with traction and neovascularization (38.84%, 7.44%, and
1.65%, respectively) (Fig. 4). The proportion of atrophic
maculopathy grades were related to the region of
mutations (P ¼ 0.012), and patients with mutations in the
TGF-b regulating sequence have a higher grade of
5



Table 2. Relationship Between Posterior Segment Comorbidities
and FBN1 Genotype

Genotype

Maculopathy Posterior Staphyloma

Positive (%) P Positive (%) P

Location
C-terminal region 11 (61.1%) 0.013* 11 (61.1%) 0.043*
Middle region 10 (23.3%) 13 (30.2%)
N-terminal region 26 (43.3%) 30 (50.0%)

Type
In-frame 45 (39.1%) 1.000y 51 (44.3%) 1.000y

PTC 2 (33.3%) 3 (50.0%)
Cysteine
Other amino acid 5 (26.3%) 0.114* 9 (47.4%) 0.131y

Creating 9 (30.0%) 9 (30.0%)
Eliminating 30 (47.6%) 32 (50.8%)

Domain
cbEGF-like 28 (41.2%) 0.257y 30 (44.1%) 0.163y

EGF-like 7 (58.3%) 8 (66.7%)
Hybrid module 3 (25.0%) 5 (41.7%)
TGFBP 2 (18.2%) 2 (18.2%)
4-cys motif LTBP-like 4 (50.0%) 5 (62.5%)

Region
TGF-b regulating 9 (90.0%) 0.033y 9 (90.0%) 0.036y

Neonatal region 7 (36.8%) 8 (42.1%)
TGF-b binding 8 (40.0%) 8 (40.0%)
LTBP 13 (46.4%) 17 (60.7%)
C-N interaction site 0 (0.0%) 0 (0.0%)

cbEGF ¼ calcium-binding epidermal growth factor; FBN1 ¼ fibrillin-1;
LTBP ¼ latent transforming growth factor b binding protein; PTC ¼
premature termination codon; TGFBP ¼ transforming growth factor b
binding protein; TGF-b ¼ transforming growth factor b.
Bold type indicates P values less than 0.05.
*Pearson chi-squared tests.
yFisher exact test.
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atrophic maculopathy than in other regions (P ¼ 0.022, OR
1.476 95% CI 0.214e2.738) (Fig. 5). No statistical
differences were found in other groups.
Discussion

Marfan syndrome presents a complex array of genetic mu-
tations and diverse phenotypic manifestations, posing a
considerable challenge to clinicians and researchers in the
quest to identify diagnostic patterns that can enhance patient
diagnosis, treatment outcomes, and long-term prognosis.
Ocular involvement stands out as a prominent diagnostic
feature, including EL, myopia, glaucoma, peripheral retinal
degeneration, rhegmatogenous detachment, and early cata-
racts.6,31,32 In this study, we intended to characterize
posterior segment manifestations in patients with MFS and
explore their associations with FBN1 mutations, as the
understanding of posterior segment phenotype in MFS
was lacking.

Consistent with prior research, missense mutations pre-
dominated, with cysteine alterations being particularly
frequent.33,34 Generally, variants causing in-frame loss or
gain of central coding sequence through deletions, in-
sertions, or splicing errors were associated with severe,
6

early-onset, and rapidly progressive MFS, contributing to an
increased prevalence of retinopathy.33,34 Nevertheless, in
our study, correlations were identified only in the location
and region of mutations.

Mutations in the C-terminal region showed a higher risk
of posterior segment lesions.35,36 The C-terminal propeptide
is an essential requirement for the secretion of full length
fibrillin-1 from cells.36 Fibrilin-1, a structural macromole-
cule that acts as a scaffold for elastin deposition, can form
microfibrils and elastic fibers that enhance the flexibility and
strength of connective tissue.37 The phenotypic variability
depends on the threshold of functional microfibrils in the
zonules and other tissues. Affected individuals typically
exhibit residual levels well below 50% of the normal
level. Besides quantitative defects, FBN1 mutations can
also disrupt the structure or homeostasis of growth factors,
and even the export of fibrillin to the extracellular matrix.

