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Abstract Whilst the pathophysiology and genetics of
mitochondrial disease are slowly being unraveled, cur-
rently no effective remedy for mitochondrial disorders is
available. One particular strategy in mitochondrial med-
icine presently under study is metabolic manipulation.
This approach is aimed at counteracting the deranged cell
biological homeostasis caused by mitochondrial dysfunc-
tion, using dietary modifications or small molecule
therapy. Cell biological alterations caused by mitochon-
drial dysfunction include increased reactive oxygen
species production, enhanced lipid peroxidation and
altered cellular calcium homeostasis. This review covers
the five principles of metabolic manipulation: (1)
prevention of oxidative damage by reactive oxygen
species, (2) amelioration of lipid peroxidation, (3)
correction of altered membrane potential, (4) restoration
of calcium homeostasis, and (5) transcription regulation
interference. We hypothesize that a combination of
compounds targeting different metabolic pathways will

abolish cellular disturbance arising as a consequences of
mitochondrial dysfunction, and thereby improve or
stabilize clinical features. However, only a handful of
compounds have reached efficacy testing in mammals,
and it remains unknown to what extent metabolic
manipulation will affect the whole organism. Until a
potent remedy is found, patients will remain dependent
on supportive, not curative, interventions.
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Sir 2 Silent information regulator two
SIRT Sirtuin
Sirtuins Silent information regulator two (Sir2) proteins
SOD Superoxide dismutase
SS Szeto-Schiller
TIM Translocase of the inner membrane
TOM Translocase of the outer membrane
TPP Triphenylphosphonium

Introduction

Despite progress in our current understanding of the
pathophysiology and genetics of mitochondrial disease,
no effective cure for mitochondrial disorders has been
found (Smeitink et al. 2006). Supportive therapy is the
only treatment approach we can offer our patients to date
(Chinnery et al. 2006). Due to the increased knowledge of
metabolism and pathophysiology, new therapeutic
approaches are being discovered. Current treatment strat-
egies applied in mitochondrial treatment development
include (1) gene therapy (replacement or repair), (2)
controlled regulation of specific transcriptional regulators,
(3) metabolic manipulation, and (4) altering the balance
between wild-type and mutated mtDNA (e.g., by
exercise training) in the case of oxidative phosphoryla-
tion (OXPHOS) defects with a mitochondrial DNA
(mtDNA) origin (Koene and Smeitink 2009). The effect
of some of these interventions has already been explored
in humans; however, most research in this field is still at
the level of single cell research (Koene and Smeitink
2009).

Many in vitro experiments have been done using the
metabolic manipulation strategy (Koene and Smeitink
2009). In the context of mitochondrial disease, this is
defined as ‘reversing the consequences of mitochondrial
dysfunction using dietary modification or small molecule
therapy to compensate for a deranged biological process’.
Strategies used to correct the deranged cell biological
processes in mitochondrial dysfunction include, for exam-
ple, the prevention of reactive oxygen species damage
using scavenging enzymes and compounds restoring
disturbed mitochondrial calcium metabolism. Compounds
altering these disturbed processes can, for example, be
nutraceuticals, a contraction of “nutrition” and “pharma-
ceutical” used for a group of food components (such as
vitamins, polyhenols, benzoquinones, etc.) claimed to have
a beneficial effect on health or medical conditions.

Here, we review the current status of research in
mitochondrial medicine regarding the application of
metabolic manipulators in oxidative phosphorylation
dysfunction.

Metabolic manipulators: compounds to repair
mitochondrial dysfunction

Mitochondrial dysfunction leads not only to a reduced ATP
production but also influences a variety of up- and
downstream processes, including an altered cellular redox
state (Distelmaier et al. 2009a), increased production of
superoxide (Balaban et al. 2005), changes in membrane
potential (Distelmaier et al. 2009a) and the mitochondrial
morphology (Koopman et al. 2005b; Smeitink et al. 2006)
(Fig. 1). We hypothesize that the metabolic and cellular
alterations seen as a consequence of mitochondrial dys-
function work together to hamper cellular function resulting
in the variety of clinical symptoms present in patients.
Therefore, we propose that repairing the problems arising
as a consequence of disturbed mitochondrial function is a
well-founded way of developing further treatment for
mitochondrial disease.

In the next paragraphs, we will summarize the con-
sequences of mitochondrial dysfunction and subsequently
discuss how metabolic manipulation might counteract these
cell biological alterations (see also Table 1).

