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Abstract: Antibiotic resistance is now considered a worldwide problem that puts public health at risk.
The onset of bacterial strains resistant to conventional antibiotics and the scarcity of new drugs have
prompted scientific research to re-evaluate natural products as molecules with high biological and
chemical potential. A class of natural compounds of significant importance is represented by alkaloids
derived from higher plants. In this review, we have collected data obtained from various research
groups on the antimicrobial activities of these alkaloids against conventional antibiotic-resistant strains.
In addition, the structure–function relationship was described and commented on, highlighting the
high potential of alkaloids as antimicrobials.

Keywords: antibiotic resistance; antimicrobials; alkaloids; methicillin-resistant Staphylococcus aureus;
vancomycin-resistant enterococci; natural products; plant-derived alkaloids; structure–activity relationship

1. Introduction

The discovery and the advent of penicillin in clinical practice have led to the subsequent discovery
of numerous new antibiotics to be used as an invaluable weapon against bacterial infections. However,
the beginning of the antibiotic era coincided with the onset and characterization of antibiotic-resistant
strains. This triggered the entrance into our current post-antibiotic era in which fewer and fewer antibiotics
are discovered at the expense of a high occurrence of multidrug resistant (MDR) infections [1]. Currently
in Europe, the number of MDR infections accounts to 700 thousand and provokes 33,000 deaths every year,
resulting in an estimated cost of above €1.5 billion for their treatment [2]. These infections are a real threat to
global public health and numerous efforts are underway to contain the spread of MDR strains, particularly
in hospital settings and cities with high population [3]. A very recent example of a pandemic threat is
represented by infections caused by Gram-positive methicillin resistant Staphylococcus aureus (MRSA)
strains and vancomycin resistant enterococci (VRE). The first case of MRSA was identified in the early 60s
and currently this infection appears at high incidence in Europe, Asia and America [4]. In the latter, MRSA

Molecules 2020, 25, 3619; doi:10.3390/molecules25163619 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0003-1295-1084
https://orcid.org/0000-0002-9937-4365
https://orcid.org/0000-0001-7036-6620
https://orcid.org/0000-0002-5991-5868
https://orcid.org/0000-0001-8707-4333
http://dx.doi.org/10.3390/molecules25163619
http://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/25/16/3619?type=check_update&version=2


Molecules 2020, 25, 3619 2 of 34

infections provoke more deaths annually than AIDS, emphysema and homicides [5]. MRSA strains can
be classified into hospital-acquired MRSA (HA-MRSA) and community-acquired MRSA (CA-MRSA),
according to their original sources, but more recently, several MRSA strains resulted to be not strictly
related to health care-associated infections, e.g., MRSA associated to livestock (LA-MRSA) [6–8]. The other
challenge of public health is given by VRE infections. These are commonly caused by Enterococcus
faecium and Enterococcus faecalis and provoke surgical-site, urinary tract and bloodstream infections [9].
Although with a lower incidence than MRSA, VRE cause about 66,000 infectious cases in the U.S. annually.
Another example of dangerous infections is represented by carbapenem-resistant Enterobacteriaceae
(CRE), a group of bacteria such as Klebsiella pneumoniae and Escherichia coli, which produce enzymes
(e.g., New Delhi metallo-beta-lactamase, NMD-1) able to make them resistant to virtually all beta-lactams.
As of February 2019, the US Food and Drug Administration (FDA) approved some antibiotic drugs
i.e., ceftazidime-avibactam, meropenem-vaborbactam, plazomicin and eravacycline for treatment of
some CRE-related infections [10]. In light of these difficult resistant infections and the scarcity of new
approved antibiotics, it is now evident that research must open the horizons to new therapeutic strategies,
new combinatorial therapies of drugs and to the discovery of new antimicrobials [11–13].

The Need for New Antimicrobials

Antibiotics have drastically changed people’s lives: in America, in 1920, life expectancy was
56 years while in 2020 it was around 80; indeed, in developing countries, antibiotics have reduced the
morbidity and mortality caused by food-borne and poverty-related diseases [8].

However, large pharmaceutical companies averaged a drastic decline in the production of new
antibiotics [14]. This is because the economic crisis at the beginning of the century has led to substantial
cuts in academic research and health care spending; in addition, pharmaceutical industries have been
more oriented towards investment of drugs capable of curing chronic diseases, which translate into
greater economic revenues. It is worthwhile noting that in America a chemotherapy treatment can
cost tens of thousands of dollars, compared to about 3,000 of an antibiotic therapy [15,16]. In addition,
the easy availability of antibiotics and the relatively low costs make them of little value to consumers.
It follows that a new antibiotic drug should not cost much more, to be purchased. Finally, regulation
for clinical trials has become much more complex: studies with antibiotics and placebo are now
considered unethical, so trials can only be conducted to demonstrate better drug activity than an
existing antibiotic. This results in longer and more expensive clinical trials [15]. Moreover, once on
the market, the antibiotic may become useless by the appearance of resistance. As a consequence,
new strategies and new sources of antimicrobial molecules are highly demanded.

