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Establishing a reliable correspondence between lesioned brains and a template is challenging using current nor-
malization techniques. The optimumprocedure has not been conclusively established, and a critical dichotomy is
whether to use input data sets which contain skull signal, or whether skull signal should be removed. Here we
provide a first investigation into whether clinical fMRI benefits from skull stripping, based on data from a
presurgical language localization task. Brain activation changes related to deskulled/not-deskulled input data
are determined in the context of very recently developed (New Segment, Unified Segmentation) and standard
normalization approaches. Analysis of structural and functional data demonstrates that skull stripping improves
language localization in MNI space— particularly when used in combination with the New Segment normaliza-
tion technique.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Precise and valid spatial normalization into a common space across
all subjects is one of the key components in group analysis of structural
and functional neuroimaging data (Brett et al., 2002). In recent years a
wealth of algorithms and methods have been developed to account
for and correct inter-subject variability in healthy subjects' brains (for
a recent review and comparison of algorithms see Klein et al., 2009,
2010). Most normalization methods use automated algorithms to min-
imize the difference between a subjects' image and a standardized tem-
plate by applying linear and nonlinear transforms. The establishment of
a reliable and robust correspondence between subjects' brains and a
template is difficult, however, when there are inherent contrast differ-
ences between the two. Disparate B0 signal dropout, B1 inhomogeneity
and differing tissue contrast can arise from acquisition at different field
strengths or from the use of different measurement parameters. The
situation becomes particularly problematic in the normalization of
lesioned brains, since focal brain lesions or loss of brain tissue resulting
from stroke, tumors, or surgery may lead to a lack of correspondence
between patient images and standardized templates due to biased nor-
malizations or overfitting (Brett et al., 2001). The impact of such a lack of
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correspondence in patients' brains to templates on the analysis of func-
tional imaging data has been highlighted in a large body of work
(Beisteiner et al., 2010; Crinion et al., 2007; Gartus et al., 2007;
Hoeksma et al., 2005; Tahmasebi et al., 2009; Vandenbroucke et al.,
2004; Yassa and Stark, 2009). Most clinical studies apply normalization
techniques implemented in SPM and, until recently, the SPM standard
normalization approach was most popular. However, the Unified Seg-
mentation Model approach (Ashburner and Friston, 2005) constitutes
a significant advance in normalization quality. Unified Segmentation
attempts to capture all aspects of an anatomical image using a probabi-
listic framework with tissue prior maps (TPMs) and thus enables tissue
classification, bias correction due to signal inhomogeneities, and
nonlinear image registration in onemodel. Crinion et al. (2007) demon-
strated that Unified Segmentation produces significantly better and
more reliable anatomical co-localization than any of the conventional
normalization approaches which employ cost-function masking (CFM)
to deal with pathologies (Brett et al., 2001). More recently, Andersen
et al. (2010) showed that for larger lesions resulting, for example,
from strokes, the benefit of the Unified Segmentation Model can be
further increased when used in addition to CFM rather than instead of
it. The most recent development is the New Segment toolbox (SPM
manual, FIL Group), introduced into SPM as a “work in progress” pack-
age. It utilizes the Unified Segmentation algorithm with an improved
registration model and an extended set of tissue probability maps.

A critical factor not well investigated is the influence of skull-
stripping or scalp editing to remove non-brain areas before normalizing
brains, although this is relevant to all the normalization techniques.
Skull stripping may improve the robustness of the registration process,
ved.
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Table 1
Patient characteristics including sex, age, diagnosis and lesion size in cm3. Note that cases
31 to 36 were classified as controls since clinical evaluation showed no structural or
functional finding except for epilepsy.

Case
number

Sex Age Diagnosis Lesion
size
(cm3)

Case 1 Female 45 Low grade glioma, left temporal 44.72
Case 2 Male 43 Tumor of unknown origin, left postcentral 236.29
Case 3 Male 32 Oligodendroglioma, left insular cortex 253.21
Case 4 Male 68 Tumor of unknown origin, left postcentral 65.12
Case 5 Male 34 Astrocytoma grade II, left fronto-temporal 516.69
Case 6 Male 45 Astrocytoma, left frontal-temporal 564.20
Case 7 Male 50 Glioma grade II, left temporal cortex 504.90
Case 8 Female 40 Astrocytoma, left temporoparietal 540.22
Case 9 Male 51 Glioma, left frontal cortex 201.71
Case 10 Male 38 Astrocytoma grade II, left temporal cortex 195.32
Case 11 Female 33 Astrocytoma grade II, left frontotemporal 24.82
Case 12 Female 54 Tumor of unknown origin, left parietal 147.24
Case 13 Female 30 Cavernous hemangioma, left frontal 2.28
Case 14 Male 65 Astrocytoma grade II, left opercular cortex 102.01
Case 15 Female 27 Tumor of unknown origin, left temporal cortex 173.55
Case 16 Female 37 Oligoastrocytoma grade II, left opercular 271.08
Case 17 Female 49 Glioma grade III, left temporoparietal 46.73
Case 18 Male 37 Low grade glioma, left temporal cortex 414.60
Case 19 Male 69 Tumor of unknown origin, left temporo-parietal

cortex
209.93

Case 20 Male 38 Low grade glioma, left frontal 7.186
Case 21 Male 52 Tumor of unknown origin, left frontal 274.19
Case 22 Male 34 Cavernous hemangioma, left basal ganglia 36.74
Case 23 Male 21 Astrocytoma, left postcentral 5.02
Case 24 Male 37 Tumor of unknown origin, left frontotemporal 49.58
Case 25 Female 60 Tumor of unknown origin, left fronto-central 148.98
Case 26 Male 45 Tumor of unknown origin, left frontal 11.75
Case 27 Female 75 Tumor of unknown origin, left temporal cortex 296.98
Case 28 Male 45 Tumor of unknown origin, left fronto-temporal 400.59
Case 29 Female 55 Tumor of unknown origin, left precentral 51.56
Case 30 Male 33 Low grade glioma, left insular cortex 96.15
Case 31 Female 19 Temporal lobe epilepsy left –