A higher frequency of missense mutations involves
cysteine residues and 5’ end mutations. Cysteine residues are
distributed extensively throughout fibrillin-1, with a presence
noted at >360 locations within the protein’s structure.
Notably, these positions are predominantly clustered within
the first 15 exons responsible for encoding the N-terminal
region of fibrillin-1. The formation of disulfide bridges at
these cysteine residues assumes a critical role in shaping the
protein’s tertiary structure, ultimately influencing the forma-
tion of homodimer. Elimination of cysteine residues in in-
dividuals results in normal levels of fibrillin synthesis;
however, there is a significant reduction in matrix deposition,
indicative of disulfide bonding disruption. This disruption, in
turn, impacts the structural integrity of the lens zonules.38

One hallmark feature of MFS is an increased activated
TGF-b expression. Our study indicated that mutations in the
TGF-b regulating sequence showed a promotive effect on
the occurrence of PS and maculopathy.39 Mutations
affecting the TGF-b domain act through LTBPs, resulting
in altered TGF-b signaling.2 The TGF-b regulating
sequence strongly and specially interacts with the N-
terminal of FBN1 and the C-terminal of LTBP. This
interaction sequesters TGF-b in its inactive form.
Furthermore, fibrillin-1 also regulate the bioavailability of
TGF-b1, thereby preventing TGF-b1 and Smad2 signaling
from optimal activation, resulting in elevated levels of active
TGF-b and increased TGF-b expression and activation.29,40

This upregulation exacerbates fibrosis by significantly
reducing microfibrils deposited by peripheral tissues and
fibroblasts in the matrix, accompanied by increasing free
collagen fibers and enhancing protease activity within the
extracellular matrix. Studies have also shown that the
TGF-b signaling might involve the pathogenesis of
elastin-associated FBN1 in the scleral and retina.41,42

Retinopathy refers to pathological alterations to the
retina, arising from a range of causes, including environ-
mental factors and genetic predispositions.43 Various forms
of retinopathy represent leading global causes of vision loss.
Previous studies have shown that fibrillin-1/microfibril
associated glycoprotein 1 performs essential functions in
retinal arteriolar integrity and defects induced by FBN1
mutations can be prevented or partially rescued pharmaco-
logically. Additionally, tortuous retinal vessels were



Table 3. Logistic Regression Analysis Between Posterior Segment Comorbidities and FBN1 Genotype

Maculopathy Posterior Staphyloma

P OR 95% CI P OR 95% CI

Location
C-terminal region* 0.048 0.017
Middle region 0.028 0.276 0.087 0.871 0.006 0.193 0.059 0.629
N-terminal region 0.410 0.636 0.217 1.863 0.190 0.487 0.166 1.428

Type
In-frame*
PTC 0.786 1.255 0.243 6.482 0.777 0.778 0.137 4.423

Cysteine
Other* 0.171 0.124
Creating 0.222 0.476 0.145 1.568 0.781 1.200 0.332 4.340
Eliminating 0.794 1.147 0.411 3.203 0.107 2.545 0.819 7.916

Domain
cbEGF-like* 0.285 0.205
EGF-like 0.634 0.700 0.161 3.037 0.332 0.474 0.105 2.143
Hybrid module 0.714 1.400 0.232 8.464 0.848 1.200 0.185 7.770
TGFBP 0.258 0.333 0.050 2.239 0.365 0.429 0.068 2.684
4-cys motif LTBP like 0.154 0.222 0.028 1.754 0.060 0.133 0.016 1.085

Region
Other regions*
TGF-b regulating 0.020 12.536 1.501 104.67 0.040 9.273 1.112 77.31

CI ¼ confidence interval; cbEGF ¼ calcium-binding epidermal growth factor; FBN1 ¼ fibrillin-1; LTBP ¼ latent transforming growth factor b binding
protein; OR ¼ odds ratio; PTC ¼ premature termination codon; TGFBP ¼ transforming growth factor b binding protein; TGF-b ¼ transforming growth
factor b.
Bold type indicates P values less than 0.05.
*Control group.