Nature is undoubtedly the richest source of molecules with the most varied biological features.
Due to its biodiversity not only between animal and plant kingdoms, but also among the various
species, nature represents the largest library of compounds that has ever existed [17–19].

Many of these molecules exhibit antimicrobial activity and have a chemical structure often very different
from each other. Examples are antimicrobial peptides produced by insects, amphibians, mammals and
plants [12,20–22]. These can have a cyclic or a linear structure, and consist of no more than 50 amino acids and
have various biological properties, from an antimicrobial to an immunomodulatory function [22–26]. Another
promising class of natural compounds from the plant kingdom is given by secondary metabolites. Many of
these (e.g., tannins, terpenes, carotenoids, polyphenols and alkaloids) have already been characterized for their
biological properties and relevance as potential new antimicrobials [27–31]. Furthermore, these molecules
can serve as a chemical scaffold for the synthesis of libraries in order to identify markers for a specific
detection or for the design of lead compounds with a desired biological activity [32–34].

In this review, we focus on alkaloids derived from higher plants as potential new antimicrobials
against antibiotic-resistant infections. As reported in Tables 1 and 2, these compounds are already on
the market or in clinical trials, confirming their valuable power for the development of new drugs for
treatment of different types of diseases.
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Table 1. Plant-derived alkaloids in clinical trials (CT). Includes not yet recruiting, recruiting, enrolling by invitation, active not recruiting, suspended and completed
trials of these compounds, parent extracts or derivatives, applied alone or as a mixture with other constituents.

Compound Plant Source Number of CT Medicinal Purposes Ref.

Atropine
(tropane)

Atropa belladonna, Hyoscyamus
spp.,

Datura spp.
241

Myopia, Refractive Errors, Bradycardia, Arrhythmias, Ventilator-Associated
Pneumonia, Nausea, Vomiting, Cataract, Mydriasis, Spinal Anesthesia,

Anesthesia, Anesthesiology Management, Postoperative Nausea, Hypotension,
Hypotension After Spinal Anesthesia, Cesarean Section Complications,

Endotracheal Intubation Amblyopia, Sialorrhea, Organophosphorus Poisoning.

[35,36]

Berberine
(isoquinoline) Berberis spp. 50

Colorectal Adenomas, Metabolic Syndrome, Schizophrenia, Coronary Artery
Disease, Percutaneous Coronary Intervention, Ulcerative Colitis, Diabetes

Mellitus, Chronic Kidney Disease, Gastritis, Peptic Ulcer, Dyspepsia, Type 2
Diabetes, Hypercholesterolemia, Nonalcoholic Fatty Liver Disease,

Dyslipidemias, Prediabetes.

[37,38]

Camptothecin
(indole) Camptotheca acuminata 104

Malignant Lymphoma of Extranodal and/or Solid Organ Site, Solid Tumor,
Lymphomas, Lung Diseases, Cancer, Corpus Uteri, Urothelial Carcinoma,

Endometrial Cancer, Colorectal Cancer, Adenocarcinoma of the Esophagus,
Adenocarcinoma of the Gastroesophageal Junction, Diffuse Adenocarcinoma of

the Stomach, Malignant Glioma, Breast Cancer, Gastric Cancer, Lung Cancer,
Metastatic Cancer.

[36,37]

Capsaicin
(pseudo-alkaloid)

Capsicum annuum L. or C.
minimum Mill 224

Pain, Neuropathic Pain, Cough, Cannabinoid Hyperemesis Syndrome, Spinal
Cord Injuries, Sickle Cell Disease, Nonallergic Irritant Rhinitis, Pulmonary

Hypertension, Irritable Bowel Syndrome, Colonic Diseases, Dyspepsia, Knee
Osteoarthritis, Chemotherapy-induced Peripheral Neuropathy, Diabetic Nerve
Problems, Diabetic Neuropathy, Diabetic Complications Neurological, Obesity,

Insulin Resistance, Bronchiectasis, Rhinitis, Peripheral Nerve Injury, Postherpetic
Neuralgia, Asthma, Migraine, Cluster Headache, Headache Disorders,

Trigeminal Autonomic Cephalgia, HIV Infections, Peripheral Nervous System
Diseases, Herpes Zoster, Alopecia Areata.

[39,40]

Colchicine
(pseudo-alkaloid) Colchicum autumnale 140

Coronavirus Infections, Corona Virus Disease 19 (COVID 19), Essential
Hypertension, Heart Diseases, Atrial Fibrillation, Cardiac Surgery, Colchicine

Adverse Reaction, Colchicine Resistance, Colchicine Toxicity, Pericardial Effusion,
Chagas Disease, Arrhythmia, Acute Myocardial Infarction, Coronary Artery

Disease, Acute Coronary Syndrome, Atherosclerosis, Inflammation, Diabetes,
Hypertriglyceridemia, Gout, Pericarditis, Stroke, Myocardium Injury, Myocardial

Infarction, Myocardial Ischemia, Familial Mediterranean Fever,
Cholangiocarcinoma, Gout Flare, Pneumonia Viral, Arthritis Rheumatoid,

Chondrocalcinosis, Osteoarthritis, Diabetes Mellitus Type 2, Colchicine
mechanism of action.