Case 32 Male 20 Temporal lobe epilepsy left –

Case 33 Male 21 Temporal lobe epilepsy left –

Case 34 Female 47 Temporal lobe epilepsy left –

Case 35 Male 49 Temporal lobe epilepsy left –

Case 36 Female 32 Temporal lobe epilepsy left –

Case 37 Male 35 Healthy participant –

Case 38 Female 43 Healthy participant –

Case 39 Female 30 Healthy participant –

Case 40 Male 27 Healthy participant –
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since high resolution structural images contain considerable amounts of
non-brain tissue such as eyeballs, bone, skin, and other tissueswhile the
template images either do not, or only do to a certain extent. For voxel
based morphometry (VBM) Fein et al. (2006) and Acosta-Cabronero
et al. (2008) have already demonstrated that misregistrations of
individual brains to a common template could be reduced by using
brain-extracted images as initial input data sets. Despite these results,
no investigations to date have examined the possible benefits of skull
stripping as a postprocessing tool for clinical fMRI. Here, we provide
the first detailed structural and functional investigation into whether
or not skull-stripping (in the context of 3 different normalization
approaches) influences the localization of brain function in a cohort of
pathological brains which is typical for clinical functional diagnostics.

2. Materials and methods

2.1. Patients and paradigm

Patients referred for functional localization of language-related areas
as part of presurgical evaluation were selected from a pool of data ac-
quired on a 3 Tesla TIM Trio system (Siemens, Erlangen, Germany)
according to the following criteria: (1) localization of the tumor, lesion
or epileptic focus within the left hemisphere in the vicinity of the
Broca or Wernicke area without any previous surgical excision, (2) the
patients were right handed and older than 18 years of age, (3) patients
were in a good general state of health with no unrelated clinical symp-
toms and good cooperation at the time of measurement and (4) there
was unequivocal left hemispheric language dominance according to
the local clinical fMRI report generated on individual non-normalized
fMRI data (Foki et al., 2008), which served as functional gold standard
in this study.

36 patients (22 male, 14 female, mean age 42.5 years) fulfilling the
above criteria were included in this study (see Table 1). These patients
and four healthy subjects (2 male, 2 female, mean age 33.75 years)
were subdivided into four equally sized groups according to the extent
of the lesion (calculated from the lesion mask). These groups were no-
lesion (comprising healthy subjects and epileptic patients), small-
lesion, medium-lesion and large-lesion (see Fig. 1). These subgroups
were formed to assess the effects of lesion size on normalization
differences related to skull-stripping.

Participants performed a simple overt language paradigmdeveloped
for a comprehensive test of all language components (Foki et al., 2008;
Gartus et al., 2009). It consisted of 20 runs, each lasting 140 s. Each
run comprised 3 active blocks alternating with 4 rest blocks, with each
block lasting for 20 s. During the active phases, two German sentences
were presented to the participants visually (for 10 s each). These
sentences consisted of 4 words – the stem of a sentence – presented
word by word, followed by two verbs displayed one above the other,
constituting a correct and an incorrect possible ending of the sentence.
The incorrect verbs were either grammatically wrong or semantically
unsuitable.While reading the sentence out loud, subjects were explicit-
ly required to choose thewordwhich forms a correct German sentence.

The study was approved by the ethics committee of the Medical
University of Vienna. All patients gave written informed consent.

2.2. fMRI acquisition

Images were acquired with a 3 Tesla TIM Trio system (Siemens,
Erlangen, Germany) using a 32 channel head RF coil and a head fixation
helmet (Edward et al., 2000). Functional MRI data were acquired using
single-shot gradient-recalled EPI with 34 axial slices (1.8 × 1.8 mm in-
plane resolution, 3 mm slice thickness, matrix size of 128 × 128, a FOV
of 230 mm, echo time (TE) 35 ms, repetition time (TR) 2500 ms and
GRAPPA acceleration factor 2), aligned to the anterior and posterior
commissures. Two dummy/preparation scans were prefaced each run
to ensure quasi-equilibrium in longitudinal magnetization. High-
resolution T1-weighted MR images were acquired using a 3D MPRAGE
sequence (TE = 3.02 ms, TR = 2190 ms, inversion time (TI) =
1300 ms) with a matrix size of 250 × 250 × 256, with isometric voxels
with a nominal side length of 0.9 mm, flip angle of 9° and a GRAPPA
acceleration factor of 2.

2.3. Image preprocessing

First, binary masks delineating lesions in original unprocessed
anatomical T1 images were defined manually in the native space of
each patient using MRIcron (Rorden and Brett, 2000). Although it has
been repeatedly shown that the quality of themask has limited influence
on the normalization results, tumor boundarieswere outlined as precisely
as possible by experienced clinical fMRI experts (FF, RB) (Andersen et al.,
2010; Brett et al., 2001). Lesion masks generated in this way were
smoothed with an 8 mm FWHM Gaussian filter as recommended by
Brett et al. (2001) and constrained so as not to extend beyond the brain.