Preventing oxidative damage: introduction

The superoxide anion, hydrogen peroxide and the hydroxyl
radical are collectively referred to as reactive oxygen
species (ROS). ROS plays an important role in the
expression of many proteins like transcription factors,
kinases, ion channels and phosphatases (Koopman et al.
2009). However, ROS can lead to harmful effects such as
DNA damage and lipid peroxidation, resulting in subse-
quent membrane damage and to changes in the mitochon-
drial network. Cells are equipped with their own anti-
oxidant mechanisms to counteract these potentially harmful
effects of ROS (Balaban et al. 2005; Murphy 2009). If the
production of reactive oxygen species (ROS) becomes too
great to be counterbalanced by its antioxidant system,
damage to proteins, lipids and DNA might occur (Balaban
et al. 2005; Smeitink et al. 2006), which is thought to have
harmful effects on cellular and mitochondrial (ultra)struc-
ture, activity and matrix protein diffusion (Koopman et al.
2007, 2008a).

To what extent ROS are indeed involved in disease
pathophysiology is largely dependent on model systems and
experimental conditions used. For example, their role in
mitochondrial disease is still under debate (Balaban et al.
2005; Murphy 2009). Chemical inhibition of complex I by
rotenone, a frequently used model to study complex I
deficiency, shows all of the above stated consequences (Fato
et al. 2009). However, no mtDNA abnormalities or increased
lipid peroxidation has been observed in genetically defective
complex I human cell lines, although these cell lines do
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show increased ROS production (Distelmaier et al. 2009a;
Koopman et al. 2009). Despite the ongoing debate regarding
the role of ROS in mitochondrial disease, much effort is
devoted to studying the effects of an increased scavenger

potential in mitochondrial dysfunction. Experiments to
reduce ROS have explored the following strategies: (1)
supplementing naturally occurring antioxidants and ana-
logues (Chen et al. 1997; Quinzii et al. 2007), (2) treatment
with synthetic scavenging compounds (Koopman et al.
2005a; Murphy 2008; Murphy and Smith 2007; Szeto
2006b), and (3) increased uncoupling of the mitochondrial
respiratory chain (Sluse et al. 2006).

The following experiments have to be interpreted with
great caution, since it is still uncertain whether ROS has a
major role in the pathophysiology of mitochondrial disease.
Furthermore, ROS is not only harmful to cells but also has
a regulatory function in protein expression of, for example,
transcription factors (Semenza 2004). Therefore, influenc-
ing its concentration might disturb cell viability.

Table 1 A summary of therapeutic strategies in metabolic manipulation

1. Preventing oxygen damage

i) Supplementation of naturally occurring antioxidants

ii) Mitochondria-targeted scavenging compounds

iii) Uncoupling of the mitochondrial respiratory chain

2. Preventing lipid peroxidation

3. Restoring the mitochondrial membrane potential

4. Modulation of mitochondrial calcium homeostasis

5. Transcription regulation

+
+
+
+

Scavengers

ROS

NADH

H+

H+

Q

c

I

P+-X

-

+
-

-
-
-

II

1. ANTI-OXIDANT INTERVENTIONS
- NATURALLY OCCURRING AND ANALOGUES
- MITOCHONDRIA TARGETED SYNTHETIC SCAVENGERS
- SCAVENGING ENZYME OVEREXPRESSION
- MITOCHONDRIAL UNCOUPLING

I

2. PREVENTING LIPID PEROXIDATION

3. MITOCHONDRIAL CALCIUM MODULATION

4. RESTORATION OF MEMBRANE POTENTIAL

5. TRANSCRIPTION REGULATION

Ca2+ 
homeostasis

CGP 1357

e

eH+
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Vitamin E 
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V
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Mitochondrial
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Fig. 1 Metabolic manipulation strategies. The mitochondrial oxida-
tive phosphorylation system consists of five complexes (I–V; blue).
Electrons are transported (broken line) through complex I and II to
complex III via Co-enzyme Q10 (Q) and to complex IV via
cytochrome oxidase (c), creating a proton gradient (for schematic
purposes only proton transport at complex III is depicted). This
gradient is the driving force behind the production of ATP by complex
V. When gene mutations or secondary dysfunction causes failure in
the electron transport chain, increased oxidative stress is thought to be
one of the consequences. We describe five approaches which may
correct the proposed cell biological consequences. Prevention of
oxidative damage (1; orange) can be achieved by either stimulating or
over expressing naturally occurring antioxidants, or by scavenger
supplementation. To facilitate membrane transport several
triphenylphosphonium-based compounds such as TTP-vitE have been
generated. Uncoupling of the respiratory chain leads to reduced
oxidative damage, but also to a reduced membrane potential. Since