Table 4. Relationship Between the Incidence of MFS Maculopathy (ATN) and FBN1 Genotype

Genotype

Atrophic Maculopathy Tractional Maculopathy Neovascular Maculopathy

Positive (%) P Positive (%) P Positive (%) P

Location
C-terminal region 11 (61.1%) 0.013* 2 (11.1%) 0.628y 1 (5.6%) 0.401z

Middle region 10 (23.3%) 2 (4.7%) 0 (0.0%)
N-terminal region 26 (43.3%) 5 (8.3%) 1 (1.7%)

Type
In-frame 45 (39.1%) 0.774y 9 (7.8%) 0.329y 2 (1.7%) 1.000z

PTC 2 (33.3%) 0 (0.0%) 0 (0.0%)
Cysteine
Other amino acid 5 (26.3%) 0.119* 1 (5.3%) 0.353y 0 (0.0%) 1.000z

Creating 9 (30.0%) 1 (3.3%) 0 (0.0%)
Eliminating 30 (47.6%) 7 (11.1%) 2 (3.2%)

Domain
cbEGF-like 28 (41.2%) 0.257z 6 (8.8%) 0.836z 2 (2.9%) 1.000z

EGF-like 7 (58.3%) 1 (8.3%) 0 (0.0%)
Hybrid module 3 (25.0%) 0 (0.0%) 0 (0.0%)
TGFBP 2 (18.2%) 1 (9.1%) 0 (0.0%)
4-cys motif LTBP like 4 (50.0%) 1 (12.5%) 0 (0.0%)

Region
TGF-b regulating 9 (90.0%) 0.033z 2 (20.0%) 0.658z 1 (10.0%) 0.250y

Neonatal region 7 (36.8%) 2 (10.5%) 0 (0.0%)
TGF-b binding 8 (40.0%) 2 (10.0%) 1 (5.0%)
LTBP 13 (46.4%) 2 (7.1%) 0 (0.0%)
C-N interaction site 0 (0.0%) 0 (0.0%) 0 (0.0%)

ATN ¼ atrophic, tractional, and neovascular maculopathy; cbEGF ¼ calcium-binding epidermal growth factor; FBN1 ¼ fibrillin-1; LTBP ¼ latent
transforming growth factor b binding protein; MFS ¼ Marfan syndrome; PTC ¼ premature termination codon; TGFBP ¼ transforming growth factor b
binding protein; TGF-b ¼ transforming growth factor b.
Bold type indicates P values less than 0.05.
*Pearson chi-squared tests.
yYates’s correction for continuity.
zFisher exact test.
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Figure 4. Genetic analysis of FBN1 mutation identified in 121 patients with Marfan syndrome. A, Proportions of PTCs and in-frame mutation. B, Pro-
portion of missense mutations, insertion or deletion, splicing mutation, intragenic duplication, nonsense mutations, out-of-frame insertion, or deletion
mutations and allele deletion mutations. C, Proportions of mutations in the N-terminal region (exon 1e21), middle region (exon 22e42), and C-terminal
region (exon 43e65). D, Proportions of cysteine creating mutation, cysteine eliminating mutations, and NA in missense mutations. E, Proportions of
mutations in EGF-like domain, cbEGFelike domain, TGFBP domain, 4-Cys motif LTBP-like domain, hybrid module, and NA within missense mutation. F,
Proportions of mutations in the neonatal region, TGF-b binding region, TGF-b regulating region, LTBP region, C-N interaction site region, and NA within
missense mutation. cbEGF ¼ calcium-binding epidermal growth factor; FBN1 ¼ fibrillin-1; LTBP ¼ latent transforming growth factor b binding protein;
NA ¼ not available; PTC ¼ premature termination codon; TGFBP¼ transforming growth factor b binding protein; TGF-b ¼ transforming growth factor b.