In a separate step, brain extracted images, i.e. the deskulled anatom-
ical images, were obtained using FSL's (Software library of the Oxford
Centre for Functional MRI of the Brain (FMRIB): http://www.fmrib.ox.
ac.uk/fsl/) brain extraction tool (BET2; Smith, 2002) followed bymanual
removal of residual non-brain areas, again usingMRIcron. To this end, a
maskwas drawn capturing residual non-brain areas including bone, fat,
and meninges and added to the brain mask resulting from BET2. The

http://www.fmrib.ox.ac.uk/fsl/
http://www.fmrib.ox.ac.uk/fsl/


Fig. 1. Histogram of lesion size across the three lesioned brain groups. The numbers on the abscissa correspond to the patient numbers listed in Table 1.
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amount of manual editing needed was comparable for the four lesion
groups. This combined mask was applied to individual T1 scans,
resulting in clean deskulled anatomical images.

Image processing, involving the different normalization pipe-
lines, preprocessing and statistical analysis of the functional data
was performed using SPM8 (Software library by the members & col-
laborators of the Wellcome Trust Centre for Neuroimaging (Func-
tional Imaging Laboratory Group); http://fil.ion.ulc.ac.uk/spm) and
largely followed the steps described by Crinion et al. (2007). Default
parameters were chosen for all analysis steps – except where noted
in the following description – to keep the normalization and analysis
procedures as close as possible to that used in current practice. Nor-
malization of the structural and functional images involved two
steps. Step I: generation of a common spatial starting point; ensuring
that images had the same rotation and origin as the MNI template by
applying an affine 3D rigid-body transformation. Step II: standard
SPM normalization (Ashburner and Friston, 1999), Unified Segmen-
tation normalization (Ashburner and Friston, 2005) and New
Segment normalization (SPM manual, FIL Group) using skulled and
deskulled input data sets.

2.3.1. Step I (see Fig. 2)
The estimation of different parameter sets to transform the data to

MNI space. First, to account for residual small-scale motion, motion cor-
rection parameters were calculated for the functional images using the
individualmean EPI image as the reference image. Tominimize interpo-
lation errors, these parameters were calculated but not applied to the
individual images at this stage, i.e. images were not resliced or
resampled in this step. Secondly, both deskulled and not-deskulled
structural T1 images were transformed to the individual mean EPI
image, calculating EPI-space transformation parameters and then
transforming to MNI space using affine 3D rigid-body transformation
with the standard SPM T1 template as reference. MNI transformation
parameters were thereby generated. These two parameter sets (motion
correction parameters and MNI transformation parameters) were then
combined to generate a combined transformation which was applied
to the functional EPI data. The same procedure was applied to the struc-
tural and lesionmask images by combining EPI-space andMNI transfor-
mation parameters. Although this is not usually required at this stage of
the data analysis, all data sets were resliced then resampled to
2 × 2 × 2 mm voxel size for the functional data and 1 × 1 × 1 for the
anatomical data. This step resulted in a common starting point for the
subsequent normalization pipelines and was conducted to exclude
any confounding effects. Among these are possible distortions resulting
from prior non-applied transformations, e.g. Unified Segmentation
required the images to be in the approximate position of the MNI
space before starting the normalization while standard normalization
does not.

To check for possible differences between skulled and deskulled
images introduced by the linear transformations of Step I,we performed
two analyses. (1) Comparison of skulled with deskulled T1 images
after registration of T1 to the mean EPI. (2) Comparison of skulled
with deskulled T1 images after Step I had been completed (i.e. after gen-
eration of a uniform starting-point for all 6 normalizations). This was
done by calculating DICE similarity indices (Dice, 1945) for the
skulled/deskulled T1 images. These provide a direct measure of the
structural differences between skulled and deskulled T1 at stages (1)
and (2). DICE calculations were performed separately for the 4
different lesion groups andwith the approach described below (section
“Evaluation of structural differences between normalized and template
images”). The comparison of skulled with deskulled T1 images was car-
ried out with the deskulled image serving as the reference and the
skulled image as the template.

2.3.2. Step II (see Fig. 3)
The default parameters implemented in SPM8 were used for the

standard normalization scheme, except for the specification of the tem-
plate image. Since the MNI152 template provided by SPM8 contains
scalp, skull, and meninges, the brain extracted and the standard
MNI152 templates provided by FSL were used as references (Fein
et al., 2006). For consistencywith the SPM template, both FSL templates
were smoothed using an 8 mm FWHM Gaussian kernel and then used
as reference images to normalize the stripped and non-stripped individ-
ual brains. For the Unified Segmentation Model, all parameters includ-
ing the probabilistic prior maps were left unchanged (following
Andersen et al., 2010; Crinion et al., 2007). In accordance with these
studies, the number of Gaussians for the “other prior map” (see
above) was left unchanged, i.e. it was assumed that the number of
different intensity distributions within this tissue map would not be
changed by stripping off the skull. Both approaches were conducted
with cost-function masking to weight brain lesions appropriately
(Andersen et al., 2010) for the three lesioned brain groups. The New
Segment algorithm does not support cost function masking but is
designed to ignore voxels with a value of zero, which is essentially iden-
tical to a cost-function masking approach (personal communication
with John Ashburner, FIL methods group). Therefore, lesioned neuronal
areas within the anatomical images were first discarded by setting their
voxel-values to zero and the resulting “cleaned” stripped and non-

http://fil.ion.ulc.ac.uk/spm


(E1) Motion correction parameters:
functional EPI images - registration

to mean EPI image

(E2) Registration of skulled T1 images to mean EPI image
Registration of deskulled T1 images to mean EPI image

(E3) Registration of registered T1 images
to Standard SPM T1 template

Application of Parameters
(Application of calculated parameters to individual 

imagesincluding reslicing and resampling of images)

Estimation of Parameters
(Parameters are only calculated and no reslicing and 

resampling of images is performed)

mean EPI image

functional EPI images

Run 1

Run 2

Run 3

. . .