oxidative damage is thought to cause lipid peroxidation substances
preventing lipid peroxidation were designed (2; green), e.g., MitoQ.
Restoring the disturbed calcium homeostasis (3; pink) has been
achieved on a cellular level by CGP 1357, a benzothiazepine drug
inhibiting the mitochondrial sodium/calcium (Na+/Ca2+) exchanger.
The mitochondrial membrane potential (4; blue) a key indicator of
mitochondrial health, can be restored by the vitamin E derivates.
Finally, transcription up-regulation (5; turquoise) of genes involved in
cellular energy metabolism and subsequent mitochondrial biogenesis
is achieved by over expressing the transcription factor PGC1A. NADH
Nicotinamide adenine dinucleotide (reduced form); Q/COQ co-
enzyme Q10; c cytochrome oxidase; SOD superoxide dismutase; vit
E vitamin E; CGP 1357 a benzothiazepine drug inhibiting the
mitochondrial sodium/calcium (Na+/Ca2+) exchanger; PGC-1A perox-
isome proliferator-activated receptor γ (PPAR-Γ) coactivator 1α;
MitoQ TTP with co-enzyme Q10 attached; ATP adenosine triphospate;
Ca2+ calcium; e electron
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Supplementation of naturally occurring antioxidants
and analogues

The most well-studied anti-oxidant, Co-enzyme Q10
(CoQ10) (ubiquinone), acts as an electron transporter in
the mitochondrial respiratory chain where it transports
electrons from complex I and II to complex III (Lenaz
and Genova 2009). In the rare case of CoQ10 biosynthesis
defects (OMIM #606426), high doses of CoQ10 have
proven to lead to clinical improvement (Quinzii et al. 2007;
Di Giovanni et al. 2001). CoQ10 is frequently prescribed in
patients suffering from other mitochondrial diseases with
many case reports of beneficial effects (Barak et al. 1995;
Wang et al. 2008). We reviewed two trials that studied the
effects of CoQ10 in patients with mitochondrial encepha-
lopathy and chronic progressive external ophthalmoplegia
(CPEO) (Chen et al. 1997; Chinnery et al. 2006). One
reports subjective improvement and globally a significant
increase in muscle strength in 8 patients with different types
of mitochondrial encephalopathy (Chen et al. 1997), but the
other trial in 17 patients with CPEO (mutations not known)
did not show any benefit (Chinnery et al. 2006). So, to date,
there is no evidence that CoS10 should be structurally
prescribed to patients with mitochondrial diseases other
than CoQ10 biosynthesis defects. However, if a co-enzyme
Q deficiency has not been ruled out, a clinical trial (n=1)
should be considered.

Idebenone (hydroxydecyl benzoquinone), a synthetic
CoQ10 compound, is thought to have two modes of action:
(1) it acts as an electron carrier, shuttling electrons from
complex I and II to complex III (Esposti et al. 1996; James
et al. 2005), and (2) it acts as an antioxidant, for which the
benzoquinone undergoes reversible redox reactions (Meier
and Buyse 2009).

It has been suggested that Idebenone might be beneficial in
Leber hereditary optic neuropathy (LHON) (OMIM #535000)
(Mashima et al. 1992, 2000), a mitochondrial genetic disease
often associated with a mitochondrial complex I gene
mutation (Man et al. 2002), that preferentially causes
blindness in young adult males. Results from a retrospective
study with idebenone, vitamin B2, and vitamin C suggest a
faster recovery of vision in LHON patients with
m.11778G>A, m.3460G>A and m.14484T>C mutations
(Mashima et al. 2000). It is difficult to interpret these data,
since the natural disease progression of LHON differs
significantly (Man et al. 2002). Besides, no prospective
studies have been described.

Idebenone has been effectively used in Friedreich ataxia
(FA) since 1999 (Meier and Buyse 2009). Friedreich ataxia
(OMIM #229300) is a progressive, multisystem, degener-
ative disorder caused by a reduction in frataxin, resulting in
mitochondrial dysfunction and oxidative damage. Treat-
ment with idebenone is generally well tolerated and

associated with improvement in neurological function and
activities of daily life in about 200 patients with FA (Di
Prospero et al. 2007; Meier and Buyse 2009). Whilst there
are some similarities between FA patients and mitochon-
drial disease patients, no conclusions can be drawn from the
observations in FA patients.

Oral supplementation, as is the case with CoQ10 and its
variants, is the easiest way to administer antioxidants. Not all
oral supplementations, however, are properly absorbed.
Glutathione, for example, a major endogenous antioxidant
produced by all aerobic cells (Lash 2006; Witschi et al. 1992),
will be, following oral ingestion, hydrolyzed by intestinal
and hepatic gamma-glutamyltransferase (Witschi et al.
1992). Increasing circulating glutathione to a proposed
clinically beneficial concentration by oral administration of
single doses is not possible (Witschi et al. 1992).