Figure 5. The number of patients with mutations in FBN1 domains with atrophic, tractional, and neovascular maculopathy classification system and the
relationship between FBN1 genotype and maculopathy (atrophic, tractional, and neovascular maculopathy classification system). A ¼ atrophic macul-
opathy; cbEGF ¼ calcium-binding epidermal growth factor; FBN1 ¼ fibrillin-1; LTBP ¼ latent transforming growth factor b binding protein; N ¼ neo-
vascular maculopathy; PTC ¼ premature termination codon; T ¼ tractional maculopathy; TGFBP ¼ transforming growth factor b binding protein; TGF-b
¼ transforming growth factor b. **Yates’s correction for continuity, ***Fisher exact test, P < 0.05 are highlighted in red.
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observed in some patients with MFS.44,45 Baldwin et al46,47

demonstrated that the epithelial-mesenchymal state of
retinal pigment epithelial cells influenced their ability to
assemble fibrillin microfibrils. Therefore, as demonstrated in
our study, there is a correlation between the region of FBN1
mutations and the incidence of retinopathy. The manifesta-
tion of myopic maculopathy resembles the macular features
in patients with MFS, prompting the utilization of the ATN
classification system to categorize the fundus characteristics
in our study cohort.8,48 Maculopathy was prevalent in over
one-third of our patients with MFS, primarily manifesting as
atrophy, followed by traction and neovascularization.

Our study revealed a notably higher incidence of PS
involvement compared with the general high myopia popula-
tion (44.63% vs. 13.2%).8 Only 5 patients with PS did not
develop high myopia, and their mutations were exclusively
localized to the hybrid module domain and nonfunctional
regions. Posterior staphyloma appears linked to aberrations
in scleral structure.49 Major changes in scleral structure
including thinning of the sclera at the posterior pole and
reduction in collagen fiber diameter in the outer sclera are
caused by significant changes in the metabolism of the
scleral cellular and extracellular environment. These major
metabolic changes involve reduced collagen synthesis,
increased collagen degradation, reduced glycosaminoglycan
synthesis, altered integrin expression, and decreased
fibroblast to myofibroblast differentiation.49 Due to the
extreme thinness of choroid, both the retina and Bruch’s
membrane closely adhere to the scleral curvature.48

Furthermore, PS was observed in all patients with tractional
maculopathy. Several researches have reported that the
presence of PS plays a key role in traction development.11,50,51

This study has several notable strengths. Firstly, it involved
a comprehensive analysis of the correlations between posterior
segment phenotypes and FBN1 genotypes. Additionally, the
utilization of theATN systembased on theMFS cohort and the
inclusion of a diverse patient population with varying degrees
of maculopathy enhanced the robustness of our findings.
However, it is crucial to discuss the study’s limitations. First,
the research was conducted at a single center, primarily with
patients from eastern China, which may limit the generaliz-
ability of our results. Second, the prevalence of macular trac-
tionmight have been underestimated because of the absence of
fluorescein angiography and indocyanine green angiography
in our assessments. What’s more, the association between
mutation and PS or maculopathy remains to be explored.
Finally, future investigations should aim to elucidate the
mechanisms underpinning these findings, providing a deeper
insight into the pathophysiology.

In conclusion, FBN1 mutations located in the TGF-b regu-
lating region and C-terminal region associate with the devel-
opment ofPS andmaculopathy, and tend to result inmore severe
phenotypes. Mutations affecting the TGF-b regulating region
alter TGF-b signaling, increasing collagen fibers and thereby
promoting fibrosis. These changes contribute to decreased
retinal elasticity, tortuous retinal vessels, scleral structural ab-
normalities, and elongation of AL. Our findings have important
implications for the diagnosis andmanagement ofMFS. Further
research is required to validate and expand our findings while
delving deeper into the molecular mechanisms at play.
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Genotype-phenotype Correlations of Ocular Posterior Segment
Abnormalities in Marfan Syndrome
000
Yan Liu, BM, Yuqiao Ju, MM, Tian-hui Chen, MM, Yong-xiang Jiang, MD, PhD

In this study of 121 patients with Marfan syndrome with FBN1 mutations, maculopathy and
posterior staphyloma correlated with mutation location and region. Notably, mutations in the
TGF-b regulating sequence increased retinopathy risk.
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