T1 image and lesion mask

(A1) Application of the result to
functional EPI images, generating 
a uniform starting-point for the 
6 normalization procedures.

Mathematical combination of (E1) and (E3). Mathematical combination of (E2) and (E3).

(A2) Application of the result to
skulled T1 images, generating a
uniform starting-point for the 6
normalization procedures.

(A3) Application of the result to
deskulled T1 images, generating a
uniform starting-point for the 6
normalization procedures.

(A4) Application of the result to
lesion mask images, generating a
uniform starting-point for the 6
normalization procedures.

functional EPI images

estimation of parameters

application of estimated parameters

skulled T1 image deskulled T1 image lesion mask

Step I: Estimations to achieve a common starting point

Fig. 2. Flow chart delineating the preprocessing steps undertaken to achieve a common starting point for the 6 normalization pipelines, i.e. estimation steps to transform the data intoMNI
space. See text for further details.
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stripped anatomical images were then submitted to New Segment nor-
malization using the default parameters as provided by the authors of
the toolbox (SPM manual, FIL Group). Again, this “cleaning” of the
anatomical images was only conducted for the lesioned brain group.

This estimation procedure yielded six sets of transformation param-
eters corresponding to skulled and deskulled data sets submitted to
either standard normalization, Unified Segmentation or New Segment.
In all cases these transformation parameters were applied to the struc-
tural images, the lesion mask, and the functional data if appropriate, i.e.
transformation parameters obtained from the New Segment approach
were applied to the original, not “cleaned” structural images.

2.4. Analysis of structural data

2.4.1. Evaluation of intensity differences between normalized and template
images

To assess the general quality of the different normalizations the
mean square error (MSE) of intensities was calculated between



Application of Normalization Parameters

Skulled T1 images 
at starting-point after Step I

functional EPI images

skulled T1 image

deskulled T1 image

lesion mask

lesion mask

Deskulled T1 images 
at starting-point after Step I

Functional EPI images 
at starting-point after Step I

Apply Normalization Parameters
 EN1 - EN3

Apply Normalization Parameters
 EN4 - EN6

Apply Normalization Parameters
EN1 - EN3 for skulled or

EN4 - EN6 for deskulled analysis

deskulled T1 image

skulled T1 image

Skulled T1 images and
Lesion mask images

at starting-point after Step I

Estimation of Normalization Parameters

Deskulled T1 images and
Lesion mask images

at starting-point after Step I

(EN1) Standard Normalization
to FSL standard MNI152 template

with Cost Function Masking

(EN2) Unified Segmentation
to FSL standard MNI152 template

with Cost Function Masking

(EN3) New Segment Normalization
to FSL standard MNI152 template

with mask voxels set to zero

(EN4) Standard Normalization
to FSL brain extracted MNI152

template with Cost Function Masking

(EN5) Unified Segmentation
to FSL brain extracted MNI152

template with Cost Function Masking

(EN6) New Segment Normalization
to FSL brain extracted MNI152

template with mask voxels set to zero

estimation of parameters
application of estimated parameters

Step II: General approach conducted for each of the normalization pipelines

Fig. 3. Flow chart delineating the normalization steps illustrating the general approach conducted for each of the six normalization pipelines. See text for further details.
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averaged volumes (mean intensities across all patients) and the brain
extracted MNI152 template provided by FSL (Hellier et al., 2003)
whichwe used as the template for normalization in this study. Previous
literature has shown that MSE values are useful as comprehensive indi-
cator of general normalization quality and provide a robust statistical
measure of intensity similarities (c.f. Razlighi et al. (2013); Ripollés
et al. (2012)). The value of MSE is always positive, and is defined such
that zero represents the ideal but practically unlikely gold standard of
identical image intensities. Since this measure assumes identical MR
scanner calibration, all image intensities were scaled to a maximum of
one. The averaged brain volume across all patients (one for each of the
4 normalizations), was calculated as the weighted mean for each
voxel excluding the individual lesioned brain areas as defined by the le-
sion mask after normalization for the three lesioned brain groups. Sub-
sequently, the MSE was calculated as the mean squared difference
between this weighted averaged image and the reference separately
for each normalization using only voxels belonging to the brain of the
reference image. That is, voxels belonging to the skull, for example,
were left out.

2.4.2. Evaluation of structural differences between normalized and template
images

To assess the quality of the various normalization approaches in
more detail, differences between normalized brains and the MNI152
template were assessed using a second approach — the DICE Similarity
Index (DSI; Dice, 1945). This index measures the overlap between tem-
plate and individual normalized brain, separately for whole brain, gray
matter (GM) and white matter (WM). This index indicates how well
the group of normalized images fits to the template and is within the
range 0 (no overlap) to 1 (perfect agreement), meaning perfect
alignment or similarity. This measure has also repeatedly been used to
quantify normalization quality (e.g. Klein et al. (2009); Ripollés et al.



Table 3a
Mean DICE coefficients and results from the repeated-measures ANOVA using the
factors Group (no-lesion, small-lesion, medium-lesion, and large-lesion), Normalization
(Standard Normalization, Unified Segmentation, New Segmentation) and Skull
(deskulled, skulled images) separately for whole-brain, gray-matter and white matter.
Only significant effects with their corresponding mean DICE coefficients (standard error
is given in brackets) are given.