Several naturally occurring groups of compounds are
known for their ability to manipulate the intracellular
environment. These derivatives, also known as nutraceut-
icals, include the quinones, vitamins and polyphenols, the
latter including flavenoids. Presently, numerous in vitro
studies are being performed with these complex natural
molecules; for example, the assessment of the interaction of
quercetin derivatives, other than their antioxidant ability,
with mitochondria, (Biasutto et al. 2009). The vitamin E
analogue Trolox (6-hydroxy-2,5,7,8-tetramethylchromane-
2-carboxylic acid), a phenolic antioxidant with a chromane
structure similar to vitamin E but without the hydrophobic
polyisoprenoid tail of the latter (Tafazoli et al. 2005), has
been shown to quench cellular reactive oxygen species in
genetically defective OXPHOS fibroblasts (Koopman et al.
2008b). The vitamin E remaining after its dehydrogenation
is a relatively unreactive free radical (Distelmaier et al.
2009b; Koopman et al. 2008b). An increased restoration of
ROS to lower levels and restoration of both the amount and
activity of fully assembled complex I was observed in
complex I-deficient fibroblasts treated with Trolox (Koopman
et al. 2008b). Trolox had its largest effect on complex I
protein levels and activity in patient cells with a mild
complex I deficiency (Koopman et al. 2008b). All of these
experiments are still only on a cellular level.

Mitochondria-targeted synthetic scavenging compounds

For a more efficient delivery of scavengers to the source of
the ROS production, special transporters have been
designed to bring the compounds to the mitochondrial
inner membrane (IMM) (Hoye et al. 2008; Szeto 2006b).
To move molecules into the mitochondrial matrix, both the
cell membrane and the two mitochondrial membranes have
to be passed, of these the IMM is impermeable to
uncharged and water-soluble molecules. Targeted mito-
chondrial delivery can be obtained by (1) endogenous
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mitochondrial import, using the natural import system of
the cell (Neupert 1997), (2) fusion of closed compartments
with the mitochondria (Muratovska et al. 2001), or by (3)
facilitated transport across the lipid bilayer (Macias et al.
2007). We will only discuss the latter, including constructed
shuttles like the lipophilic cation shuttles Triphenylphos-
phonium (Murphy and Smith 2007), Szeto-Schiller tetra-
peptides (Szeto 2006a), Gramicidin S analogs (Macias et al.
2007), mitochondria penetrating peptides (Horton et al.
2008) and the SkQ cations (Skulachev 2009).

Lipophilic cation shuttles have a large hydrophobic
surface area which, together with the negatively charged
electron gradient that facilitates cation passage, enables
these molecules to pass through the two lipid bilayers of the
mitochondria (Hoye et al. 2008; Murphy and Smith 2007).
These components and their cargo accumulate within the
mitochondria up to 1,000-fold, in comparison to those in
untargeted analogues (Murphy and Smith 2007). Triphe-
nylphosphonium (TPP), one of such lipophilic cation
shuttles is designed to shuttle anti-oxidants to the mito-
chondrial matrix (Murphy and Smith 2007). TPP-
conjugated derivates of ubiquinone (James et al. 2005,
2007; Kelso et al. 2001), tocopherol (Smith et al. 1999),
lipoic acid (Brown et al. 2007), spin traps (Murphy et al.
2003) and the peroxidase mimetic Ebselen (Filipovska et al.
2005) can successfully import anti-oxidants into the
mitochondria in vitro (Murphy 2008) and might be able to
decrease ROS production (Murphy 2008). Although these
experiments seem promising, these shuttles depend on the
electrical polarization of the mitochondrial membrane for
their uptake and may, therefore, not be applicable in all
cases of mitochondrial dysfunction (Szeto 2006b). Further-
more, some of these agents may be toxic to the cell, as is
the case with high concentrations of the spin trap alpha-phenyl
N-tertiary-butyl nitrone (PBN) (Albano et al. 1986).

In addition, the mode of action of some of these
compounds might be other than predicted. This is for
example the case for MitoQ (Antipodean Company), a TTP
shuttle with CoQ10 as cargo. In a complex I rotenone
inhibition experiment, MitoQ did not scavenge the in-
creased ROS as measured by HEt oxidation (Koopman
et al. 2005a), but did decrease lipid peroxidation and
normalized mitochondrial morphology (Koopman et al.
2007; Murphy 2009). High doses of MitoQ were adminis-
tered orally to young healthy mice for up to 28 weeks to
study the effects on whole-body physiology, metabolism,
and gene expression (Rodriguez-Cuenca et al. 2010). There
were no changes in the expression of mitochondrial or
antioxidant genes as assessed by DNA microarray analysis.
There was also no increase in oxidative damage to
mitochondrial protein, DNA, or cardiolipin, and the
activities of mitochondrial enzymes were unchanged. No
adverse effects were reported in the mice. Whether MitoQ

will be beneficial in patients with mitochondrial disorders
has to be studied in randomized clinical trials.