[41]

Galantamine or Galanthamine
(isoquinoline)

Galanthus woronowii, Galanthus
nivalis, Galanthus caucasicus

(Baker) Grossh.
97

Nicotine Addiction, Alzheimer Disease, Smoking, Schizophrenia, Major
Depression, Bipolar Depression, Aphasia, Stroke, Cocaine Dependence, Dementia,

Cognitive Impairment, Neurocognitive Disorders, Autism, Mental Disorders.
[36,40]
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Table 1. Cont.

Compound Plant Source Number of CT Medicinal Purposes Ref.

Papaverine
(isoquinoline) Papaver somniferum L. 17

Kidney Cancer, Pediatrics Anesthesia and Vasospasm, Lung Non-Small Cell
Carcinoma, Radial Artery Injury Prevention, Prostatic Hyperplasia, Prostate
Cancer, Injury of Internal Mammary Artery, Complications Due to Coronary

Artery Bypass Graft, Erectile Dysfunction.

[42]

Piperine
(piperidine) Piper nigrum, Piper longum 18 Bladder Spasm, Malignant Neoplasm, Pain, Urinary Urgency, Deglutition

Disorders, Chronic Kidney Diseases, Obesity. [37,43]

Quinine
(quinolone) Cinchona spp. 67 Obesity, Plasmodium Falciparum Malaria, Malaria, Severe Malaria, Anemia,

Cocaine Use, Pharmacokinetics, HIV Infections. [35,36]

Reserpine
(indole) Rauwolfia spp. 9

Refractory Hypertension, Cocaine-Related Disorders, Substance-Related
Disorders, Cardiovascular Diseases, Cerebrovascular Disorders, Heart Diseases,

Hypertension, Schizophrenia, Parkinson’s Disease, Atherosclerosis,
Hypercholesterolemia.

[35–37]

Solamargine
(steroidal glycoalkaloid) Solanum spp. 3 Actinic Keratosis. [40,44]

Tetrandrine
(isoquinoline) Stephania tetrandra 1 Corona Virus Disease 2019, COVID-19. [43]

Vincristine
(indole) Catharanthus roseus (L.) G. Don 885

Kaposiform Hemangioendothelioma, Kasabach-Merritt Syndrome, Tufted
Angioma, Sarcoma, Neuroblastoma, Acute Lymphoblastic Leukemia,

Rhabdomyosarcoma, Vincristine Induced Peripheral Neuropathy, B Cell
Lymphoma, Lymphoma, Leukemia, Hematologic Diseases, Medulloblastoma,

Recurrent Adult Burkitt Lymphoma, Low Grade Glioma, Metastatic Malignant
Uveal Melanoma, Multiple Myeloma and Plasma Cell Neoplasm, HIV-1 Infection,

Diffuse Astrocytoma, Anaplastic Astrocytoma, Astrocytoma, Sarcoma Kaposi,
Ewing Sarcoma, Wilms Tumor, AIDS-Related Lymphoma, Brain and Central

Nervous System Tumors.

[37,42]

Yohimbine
(indole) Rauwolfia serpentine 39

Parkinson Disease, Type 2 Diabetes, Erectile Dysfunction, Social Anxiety
Disorder, Phobic Disorders, Post-Traumatic Stress Disorder, Involutional

Depression, Major Depression, Opioid Use Disorder.
[45]

Determined from www.clinicaltrials.gov on 9 July 2020. Further information for alkaloids’ classification derives from: https://www.genome.jp/kegg-bin/get_htext?br08003.keg.

www.clinicaltrials.gov
https://www.genome.jp/kegg-bin/get_htext?br08003.keg
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Table 2. Plant-derived alkaloids approved for therapeutic use.

Compound Trade Name Plant Source Medicinal Purposes Ref.

Atropine
(tropane) Atropen Atropa belladonna, Hyoscyamus spp.,

Datura spp.
Spasmolytic agent for gastrointestinal tract, Pupil

enlargement in eye.

Caffeine
(purine) Cafcit, Vivarin, Alert Coffea arabica, Thea sinensis

Treatment of apnea of prematurity and
bronchopulmonary dysplasia in infants, Central nervous

system stimulant.
[35]

Capsaicin
(pseudo-alkaloid) Qutenza Capsicum annum L. or C. minimum Mill Postherpetic neuralgia. [40]

Codeine
(isoquinoline) Tuzistra XR® Papaver somniferum L. Analgesic, antidiarrheal and antitussive activity. [36,42]

Colchicine
(pseudo-alkaloid) Colcrys, Mitigare Colchicum autumnale L. Gout, Familial Mediterranean Fever. [40,42]

Ephedrine
(pseudo-alkaloid) Primatene, Bronkaid Ephedra spp. Treatment of asthma, hay fever, narcolepsy and

depression. [35]

Galantamine or Galanthamine
(isoquinoline) Reminyl®, Razadyne®, Nivalin®

Galanthus woronowii, Galanthus nivalis,
Galanthus caucasicus (Baker) Grossh.