Whole-brain analysis:
Main effect Skull: F = 1141.209; df = 1,36; p b 0.000
Deskulled: 0.857 (0.002); skulled: 0.786 (0.002)

Main effect Group: F = 5.258; df = 3,36; p b 0.004
No-lesion: 0.830 (0.003); small: 0.820 (0.003); medium: 0.819 (0.003);

large: 0.817 (0.003)
Interaction effect Skull × Group: F = 8.590; df = 3,36; p b 0.000
Deskulled: No-lesion: 0.875 (0.005); small: 0.853 (0.005); medium: 0.851

(0.005); large: 0.849 (0.005)
Skulled: No-lesion: 0.786 (0.001); small: 0.788 (0.001); medium: 0.787

(0.001); large: 0.785 (0.001)
Gray-matter analysis:

Main effect Skull: F = 127.169; df = 1,36; p b 0.000
Deskulled: 0.857 (0.002); skulled: 0.786 (0.002)

Main effect Normalization: F = 7.207; df = 2,72; p b 0.001
Normalization: 0.747 (0.004); Unified Segmentation: 0.764 (0.008);

New Segment: 0.779 (0.002)
Interaction effect Normalization × Skull: F = 7.859; df = 2,72; p b 0.001
Deskulled: Normalization: 0.771 (0.005); Unified Segmentation: 0.781 (0.09);

New Segmentation: 0.788 (0.004)
Skulled: Normalization: 0.723 (0.004); Unified Segmentation: 0.746 (0.007);

New Segmentation: 0.752 (0.002)
Interaction effect Normalization × Skull × Group: F = 3.387; df = 6,36; p N 0.005
See Table 3b for details on mean DICE coefficients.

White-matter analysis:
Main effect Skull: F = 234.189; df = 1,36; p b 0.000
Deskulled: 0.682 (0.003); skulled: 0.653 (0.003)

Interaction Normalization × Skull: F = 14.312; df = 2,72; p b 0.000
Deskulled: Normalization: 0.679 (0.002); Unified Segmentation: 0.679 (0.007);

New Segmentation: 0.687 (0.004)
Skulled: Normalization: 0.642 (0.003); Unified Segmentation: 0.656 (0.006);

New Segmentation: 0.661 (0.003)

Table 2
MSE coefficients for the different normalization pipelines separately for the four different
lesion size groups (no-lesion, small-lesion, medium-lesion, large-lesion).

No-
lesion

Small-
lesion

Medium-
lesion

Large-
lesion

Skulled brains: Standard
Normalization

0.1003 0.3044 0.2999 0.2892

Deskulled brains: Standard
Normalization

0.0462 0.2108 0.2408 0.2302

Skulled brains: Unified
Segmentation

0.1032 0.1881 0.3113 0.2625

Deskulled brains: Unified
Segmentation

0.0360 0.1428 0.2800 0.2253

Skulled brains: New Segment 0.1068 0.1120 0.1173 0.1304
Deskulled brains: New Segment 0.0332 0.0373 0.0276 0.0656
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(2012)). To this end, the normalized anatomical images resulting from
each pipeline as well as the brain extractedMNI152 template were seg-
mented using the “New Segment” approach implemented in SPM8
(SPM manual, FIL Group). The rationale for re-segmentation was the
fact that only 2 of the 3 normalizations (Unified Segmentation and
New Segment) provide segmented tissue maps. These were generated
prior to normalization. In order to avoid bias in further analysis towards
one or the other approach, we decided to run a segmentation at this
point for all normalization routes, not only for standard normalization.
The DSI was then calculated for the whole brain as well as for
WM and GM for each normalization separately using the segmented
MNI152 template as a reference. Results were compared using random
effect analyses of variance (RFX-ANOVA)with thewithin subject factors
Skull (skulled/deskulled) and Normalization (standard/unified/new
segment) and the between subject factor Group (no-lesion, small-
lesion, medium-lesion, large-lesion). These ANOVAs were calculated
separately first for the whole brain, disregarding tissue types, and then
for the two tissue types of interest (graymatter, whitematter) resulting
from the re-segmentation.

Finally, a visual inspection of all brains was performed by two of the
authors (RB, FF) evaluating every patients' normalized brain from all 6
pipelines with a focus on the pipelines with the largest DICE difference
(see Fig. 5). This was carried out to identify poor normalization and
segmentation results and to ensure that DICE values (see below)
corresponded to visible outcomes.

2.5. Analysis of functional data

Following normalization using the six pipelines, all functional
images were spatially smoothed using a Gaussian kernel (FWHM =
5 mm). For single subject analysis, statistical parametric maps were
calculated separately for each run using a General Linear Model that
included a single regressor representing the activity phase, convolved
with a canonical hemodynamic response function. Six nuisance regres-
sors, corresponding to the motion realignment parameters were also
included in the model to regress out residual motion artifacts. For this
single subject analysis standard default parameters were used, i.e. the
model included a high-pass filter of 128 s as well as an AR(1) term.
The resulting statistical maps for the regressor of interest were
combined across all runs to form one contrast image representing
language-related activations.

In order to address activation differences between the different nor-
malization pipelines a random effects repeated measures 2 × 3 × 4
ANOVA was calculated with the within subject factors Skull (skulled/
deskulled) and Normalization (standard normalization, Unified Seg-
mentation, New Segment) and the between subject factor Group (no-
lesion, small-lesion, medium-lesion, large-lesion). For the calculation
of thismodel a repeatedmeasures GLMwith partitioned error variances
(in which between-subject andwithin-subject error terms aremodeled
separately) was used, allowing between-subject and within-subject
effects to be tested within one model.