The Szeto-Schiller (SS) tetrapeptide is a vehicle for
mitochondrial scavenger targeting, using a independent
potential delivery (Adlam et al. 2005; Magwere et al.
2006; Murphy and Smith 2007; Smith et al. 1999, 2008;
Szeto 2006a, b). The water-soluble SS tetrapeptides can
have alternating aromatic residues and basic amino acids
(aromatic-cationic peptides), which are designed to reduce
ROS in mitochondria and protect against lipid peroxidation
and cell death in neuronal and cardiac cells (Zhao et al.
2004). Chemically induced complex I deficiency by
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in a
mouse model for Parkinson, showed the neuroprotective
effects of the administration of SS peptides (Yang et al.
2009). Surprisingly, a SS peptide which did not have a
scavenging capacity also demonstrated significant neuro-
protective effects on dopaminergic neurons of chemically
induced Parkinson mice (Yang et al. 2009). SS peptides are
also claimed to have an inhibitory effect on lipid perox-
idation (Szeto 2006a); however, there is no evidence to
confirm this statement. Studies with isolated mitochondria
showed that both SS-31 and SS-20 prevented MPP+-
induced inhibition of oxygen consumption, ATP production
and mitochondrial swelling. It is not clear what the
biochemical or pharmacological mechanism is underlying
these observations. It might be either a ROS reducing effect
of the SS peptide alone, or another, unknown pathophys-
iological mechanism underlying the neurodegeneration
observed in this Parkinson model.

Mitochondria penetrating peptides (MPP), cationic, but
also lipophilic synthetic peptides, were also reported to
exhibit efficient cellular uptake with a targeted mitochon-
drial localization (Horton et al. 2008). For example, the
Gramicidin S analogue 2,2,6,6-tetramethylpiperidine-N-
oxyl (TEMPO) peptides were designed to transport the
TEMPO cargo into mitochondria (Macias et al. 2007).
Gramicidin was used because of its high affinity to bacterial
membranes (Sholtz et al. 1975) and demonstrates an ability
to manipulate mitochondrial membrane potential. TEMPO
peptides can be used to deliver antioxidants and radical
scavengers to mitochondria and were shown to prevent
ROS-induced apoptosis in a rat model for ischemia-
reperfusion injury (Macias et al. 2007).

Finally, a penetrating cation (Sk) with plastoquinone (Q),
a quinone acting as a electron carrier in the electron
transport chain has been extensively studied by Skulachev
and co-workers (Antonenko et al. 2008; Skulachev 2009;
Skulachev et al. 2009). SkQ, of which several variants have
been synthesized, are rechargeable antioxidants with a high
affinity for the inner leaflet of the mitochondrial inner
membrane. The antioxidant properties of these compounds
have been studied extensively both in vitro and in vivo, and
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there is evidence for results reaching from recovering
blindness in mammals to geroprotection (Skulachev et al.
2009). The claimed success of SkQ claims to prevent lipid
peroxidation, senescence and ischemia reperfusion injury
(Skulachev 1998). Independent studies are awaited to
confirm the observed results.

Mitochondrial uncoupling regulation

Mitochondrial uncoupling proteins (UCPs) increase proton
leakage in the IMM, thereby reducing oxygen stress by
lowering the electrochemical gradient (Cannon and
Nedergaard 2004; Sullivan et al. 2004). The net effect of
uncoupling is (1) a reduction of ROS production, (2)
dissipation of heat, (3) reduction of ATP synthesis, and (4)
reduction of calcium influx to the mitochondrial matrix.
Uncoupling can be stimulated by either high levels of cellular/
mitochondrial ROS (Sluse et al. 2006) or by circulating free
fatty acids (FFA) (Jarmuszkiewicz et al. 2004).

The ketogenic diet, a high-fat, low-protein, low-
carbohydrate diet, provides an increased free fatty acid
(FFA) concentration in plasma, which stimulates uncoupling
by the mitochondrial UCPs in mice (Sullivan et al. 2004;
Davis et al. 2008). Also, a decreased ROS production was
found in the hippocampus of these mice, without decreasing
mitochondrial ATP production (Sullivan et al. 2004).