Treatment of dementia caused by Alzheimer’s disease
and other central nervous system disorders. [36,40,42]

Morphine
(isoquinoline)

Statex, Oramorph, Sevredol, MS
Contin Papaver somniferum L. Analgesic activity, management of chronic, moderate to

severe pain. [36,46]

Nicotine
(pyridine) Nicorette, Nicotrol Nicotiana tabacum L. Help for smoking cessation. [36]

Omacetaxine mepesuccinate or
Homoharringtonine

(isoquinoline)
Synribo, Ceflatonin®

Cephalotaxus harringtonia (Knight ex
Forbes) K. Koch Oncology, Chronic myeloid leukemia. [40,47]

Pilocarpine
(imidazole) Isopto Carpine, Salagen Pilocarpus jaborandi Holmes Treatment of Glaucoma, xerostomia and Sjogren’s

syndrome. [35,46]

Quinine
(quinolone) Qualaquin, Quinate, Quinbisul Cinchona spp. Antimalarial drug. [35,36]

Reserpine
(indole) Raudixin, Serpalan, Serpasil Rauwolfia spp. Antihypertensive and antipsychotic. [35–37]

Scopolamine
(tropane) Transderm Scop, Kwells, Buscopan Atropa belladonna, Hyoscyamus spp.,

Datura spp. Antiemetic, anticholinergic and spasmolytic agent. [35,36]

Solamargine
(steroidal glycoalkaloid) Curaderm Solanum spp. Cancer chemotherapy. [40,47]

Vinblastine
(indole) Velban, Alkaban-AQ® Catharanthus roseus (L.) G. Don Chemotherapy medication for several types of cancer. [35,36]

Vincristine
(indole) Oncovin, Vincasar, Marqibo Catharanthus roseus (L.) G. Don Antineoplastic agent to treat various cancers. [37,42]

Additional resources from https://www.drugs.com/ and https://www.drugbank.ca/; for alkaloids’ classification from: https://www.genome.jp/kegg-bin/get_htext?br08003.keg.

https://www.drugs.com/
https://www.drugbank.ca/
https://www.genome.jp/kegg-bin/get_htext?br08003.keg
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2. Alkaloids

Alkaloids represent a wide and structurally diverse group of secondary metabolites that can be
found in 300 plant families, as well as in bacteria, fungi and animals [48]. To date, more than 18,000
different alkaloids have been discovered [49,50]. The name ‘alkaloid’ (alkali-like) is due to their basic
nature, which allows them to be found as salts of organic acid or free bases. An individual alkaloid name
consists of the permanent suffix ‘-ine’, linked to their amino origin, and by a more changeable prefix.
This can be named after pharmacological activities (e.g., emetine), their discoverer (e.g., pelletrine)
and the source’s geographic location from which they were isolated (e.g., atropine) [51,52]. Alkaloids
are characterized by great structural diversity; the sole unifying feature is the presence of a basic
nitrogen atom that can occur in the form of a primary amine (RNH2), a secondary amine (R2NH)
or a tertiary amine (R3N) [51]. They can occur as monomers or they can form oligomers (homo or
hetero-oligomers). Although there is no standard taxonomic classification, alkaloids can generally be
classified according to their chemical structure, biochemical pathway or natural origin [53]. From a
biosynthetically point of view, alkaloids can be divided into three major categories: true-, proto- and
pseudo-alkaloids (Figures 1 and 2).

True- and proto-alkaloids have an amino acid as a precursor, but they differ for the presence or
not of the N-atom in the heterocycle, respectively. Pseudoalkaloids feature a basic carbon skeleton
not deriving from an amino acid [54]. Alkaloids are often classified on the basis of their chemical
structure in heterocyclic or typical alkaloids (true alkaloids), containing nitrogen in the heterocycle,
and non-heterocyclic or atypical (proto-alkaloids), containing nitrogen in a side chain [48]. Since their
structural complexity and according to their backbone, heterocyclic alkaloids can be split into
14 subgroups including indoles, isoquinolines, pyrrolizidines, pyrrolidines, quinolizidines, tropanes,
purines, piperidines and imidazoles (Scheme 1) [50].