Statistical parametric maps were thresholded using a voxel-wise
p b 0.001. Since our primary interest was in clinically relevant effects,
all data were masked exclusively for an extended temporoparietal ROI
(including Wernicke's area) and an extended inferior frontal ROI
(including Broca's area) using automated anatomical labeling (AAL;
Tzourio-Mazoyer et al., 2002) and theWake Forest University PickAtlas
(WFU;Maldjian et al., 2003). In addition, an individual neuroanatomical
assessment of functional localization was performed. Statistical t-maps
were overlaid onto the warped individual anatomical image and onto
the MNI152 template for visual inspection of functional activation
after normalization. The relative position of primary functional clusters
(Wernicke and Broca) andROI peak activation (peak t-value) in relation
to individual neuroanatomy was evaluated by two of the authors (RB,
FF, see Fig. 8). For this, the patients' independent (non-normalized) clin-
ical fMRI results, which are used in pre-surgical planning (Beisteiner
et al., 2000) and which have been verified via intraoperative cortical
stimulation (see Roessler et al. (2005b)), served as a gold standard.

To check whether brain activation changes more when the lesion is
closer to activation, we tested effects of “lesion-to-activation-distance”
on normalization differences within the Wernicke area. For this we
calculated the Euclidian distance between the lesion (border of the
lesion mask) and the peak activation for every patient on original
non-transformed functional EPI data. This generated the “lesion-to-
activation-distance”. Since the main focus of our study was on differ-
ences between skulled/deskulled input data, we then checked the
influence of “lesion-to-activation-distance” on “differences in peak
voxel location” between skulled and deskulled data by calculating
corresponding correlations for all 3 normalizations.

Based on the hypothesis that within subject differences in normali-
zation quality will also lead to differences in the MNI localization of
the peak activation, we correlated the maximum DICE difference (gray



Table 3b
DICE coefficients for the different normalization pipelines separately for whole-brain (WB), gray-matter segmentation (GM) and white-matter segmentation (WM) (see also Fig. 4).

Structure Deskulled brains:
Normalization

Skulled brains:
Normalization

Deskulled brains:
Unified Segmentation

Skulled brains: Unified
Segmentation

Deskulled brains:
New Segment

Skulled brains:
New Segment

No-lesion Group:
Whole brain analysis 0.8659 0.7825 0.8690 0.7881 0.8898 0.7870
Gray-matter segmentation 0.7371 0.7072 0.7832 0.7432 0.7887 0.7597
White-matter segmentation 0.6809 0.6453 0.6716 0.6501 0.6924 0.6719

Small-lesion Group:
Whole brain analysis 0.8506 0.7889 0.8551 0.7869 0.8528 0.7868
Gray-matter segmentation 0.7776 0.7269 0.7784 0.7373 0.7984 0.7507
White-matter segmentation 0.6845 0.6515 0.6813 0.6570 0.6967 0.6679

Medium-lesion Group:
Whole brain analysis 0.8513 0.7868 0.8519 0.7870 0.8499 0.7869
Gray-matter segmentation 0.7968 0.7284 0.7907 0.7541 0.7940 0.7502
White-matter segmentation 0.6808 0.6364 0.6884 0.6617 0.6926 0.6617

Large-lesion Group:
Whole brain analysis 0.8447 0.7843 0.8560 0.7873 0.8454 0.7822
Gray-matter segmentation 0.7706 0.7281 0.7735 0.7509 0.7712 0.7476
White-matter segmentation 0.6699 0.6334 0.6761 0.6550 0.6681 0.6431
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matter) and the corresponding Euclidian distance of peak activations
and tested whether the resulting Pearson's r was positive and signifi-
cantly different from zero. To this end, we quantified the largest from
all pairwise DICE differences per participant and calculated the Euclidi-
an distance between the peak activationswithinWernicke area of those
two corresponding normalization pipelines.
3. Results

3.1. Structural analysis

3.1.1. Structural T1 differences within postprocessing Step I
There was very good congruence between skulled and deskulled T1

images after registration to EPI and the entirety of Step I (all DICE coef-
ficients N0.98 for all analyses and lesion groups). This indicates that the
structural differences described below are introduced during normaliza-
tion (Step II) of the skulled/deskulled images. DICE results were also
confirmed via subject-wise visual inspection of overlaid images (skulled
overlaid on deskulled).
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3.1.2. Evaluation of intensity differences between normalized and template
images

The mean squared error in intensities revealed a general improve-
ment in the quality of the normalization for skull-stripping (for details,
see Table 2). The mean MSE value for deskulled images was 0.13 and
the mean MSE for skulled images was 0.19. In addition, the New Seg-
ment normalization clearly outperformed the 2 other normalization
techniques. The size of brain lesions also affected results. Normalization
quality was worse with larger brain lesions. For no-lesion/small-lesion
the mean MSE value was 0.12, for medium-lesion/large-lesion it was
0.21.
WB GM WM WB GM WM WB GM WM WB GM WM WB GM WM WB GM WM
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   Segmentation
with skullstripping

   Segmentation
w/o skullstripping

  Normalization
with skullstripping

  Normalization
w/o skullstripping

    New Segment
with skullstripping

    New Segment
w/o skullstripping

Fig. 4. DICE-values for the different normalization pipelines, for whole-brain (WB), gray-
matter segmentation (GM) and white-matter segmentation (WM) separately for the six
normalization pipelines and across the four lesion size groups. For detailed values
separated by lesion size see Tables 3a and 3b.
3.1.3. Evaluation of structural differences between normalized and template
images

DICE coefficients used to assess the quality of the different ap-
proaches were submitted to ANOVAs. Detailed results are shown in
Tables 3a and 3b and depicted in Figs. 4 and 5. The dominant finding
was a significant improvement of template congruence for the skull-
stripped images in every tissue category (whole brain, gray matter,
white matter). Further parts of the analysis (main effects and interac-
tions) indicated that template congruence was worse with older
normalization techniques and larger brain lesions. All findings could
be confirmed by the visual qualitative control (see Fig. 5).
3.2. Functional analysis