Ketogenic diet is not only known for its uncoupling
activity, but is also thought to provide an alternative source
of acetyl Co-A by inducing fatty acid beta-oxidation as well
as changing the heteroplasmy state in favor of the wild-type
mtDNA copy number (Santra et al. 2004). In children with
pyruvate dehydrogenase complex (PDHC) deficiency and a
variety of isolated and combined OXPHOS system defi-
ciencies, the ketogenic diet was reported to improve
epilepsy (Kang et al. 2007; Wexler et al. 1997) and mental
development in PDHC deficiency (Wexler et al. 1997).
Although these results in PDHC and mitochondrial diseases
complicated by epilepsy seem promising, ketogenic diets
are often complicated by metabolic disturbances, such as
hypoglycemias and hypercholesterolemia as well as by
gastrointestinal symptoms and lethargy (Duchowny 2005;
Toshima et al. 1982; Wexler et al. 1997; Wijburg et al.
1992). We think it is worthwhile investigating the effect of
a ketogenic diet in patients with mitochondrial disease.
However, this may also have major side effects because the
defective mitochondria are not able to process the excess of
lipids in the ketogenic diet.

Preventing lipid peroxidation and mitochondrial network

Mitochondria are highly dynamic organelles, forming an
extensive network with constant fusion and fission (Detmer
and Chan 2007). Lipid peroxidation as a consequence of an

increased ROS production changes the structural architec-
ture of the mitochondrial network (Bach et al. 2003; Hood
2001), and is generally accompanied by changes in
mitochondrial content, ultrastructure, and enzyme levels
(Rossignol et al. 2004).

Treating chemically inhibited Complex I-deficient cells
with the antioxidant MitoQ abolished lipid peroxidation
and normalized mitochondrial shape (Koopman et al.
2005a). Fibroblasts of Complex I-deficient patients, show-
ing increased ROS formation, displayed no signs of
increased lipid peroxidation (Verkaart et al. 2007) and
seem to have adapted to increased levels of ROS.
Unraveling these adaptive mechanisms may provide new
targets for therapeutic intervention.

Modulation of mitochondrial calcium homeostasis

Mitochondria play a central role in ensuring the homeosta-
sis of ionic calcium (Ca2+), an all round intracellular
signaling molecule that regulates a large variety of cellular
processes (Berridge et al. 2003). During cell stimulation,
Ca2+ is released from the endoplasmic reticulum to the
cytosol and taken up by mitochondria, where it stimulates
mitochondrial dehydrogenases giving rise to increased ATP
production (Brini et al. 1999; Korzeniewski 2007; Pinton
et al. 2008; Valsecchi et al. 2009).

Cells harboring mutations in nuclear or mitochondrial
DNA often show disturbances in Ca2+ homeostasis (Brini
et al. 1999; Distelmaier et al. 2009a). Complex I-deficient
cells have an almost normal resting Ca2+ balance in
mitochondria and cytosol, but a lower endoplasmic reticu-
lum Ca2+ concentration (Visch et al. 2004). However, the
peak in mitochondrial Ca2+ concentration seen after
hormonal stimulation with bradykinin was lower than
expected (Visch et al. 2004). Moreover, Ca2+ was removed
from the cytosol at a slower rate (Visch et al. 2004). In a
heart-specific knockout of the mitochondrial transcription
factor A (Tfam) mouse model, a clear association of a
disturbed Ca2+ homeostasis with cathecholamine-induced
arrhythmias was found (Tavi et al. 2005).

This suggests that Ca2+ homeostasis is inevitable for cell
functioning, and above all that disturbances in cellular Ca2+

homeostasis lead to clinical abnormalities (Brini et al. 1999;
Tavi et al. 2005; Visch et al. 2004).

CGP37157 is a benzothiazepine drug which inhibits the
mitochondrial sodium/calcium (Na+/Ca2+) exchanger.
CGP37157 restores Ca2+ handling and ATP production in
cells with a hampered energy metabolism. In Complex
I-deficient cells harboring a NDUFS7 or NDUFS4 muta-
tion, treatment with a CGP37157 resulted in an normaliza-
tion of stimulated mitochondrial Ca2+ concentration and
ATP production, as well as a normal cytosolic Ca2+
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removal (Visch et al. 2004, 2006). Treatment of cybrid cells
expressing the m.8356T>C (MERFF) or the m.8993T>G
(NARP) mutation with CGP37157 mostly restored both the
Ca2+ uptake and the stimulation of ATP production (Brini et
al. 1999). We are not aware of clinical studies aimed at
correcting cellular calcium homeostasis.

Transcription regulation

Peroxisome proliferator-activated receptor γ (PPAR-γ)
co-activator 1α (PGC-1α) is a transcriptional factor regulator
that stimulates transcription of genes involved in cellular
energy metabolism (Wenz 2009). The study of PGC-1α has
received much attention for its possible roles in the treatment
of the metabolic syndrome (Canto and Auwerx 2009), its
potential neuroprotective capacity (St-Pierre et al. 2006), and
its roles in various other pathologies (Baur and Sinclair
2006).