Alkaloids have been extensively investigated for their biological activity (e.g., anticancer,
antibacterial, antiviral and central nervous depressant activity) in both traditional and modern
medicine [43]. Notably, their exceptional biological activity is provided by the ability to form hydrogen
bonds with enzymes, receptors and proteins due to the presence of a proton accepting nitrogen
atom and one or more protons donating amine hydrogen atoms. In recent years, the alkaloids’
antibacterial activity played a significant role in the treatment of many infectious diseases reporting
MDR phenomena. This led researchers to direct their attention onto these promising plant secondary
metabolites [55]. Thus, the development of different extraction methods to obtain pure alkaloids results
to be very important, even if they are often produced in very small amounts by their natural source and
their enantioselective separation is quite difficult, mostly due to the presence of a large number of chiral
centers. In order to overcome these issues, a wide range of synthetic efforts has been recorded with
the aim to achieve enantiomerically pure alkaloids [56]. One of the most direct, efficient, and variable
synthetic methods for the construction of privileged pharmacophores (i.e., tetrahydro-isoquinolines,
tetrahydro-β-carbolines and polyheterocyclic frameworks) and for the creation of natural compounds
libraries in medicinal chemistry proved to be the Pictet-Spengler reaction [57,58]. This reaction,
in combination with chiral catalysts, has been reported in the total synthesis of complex alkaloids [59].
Another synthetic approach widely employed for the construction of sophisticated macromolecules
architecture, such as alkaloids, is the olefin metathesis reaction, which is one of the most powerful
tools for the formation of challenge polycyclic frameworks and bridged nitrogen heterocycles [60–62].
Most of the alkaloids reported below are known and their multiple chiral centers were assigned
according to the literature. The absolute configuration is not reported for alkaloids tested as the
racemic form.
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Figure 1. Schematic representation of true- and proto-alkaloids. The amino acidic skeleton derived from the natural precursor is in bold. 
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Figure 1. Schematic representation of true- and proto-alkaloids. The amino acidic skeleton derived from the natural precursor is in bold.
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Figure 2. Schematic representation of pseudo-alkaloids. The carbon skeleton derived from the natural precursor is in bold. 
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Figure 2. Schematic representation of pseudo-alkaloids. The carbon skeleton derived from the natural precursor is in bold.
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2.1. Indole Alkaloids

Indole alkaloids may provide novel promising chemotypes for drug discovery due to their
structural diversity. More than 4,000 known compounds, biosynthetically derived by l-tryptophan,
are classified as indole alkaloids. This class of alkaloids shows a bicyclic structure formed by a benzene
ring fused to a five-membered pyrrole ring and they differ in the presence of carbonyl, methoxyl and
hydroxyl groups at different positions [63]. Indole alkaloids are not a homogenous group that can
be classified according to different criteria. The main subclasses are carbazole and β-carbolines but
according to botanical sources, they can be further distinguished into: Strychnos alkaloids, yohimbans,
heteroyohimbans, Vinca alkaloids, β-carbolines, kratom alkaloids, tryptamines, ergolines or clavine
alkaloids and Tabernanthe iboga alkaloids [64,65]. Some representative indole alkaloids discussed in
this review are reported in Table 3 and the structure–activity relationships (SARs) analysis has been
summarized in Figure 3.
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Table 3. Chemical structure and antimicrobial activity of some representative indole alkaloids.

Common Name Chemical Structure Tested Microorganism Antimicrobial Effect Source Ref.

β-Carbolines

Harmaline MRSA Efflux Pump Inhibitor Species:
Peganum harmala [66]

Canthin-6-one MRSA
S. aureus Growth inhibition Species:

Allium neapolitanum [67]

8-Hydroxy-canthin-6-one MRSA
S. aureus Growth inhibition Species:

Allium neapolitanum [67]

Nigritanine S. aureus Growth inhibition Species:
African Strichnos [68]
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Table 3. Cont.

Common Name Chemical Structure Tested Microorganism Antimicrobial Effect Source Ref.

Carbazoles

Clausamine A MRSA SK1 Growth inhibition Species:
Clausena harmandiana [69]

Clausamine B MRSA SK1 Growth inhibition Species:
Clausena harmandiana [69]

Clausine F MRSA SK1 Growth inhibition Species:
Clausena harmandiana [69]

2,7-dihydroxy-3-formyl-
1-(3’-methyl-2’-butenyl)

carbazole
MRSA SK1 Growth inhibition Species:

Clausena wallichii [70]
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Table 3. Cont.

Common Name Chemical Structure Tested Microorganism Antimicrobial Effect Source Ref.

Clausenawalline E MRSA SK1
S. aureus Growth inhibition Species:

Clausena wallichii [70]

Clausenawalline G MRSA SK1 Growth inhibition Species:
Clausena wallichii [71]

Clausenawalline H MRSA SK1 Growth inhibition Species:
Clausena wallichii [71]

Clausenawalline I MRSA SK1 Growth inhibition Species:
Clausena wallichii [71]

Clausenawalline J MRSA SK1 Growth inhibition Species:
Clausena wallichii [71]
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Table 3. Cont.

Common Name Chemical Structure Tested Microorganism Antimicrobial Effect Source Ref.

Clausenawalline K MRSA SK1 Growth inhibition Species:
Clausena wallichii [71]

Mahanine S. pneumoniae Growth inhibition Species:
Murraya koenigii [72]

Yohimbans

Reserpine E. coli Efflux Pump Inhibitor Species:
Rauwolfia serpentine [73]

Clavines

Lysergol E. coli Efflux Pump Inhibitor Species:
Ipomoea muricata [74,75]

Chanoclavine E. coli Efflux Pump Inhibitor Species:
Ipomoea muricata [74,75]
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Table 3. Cont.