Reliable task related activations were found within Wernicke and
Broca AAL regions and other brain areas as described previously (Foki
et al., 2008; Gartus et al., 2009). Detailed results of the 2 × 3 × 4 RFX-
ANOVA are shown in Table 4 and illustrated in Figs. 6–8. Concerning
general pipeline dependent localization effects, the 6 different normali-
zation pipelines shifted the Wernicke peak more than 1 cm within the
MNI space (group data, Fig. 7). The ANOVA generated 3 significant
results: a main effect Skull, a main effect Normalization and an interac-
tion Skull × Group. Skull stripping specifically affected the cortex adja-
cent to Wernicke's core area, which is located in the posterior superior
temporal gyrus. Skulled input data showed larger activations in inferior
parietal cortex and in the anterior superior temporal gyrus — both out-
side of the classicalWernicke core (Fig. 7B, D). Analysis of the significant
Skull × Group effect (again in inferior parietal cortex) indicated that the
skulled N deskulled differences are primarily driven by themedium and
large lesion groups.



Fig. 5. Examples formisaligned brains. Patientswith a large (top andmiddle row, cases 4 and3) or a small (bottom row, case 25) difference inDICE indices.Most of the patients showed the
largest DICE difference between standard normalization without skull-stripping and New Segment with skull-stripping. MNI slices z: −40 and z: +15 are shown. The MNI template is
outlined in red.Note the considerablemismatchwithin ventricular planes (+15) in the top row and themismatchwithin basal planes (−40) for case 3. Case 25 (bottom row)with similar
DICE values for all 6 pipelines shows also similar brain alignments. (For interpretation of the references to color in thisfigure legend, the reader is referred to theweb version of this article.)
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The normalization techniques affected functional results in a similar
way, generating significant differences adjacent to the Wernicke core.
While Unified Segmentation and New Segment showed comparable
functional signals, standard normalization generated much larger acti-
vation in inferior parietal cortex (supramarginal gyrus) and middle
temporal gyrus — again both outside of the classical Wernicke core
(Fig. 7A, C).
Table 4
Results of the 2 × 3 × 4 RFX-ANOVA (p = 0.001 uncorr): Anatomical regions with MNI-
coordinates and location of the peak-voxel within each cluster are given.

Anatomical region — location (area) x, y, z (mm) F

Main effect skull:
Left anterior superior temporal gyrus −55−6 4 23.746
Left inferior parietal cortex −49−32 18 19.80

Main effect normalization:
Left middle temporal gyrus −47−48 22 14.179
Left supramarginal gyrus −55−50 30 10.961

Interaction effect Skull × Group
Left supramarginal gyrus −51−50 26 8.091

Note that all activations listed are significant at p b 0.001 uncorrected. Per cluster center
(bold face) maximal 2 additional local maxima were listed N 8.0 mm apart.
Concerning the question of whether Wernicke activation changes
more when the lesion is closer to activation, no significant correlation
was found. The shift of peak activation between skulled and deskulled
brains did not correlate with individual lesion-to-activation-distances
(Wernicke ROI: Standard Normalization: r = −0.24, Unified Segmen-
tation: r = −0.16, New Segment: r = 0.1). However, our hypothesis
is that differences in DICE indices reflect localization differences of the
peak activation (r = 0.28, p = 0.0402). This indicates that an increase
in the deviation between brain and template also increases the shift of
functional activations in MNI space.

3.3. Neuroanatomical assessment of individual fMRI activations

The changes in MNI coordinates of group activation clusters (Fig. 7)
were further elucidated by a qualitative single subject analysis (Fig. 8) in
which locations were compared with those established in the clinical
patient reports (Beisteiner et al., 2000, 2008; Roessler et al., 2005a).
This revealed that activation strength, cluster size andposition of activa-
tion clusters relative to surrounding neuroanatomywere quite stable. In
addition, the atypical “Wernicke activations” found for not-deskulled
input data and standard normalization (inferior parietal, anterior



Fig. 6. One-sample t-test group results. Significant activation above a threshold of p b 0.001 uncorrected is overlaid on the brain extracted or the standardMNI152 templates provided by
FSL. Note that the position of the activation cluster differs (c.f. slice 18 showing almost no activation for the Unified SegmentationModelwith skull-stripping as indicatedwith a red circle)
and theWernicke peak-voxel is shifted between normalization pipelines N1 cm (indicatedwith an arrow, locations are given inMNI coordinates). Only slices covering theWernicke area
are shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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superior temporal,middle temporal)were not evident in the patient re-
ports based on standard clinical thresholds. A secondary analysis of the
group data (the details of which we do not report) confirmed these in-
dividual qualitative findings by demonstrating that group cluster sizes
and group cluster t-values did not differ between the 6 normalization
pipelines. However, as is also evident from the visual analysis of the
DICE index differences (Fig. 5), the overall brain positions varied in
MNI space depending on the normalization pipeline. The consequence
of thisfinding is that theMNI coordinates of an activation cluster change
despite keeping a rather stable position within the individual brain
(Fig. 8). Correspondingly, MNI peak activation coordinates varied de-
pending on the normalization pipeline — typically below 1 cm, but up
to 4.6 cm with one outlier patient.