PGC-1α is not only known for its role in the
transcription of proteins involved in energy metabolism
but is also under interest because of its ROS-mediated cell
death prevention (St-Pierre et al. 2006), and the stimulation
of mitochondrial biogenesis (Wenz 2009). PPARS also
affects mtDNA levels by modulating transcription of the
mtDNA transcription factor A (Tfam) gene (Handschin and
Spiegelman 2006). PGC-1α is physiologically regulated by
for example exercise (Taivassalo and Haller 2005) and
calorie intake (Corton and Brown-Borg 2005) but can also
be manipulated by pharmacologic agents, for example,
bezafibrate (Bastin et al. 2008) and resveratrol (Oliva et al.
2008) (Fig. 2). The latter is known as a stimulator of silent
information regulator two (Sir2) proteins (Sirtuins), which
catalyze NAD+-dependent deactetylation within proteins
such as PGC-1α (Hallows et al. 2009). NAD+, also known
as a biochemical electron carrier shuttling electrons from
the Krebs cycle to complex I, is therefore considered the
direct link between cellular stress and an increased
metabolism (Houtkooper et al. 2009) (Fig. 2).

The stimulation of the PPAR/PGC-1α pathway also has
consequences for mitochondrial biogenesis (Wenz 2009).
Increased mitochondrial biogenesis is a natural compensa-
tion mechanism commonly seen in skeletal muscle of
patients with OXPHOS deficiencies (DiMauro and Schon
2008), and has been described as be a maladaptive effect in
an attempt to increase ATP supply (Murdock et al. 1999).
Since an increase in the biogenesis of healthy mitochondria
shifts the balance (heteroplasmy) and thereby increases cell
metabolism, this strategy has been studied to treat patients
with mtDNA mutations. PGC-1α stimulation through
exercise is known to increase mitochondrial mass and
oxidative capacity (Taivassalo and Haller 2005). To verify
the role of PGC-1α in mitochondrial biogenesis, a mouse

model for cytochrome c oxidase (COX) deficiency with
transgenic expression of PGC-1α was used (Wenz et al.
2008). These PGC-1α-expressing mice have a delayed
onset of myopathy, increased mitochondrial biogenesis,
increased ATP levels and increased health and lifespan
compared to COX deficient littermates (Wenz et al. 2008).
PGC-1α stimulation thus positively affects mitochondrial
function in COX-deficient cells.

Resveratrol (3,5,4′-trihydroxystilbene), a polyphenolic
phytoalexin, stimulates sirtuin activity and thereby transcrip-
tion of the nuclear genes involved in energy metabolism
(Almeida et al 2009). Also, a spectacular increase in the
cells’ own anti-oxidant machinery, such as mitochondrial
superoxide dismutase MnSOD2 and glutathione, was ob-
served (Das et al. 2008; Kode et al. 2008; Robb et al. 2008).

Healthy mice were fed with either a normal (SD) or a high
calorie diet (HC), either with resveratrol (HCR) or without
(HC). The HCR mice tend to have an increased survival rate
and rotarod performance compared to HC mice and do not
significantly differ from the SD mice (Baur et al. 2006). Also,
their cardiovascular risk profile was improved compared to
the mice having no resveratrol. The livers of the HCR mice
had considerably more mitochondria than those of HC

Fig. 2 Stimulation of transcription of mitochondrial genes. Peroxi-
some proliferator-activated receptor γ (PPAR-γ) co-activator 1α
(PGC-1α) stimulates transcription of genes involved in mitochondrial
energy metabolism, by increasing their nuclear transcription and
expression. Stimulation of PGC-1α also causes a reduction in reactive
oxygen species, an increase in mitochondrial biogenesis, and a
beneficial shift in heteroplasmy. All this leads to an increased cellular
energy production; however, the long-term effects of an increased
mitochondrial biogenesis are unknown. PGC-1α is stimulated via
adenosine monophosphate (AMP), activated protein kinase (AMPK),
by physiological processes such as exercise, as well as by pharmaco-
logical agents for example bezafibrate and resveratrol. Bezafibrate
directly stimulates PPARγ, the transcription factor working together
with PGC-1α. Resveratrol stimulates silent information regulator two
proteins (Sirtuins) which catalyze NAD+-dependent deactetylation
within PGC-1α. Since NAD+ reflects the cells energy metabolism, this
is described as the direct link between external physiological stimuli
and the regulation of mitochondrial biogenesis. PGC-1α peroxisome
proliferator-activated receptor γ (PPAR-γ) coactivator 1α; PPAR-γ
peroxisome proliferator-activated receptor γ; ROS reactive oxygen
species; AMPK adenosine monophosphate (AMP), activated protein
kinase; SIRT-1 silent information regulator 1 protein; NAD nicotin-
amide adenine dinucleotide
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controls and were not significantly different compared to
those of the SD group (Baur et al. 2006). In another
experiment with 1-year-old mice on the HC diet that had
been treated with resveratrol for 6 weeks, the acetylation
status of PGC-1α in the resveratrol-fed mice was threefold
lower than the diet-matched controls. This enhanced enzyme
activity can be either stimulated by resveratrol or SIRT1.
Since the latter was not detectably increased, it can be
concluded that resveratrol stimulates PCG-1α expression in
mice on a HC diet (Baur et al. 2006; Milne and Denu 2008).