Common Name Chemical Structure Tested Microorganism Antimicrobial Effect Source Ref.

17-O-3”,4”,5”-trimethoxybenzoyllysergol E. coli Efflux Pump Inhibitor aryl semi-synthetic
derivatives [74]

17-O-3”-nitrobenzoyllysergol E. coli Efflux Pump Inhibitor aryl semi-synthetic
derivatives [74]

Indirubin S. aureus Efflux Pump Inhibitor Species:
Wrightia tinctorial [76]
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2.1.1. β-Carbolines

The β-carbolines consist of a tricyclic pyrido[3, 4-b] indole ring structure at different levels
of unsaturation (dihydro-, tetrahydro and aromatic β-carbolines) and are classified according to
their ABC skeleton as α-, β-, γ- and δ-carbolines. The α of carboline alkaloids is l–tryptophan,
the β is tryptamine and the γ is dihydro-β-carboline, where the carboline nucleus is formed [77,78].
Interestingly, for β-carbolines a greater selectivity towards the human pathogen S. aureus has been
observed. Darabpour et al. evaluated the antimicrobial effect of the Peganum harmala extracts against
several MDR Gram-positive and Gram-negative clinical isolates and reported that the crude extract of
P. harmala seeds and roots exhibited a good synergistic effect upon coadministration with novobiocin,
carbenicillin and colistin [79]. Further investigations revealed that the seeds and the roots extract
of P. harmala are a considerable source of β-carbolines such as harmaline, haman, harmalol and
harmine [50]. Interestingly, Mothar et al. investigated the efflux pump inhibitor (EPI) activity of
13 antibacterial alkaloids, against a panel of three MRSA strains. Among them, harmaline (Table 3)
was able to reduce by 4-8-fold the minimum inhibitory concentration (MIC) of ethidium bromide
(EtBr), a popular efflux substrate for many efflux systems. The authors postulated that amongst the
indole alkaloids the presence of a methoxy group at the C-6 position of the aromatic ring coupled with
a secondary amine group in the pyrrole ring might affect the EPI activity [66]. Canthine-6-one type
alkaloids, bearing an additional D ring (ABCD core), a pyridone, are well-known constituents of the
Simaroubaceae and Rutaceae, and antibacterial activity is well described [78]. Interestingly, O’Donnell
et al. investigated the antimicrobial activity of two canthine-6-one type alkaloids, canthin-6-one and
8-hydroxy-canthin-6-one (Table 3), isolated from Allium neapolitanum, which showed a potent activity
against MRSA and MDR S. aureus with MIC values ranging from 8 to 64 µg/mL [67]. Recently, Casciaro
et al. evaluated the antibacterial activity of 39 alkaloids available in a unique in-house library of about
1,000 natural compounds against a Gram-positive (S. aureus ATCC 25923) and a Gram-negative (E. coli
ATCC 25922) reference bacterial strain [68]. Interestingly, a greater selectivity towards the human
pathogen S. aureus was observed for the β-carboline alkaloids, especially for nigritanine (Table 3), a
rare β-carboline heterodimer and some of its monomeric analogs (i.e., speciociliatine, mytragine and
paynantheine). Further investigations confirmed nigritanine as a potent antistaphylococcal agent, with
a remarkable activity against three MDR clinical isolates of S. aureus with an MIC value of 128 µM and
a negligible cytotoxicity, features not observed for the other tested β-carboline analogues. Chemically,
nigritanine is a heterodimer alkaloid formed by the union of a corynane and a tryptamine unit and
isolated from different African strichnos species [80]. The analysis of the antibacterial activity related to
the corynane scaffold provided new insights in the SARs of β-carboline, confirming that dimerization
improves the antibacterial activity possibly because the larger molecule is less susceptible to bacterial
efflux [68,78].