4. Discussion

Our study provides 2 major results: (1) structural analysis indicates
that the most reliable MNI coordinates are achieved using deskulled



Fig. 7.Main effects and contrasts of the 2 × 3 × 4 RFX-ANOVA: Activation differences found for the twomain effects “normalization” (in left supramarginal gyrus and leftmiddle temporal
gyrus) (A) and “skull-stripping” (in left anterior superior temporal gyrus and left inferior parietal cortex) (B) are shown, rendered onto the SPM5 single-subject brain template. Contrast
estimates for all significantbrain areas are shown inpanels C andD.Anatomical regionswithMNI-coordinates and location of thepeak-voxelwithin each cluster can be found inTable 4. All
data are masked exclusively for Wernicke's area.
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input data— particularly when combinedwith new normalization tech-
niques (Unified Segmentation, New Segment). (2) As a consequence,
the MNI coordinates of essential language activations may be partly
misleading with skulled input data sets — particularly when combined
with standard normalization. This specifically concerns parietal and
temporal cortex.

In more detail, we found that the skulled brains, for which normali-
zation qualitywas inferior (see Fig. 5) lead tomisleading activation. This
is shown by a significant skulled N deskulled activation in the left infe-
rior parietal cortex (−49 −32 18 in Table 4, red circles in Fig. 6) and
left anterior superior temporal gyrus (−55 −6 4 in Table 4) — both
clearly outside the classical Wernicke core. The term “misleading”
seems justified for 3 reasons: (1) the remote parietal and temporal acti-
vations were not seen with standard clinical thresholds (clinical patient
reports), (2) the larger the mismatch between template and brain
(which was largest with skulled data), the greater the change in the lo-
cation of Wernicke activation, and (3) no pipeline changed Wernicke
activations significantly in relation to local neuroanatomy (Fig. 8), but
neuroanatomy changed in relation to the MNI coordinates (i.e. a
brain–template mismatch occurred with skulled data). Therefore, the
conclusion must be that normalization of skulled brains shifts part of
the “correct” Wernicke activations to “wrong” MNI coordinates in the
temporo-parietal cortex. A similar temporo-parietal effect was found
for the standard normalization technique. Standard normalization gen-
erated a misleading activation increase in left supramarginal gyrus and
left middle temporal gyrus outside the Wernicke core.

Details of the structural analysis revealed that the most important
factor for improvement of the congruence between the MNI template
and normalized brains (MSE values, DICE coefficients, Figs. 4 and 5)
was skull-stripping. Further, the new normalization techniques
outperformed standard normalization with New Segment proving to
be the best approach. Evaluation of the procedures required for genera-
tion of a uniform starting-point of skulled/deskulled brains (Step I)
indicated that the decisive differences between the 6 normalization
pipelines were introduced during Step II.

With regard to lesion size effects, a systematic influence was
found for the structural data: brains with larger lesions differed more
significantly from the template than brains with smaller lesions. With
the functional data, lesion size tended to increase the functional
mislocalizations (larger parietal skulled N deskulled effects). The dis-
tance between brain lesion and brain activation however, did not signif-
icantly affect normalization quality.

Summarizing our functional and structural findings (Figs. 5–8), the
primary cause of our activation differences is a differing quality of align-
ment between normalized brains andMNI template. This leads to shifts
in activation clusters and peak activations (maximum 4.6 cm) within
MNI space. Skull-stripping the input data is the most important factor
in improving this. Clearly, the implicit skull-stripping step, already im-
plemented in most normalization algorithms, does not produce results
of the same quality as explicitly editing the input data. With standard
normalization, implicit skull-stripping is realized by weighting of non-
brain voxels to exclude non-brain structures after an initial affine
transformation but prior to nonlinear normalization. With Unified Seg-
mentation (Ashburner and Friston, 2005) tissue probability maps for
gray matter, white matter, cerebrospinal fluid (CSF) and a fourth map
for the residuals are generated. The latter implicitly accounts for the
skull and the scalp. However, in concordance with Fein et al. (2006)
and Acosta-Cabronero et al.(2008) we found a clear benefit for normal-
ization quality if deskulled data are used as primary input for the
normalization process.

Interestingly, the left temporoparietal position of our functional dif-
ferences corresponds to the left temporal differences found for different
normalization algorithms in the work of Crinion et al. (2007), who also
investigated language data but not skull-stripping effects. Their and our
results indicate that temporal areas are a specific source of structural
variability during the normalization process with current templates.



Fig. 8. Brain position and MNI coordinates of peak voxel location for a representative patient (case 6) resulting from the 6 normalization pipelines. Note that theWernicke peak-voxel is
located in the same neuroanatomical region, yet this region is shifted in the MNI space.
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Besides choosing optimized postprocessing techniques it seems sensi-
ble to recommend that group studies, where critical activations are
expected in temporal brain areas, include a series of single-patient anal-
yses to check for internal consistency of the structural and functional
data. A further issue of special clinical relevance concerns activations
in other brain areas comprising essential cortex. MNI peak activation
shifts of the size found here (N1 cmwith the group data, N4 cm individ-
ually) may easily become critical. For example in primary sensorimotor
cortex around the central sulcus, such a peak activation shift withinMNI
space may well decide between concluding that the main result of a
study is primary motor activation or a primary sensory activation.
Therefore, skull-stripping of the input data should become standard,
but not only for clinical studies. It can be performed either as a separate
step or by inclusion in standard analysis pipelines, as already suggested
for non-human data (Budin et al., 2013). Our implementation of skull-
stripping with the BET2 software requires considerable manual
postprocessing to obtain optimal removal of non-brain areas. Newer
and potentially more accurate algorithms, such as the simplex mesh
and histogram algorithm (SMHASS; Galdames et al., 2012), may be can-
didates for integration into fully automated routines.

In conclusion, we have shown that combining deskulled input data
with the New Segment normalization technique generates the highest
probability of achieving validMNI coordinates for functional activations.
The functional and structural variability described is relevant for func-
tional conclusions in a clinical context and should also be considered
when comparing MNI coordinates from different fMRI studies.
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