A double-blind, randomized, placebo-controlled study
with resveratrol in healthy volunteers showed that frequent
administration of resveratrol was well tolerated, but low
plasma concentrations were achieved despite a 4-hourly
oral administration regime (Almeida et al. 2009), possibly
due to a rapid and extensive first pass metabolism (Walle et
al. 2004). There are no data on the side effects of continual
resveratrol administration.

Studies in healthy volunteers focusing on the effects of
resveratrol on cardiovascular parameters show a stimulation
of human platelet nitric oxide production, increased HDL
cholesterol and inhibited platelet aggregation, and oxidation
of low-density lipoproteins (Bhat et al. 2001; Gresele et al.
2008). From a mitochondrial disease point of view,
resveratrol theoretically has a stimulating effect on mito-
chondria and has proven to increase mitochondrial biogen-
esis in the liver of mice on continual resveratrol treatment.
In addition, administration seems well tolerated. However,
we are not aware of any studies assessing mitochondrial
enzyme complex activity in animals or humans treated with
resveratrol, or resveratrol administration in animal models
for mitochondrial disease or human mitochondrial disease
patients.

Another pharmacologic PPAR pan-agonist called bezafi-
brate, was administered in COX-deficient mice shortly
before disease onset. Bezafibrate was shown to lead to
mitochondrial proliferation and an enhanced OXPHOS
capacity per muscle mass as well as a reduction of the
myopathy and prolongation of the lifespan (Wenz et al.
2008). The increase in ATP production per muscle mass
was thought to play the key role in the clinical improve-
ment of the myopathic mice.

Bezafibrate was also studied in a clinical trial in six
adults with mild carnitine palmitoyltransferase II (CPT2)
deficiency (Bonnefont et al. 2009). CPT2 (OMIM
#255110) is a translocation protein shuttling long-chain
fatty acyl-CoAs over the inner mitochondrial membrane
(McGarry and Brown 1997). Patients with CPT2 deficiency
may present either in infancy or as adults; the latter
presenting with recurrent attacks of myalgia and muscle
stiffness or weakness, occasionally associated with myo-
globinuria. The frequency of these attacks is highly variable

and, inbetween attacks, patients have no clinical symptoms
(Bonnefont et al. 2004). Administration of bezafibrate in
patients with CPT2 deficiency fully restored fatty acid
oxidation capacity in muscle cells, probably caused by
stimulating the expression of the mutated gene (Bonnefont
et al. 2009; Djouadi et al. 2005). Also, patients had fewer
periods of rhabdomyolysis, and quality of life parameters
reached the control ranges on all domains (Bonnefont et al.
2009). No adverse effects were reported.

Although transcription regulation seems a very promis-
ing strategy in treating mtDNA defects, the long-term
complications of mitochondrial proliferation should be
studied, since both healthy and hampered mitochondria
will proliferate (Wenz 2009). Excessive mitochondrial
proliferation in PPAR stimulation may result in cardiomy-
opathy (Lehman et al. 2000).

In addition to that, a recent study showed that the activation
of sirtuins by resveratrol and other synthetic SIRT1 agonists
was not caused by a direct interaction between sirtuins and its
agonists (Pacholec et al. 2010). NMR and calorimetry
techniques demonstrated that the reported effect was caused
by the interaction of the SIRT1 with the fluorophore
(Pacholec et al. 2010). In vivo experiments did not confirm
the beneficial effects of SRT1720 on plasma glucose and
mitochondrial capacity in mice on a high fat diet (Pacholec
et al. 2010).These results show that the effect of small
molecules on sirtuin expression is most uncertain.

Conclusion

Metabolic manipulation is one way in which to develop a
well-founded and effective therapy for mitochondrial
disorders. Some examples of metabolic manipulation
intervention seem very promising at the cellular level,
though very few compounds have been tested in vivo. The
real challenge in mitochondrial medicine is to design an
effective clinical trial to definitively address the question of
whether or not such therapeutic compounds are beneficial.
This has proven to be very difficult in this heterogeneous
population with an unpredictable natural history.
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