2.1.2. Carbazoles

Carbazoles, a group of indole alkaloids featuring various structural features, are widely
investigated for their anti-MDR activity [81]. Clausena harmandiana and Clausena wallichii, selected
members of the genus Clausena belonging to the Rutaceae family, represent the most important
sources of bioactive carbazole alkaloids [70,71]. An extensive investigation of biologically active
natural products from Clausena plants led Maneerat et al. to identify three new carbazole alkaloids,
harmandianamines A-C, together with fifteen known compounds, from the twigs of C. harmandiana [69].
All compounds, many of them were indole alkaloids, were tested against a panel of Gram-positive
bacteria, including MRSA SK1, and Gram-negative bacteria. Two lactonic carbazole alkaloids,
clausamine A and clausamine B (Table 3), featuring 1-oxygenated 3,4-disubstituted structures with a
lactone moiety and a 4-prenylcarbazole alkaloid, clausine F (Table 3), showed a potent antibacterial
activity against MRSA SK1. In particular, clausamine A and clausine F displayed MIC values of 8
and 4 µg/mL, respectively, but more interestingly clausamine B was found to be a potent antibacterial
compound against MRSA SK1 with a MIC of 0.25 µg/mL, which is lower than that of commonly
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used vancomycin (MIC of 1 µg/mL) [69]. Furthermore, the authors evaluated the antimicrobial
characterization of four new carbazoles, clausenawallines C, D, E and F, along with 18 known indole
alkaloids isolated from the roots of C. wallichii [70]. Among all compounds tested, clausenawallines
E (Table 3), an unsymmetrical pyranocarbazole-type heterodimer, and a 1-prenylcarbazole alkaloid,
2,7-dihydroxy-3-formyl-1-(3′-methyl-2′-butenyl)carbazole (Table 3) exhibited a strong antibacterial
activity against MRSA SK1 with MIC of 8 µg/mL and 4 µg/mL, respectively [70]. As a continuation
of their study, Maneerat et al. investigated the antimicrobial activity of five new carbazole alkaloids,
clausenawallines G–K (Table 3), isolated from the twigs of C. wallichii. Unfortunately, all the new
compounds had a weaker antibacterial activity against MRSA SK1 with MIC values ranging from
64 to 128 µg/mL [71]. Nevertheless, the studies of this research group provided new insights in the
analysis of the anti-MRSA activity related to the carbazole scaffold, confirming the high potential
of this versatile scaffold for the development of novel alkaloid derivatives with improved activity
and suggested lactonic, prenilated and pyrano as ideal carbazole-type scaffolds for further chemical
modifications. Notably, in the case of pyranocarbazole alkaloids heterodimerization seems to enhance
anti-MRSA activity.

In a previous work, three prenylated pyranocarbazole alkaloids from the leaves of Murraya koenigii
(Rutaceae) mahanine, mahanimbicine and mahanimbine were tested against five antibiotic resistant
pathogenic bacteria. These alkaloids exhibited a moderate antibacterial activity with MICs ranging
from 25.0 to 175.0 mg/mL but, more interestingly, mahanine (Table 3) exerted the strongest activity
specifically against Streptococcus pneumoniae with a MIC value of 12.5 mg/mL suggesting that little
chemical changes of pyranocarbazole scaffold can affect the activity [72].

2.1.3. Yohimbans

Since the isolation of yohimbine by Spiegel in 1900 and its structural determination by Witkop
in 1943, a broad variety of natural yohimbine stereoisomers have been identified [82]. This family
of pentacyclic indole alkaloids, which originated from l-tryptophan and secoiridoid monoterpene
secologanin, can be subdivided into four different subfamilies, which differ in the stereochemical
arrangement around the d-ring. The most representative members are yohimbine, rauwolscine,
pseudoyohimbine and reserpine, respectively normal, allo, pseudo or epiallo [83]. Reserpine is an
indole alkaloid (Table 3), naturally occurring in Rauwolfia serpentine, which is known to be a competitive
inhibitor of both primary and secondary active transporter systems [84–92]. In particular, regarding this
latter function, reserpine acts mainly on resistance nodulation division (RND) and the major facilitator
superfamily (MFS). Recently, Shaheen et al. reported a reserpine inhibitory effect on RND transporter
Acriflavine resistance protein B (AcrB). A preliminary docking analysis of reserpine towards the
Salmonella typhi AcrB protein structure showed that it shares its binding site with ciprofloxacin, a known
substrate of AcrB, suggesting a possible activity of this alkaloid as a competitive inhibitor. Furthermore,
in vitro studies were initially carried out by a disk diffusion assay and later by following time-dependent
growth. The combination of reserpine with ciprofloxacin resulted in enhanced drug-induced growth
inhibition of E. coli C41(DE3) cells expressing AcrB protein transporter. This study supported the role
of reserpine in modulating AcrB activity and potentiating the ciprofloxacin action against host cells [93].
Interestingly, Tariq et al. reported the EPI activity of reserpine against the efflux transporter STY4874,
belonging to MFS, overexpressed in pMR4/E. coli. Measurement of inhibition zones of pMR4/E. coli cells
(with no expression of STY4874) indicated that cells were unaffected to the combination of reserpine and
ciprofloxacin, whereas, growth of pMR4-STY4874/E. coli cells was strongly affected by the combination
of ciprofloxacin and reserpine, resulting in larger zone of inhibition (19.0 ± 1.0 mm). The evidences of
the disk diffusion assay were confirmed by other experiments suggesting that reserpine when tested in
combination with ciprofloxacin exerted significant STY4874-mediated inhibitory activity leading to the
accumulation of ciprofloxacin inside the cell. These results could be also extended towards STY4874
close homologues, MdfA and MdtM from E. coli making this study an important starting point to
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further develop potent inhibitors of these efflux pumps [73]. Nevertheless, the potential of reserpine as
EPI limits its usage due to the toxic effect to humans at the concentration needed for inhibition.

2.1.4. Clavine Alkaloids

Clavine alkaloids consist of a diverse group of chemical compounds with a structural skeleton
deriving from the alkaloid ergoline, therefore they are also known as ‘Ergolines’. Several studies
reported that most of the clavine alkaloids did not have antibacterial activity per se but behaved like
co-adjuvants of antibiotics [74,94–96]. The seeds of Ipomoea muricata have been reported to contain
about 0.49% clavine alkaloids, of which lysergol constitutes 53% and chanoclavine 37% [97]. In a
previous investigation Maurya et al. optimize the isolation of lysergol and chanoclavine (Table 3) from
this plant [98]. Furthermore, the authors evaluated the antibacterial activity of lysergol and thirteen acyl
and aryl semi-synthetic derivatives and their synergy with the antibiotic nalidixic acid (NA) against
nalidixic acid-sensitive (NASEC) and nalidixic acid-resistant (NAREC) strains of E. coli [74]. Lysergol
(Table 3) did not possess antibacterial activity of its own, but in combination, it strongly reduced the
MIC of nalidixic acid by 8-fold against the NAREC and 4-fold against the NASEC. Interestingly, two aryl
semi-synthetic derivatives, 17-O-3”,4”,5”-trimethoxybenzoyllysergol and 17-O-3”-nitrobenzoyllysergol
(Table 3), reduced the MIC of nalidixic acid by 8-fold against both NASEC and NAREC strains. Lysergol
and these derivatives were also tested in combination with another antibiotic, tetracycline, against
a multidrug-resistant clinical isolate of E. coli (MDREC) and showed significant synergistic activity,
reducing the MIC of the drug by 8-fold [74]. Recently, the same research group investigated the
synergy potential and the drug resistance reversal mechanism of chanoclavine and lysergol from
I. muricata against the multi-drug-resistant clinical isolate of E. coli (MDREC) [75]. Chanoclavine
(Table 3) showed the highest resistance reversal potential reducing the MIC of tetracycline by 8-16-fold,
probably due to the higher aqueous solubility of secondary amine than the tertiary amine of lysergol.
In real-time expression analysis, chanoclavine exhibited down-regulation of different efflux pump
genes and decreased the mutation prevention concentration of tetracycline. In silico docking analysis
of chanoclavine towards the receptor proteins AcrB, YojI and OmpX, known to be involved in drug
resistance, showed strong binding affinity. These studies supported the role of the chanoclavine as an
inhibitor of tetracycline efflux from MDREC [75]. Ponnusamy et al. investigated the EPI activity of
indirubin (Table 3), a bisindole alkaloid, isolated from the leaves of Wrightia tinctorial, using the NorA
hyperexpression S. aureus SA1199B, and its synergistic effects were tested with ciprofloxacin [76,99].
Indirubin exerted antibacterial activity against both S. aureus SA1199B and the parent S. aureus SA1199,
with MICs of 1.25 µg/mL and 25 µg/mL, respectively. More interestingly, these alkaloids synergistically
enhanced the activity of ciprofloxacin by reducing 4-fold its MIC and the agar diffusion study showed
an elevated ciprofloxacin inhibition zone in SA1199B by the addition of indirubin (2.5 and 1.25 µg/mL)
suggesting its ability to block the NorA efflux pump followed by the increasing concentration of
ciprofloxacin within the cell. These results suggested that this natural compound could be used in
future therapeutic applications as a potential EPI [76,99].

2.2. Isoquinoline Alkaloids

Isoquinoline alkaloids are a heterogeneous group biogenetically derived from l-phenylalanine and
l-tyrosine and featured an isoquinoline or a tetrahydroisoquinoline skeleton. Based on their distribution,
intramolecular rearrangements and the presence of additional rings linked to the main system, they can be
classified into eight subgroups: protoberberine, benzo[c]phenanthridine, benzylisoquinoline, aporphine,
protopine, phthalideisoquinoline, morphinan and emetine alkaloids [65]. Some representative isoquinoline
alkaloids along with their antimicrobial effect are reported in Table 4 and the SARs analysis has been
summarized in Figure 4.
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Table 4. Summary of antimicrobial activity of some classes of isoquinoline.

Common Name Chemical Structure Tested Microorganism Antimicrobial Effect Source Ref.

Protoberberines

Berberine
MRSA
MSSA

P. aeruginosa

Efflux Pump Inhibitor,
DNA-intercalating

Species:
Berberis spp. [100,101]

Benzophenanthredines

Sanguinarine VRE
S. epidermidis DNA-intercalating

Species:
Sanguinaria
canadensis

[102]

6-Methoxy-dihydrosanguinarine MRSA
MSSA Growth inhibition

Species:
Hylomecon

hylomeconoides
[103]
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Table 4. Cont.

Common Name Chemical Structure Tested Microorganism Antimicrobial Effect Source Ref.

Chelerythrine
MRSA

S. aureus
ESBLs-SA

Protein biosynthesis
inhibitor

Species:
Toddalia asiatica [104]

Bis-[6-(5,6-dihydro-chelerythrinyl)]
ether MRSA Growth inhibition

Species:
Zanthoxylum
monophylum

[105]

6-ethoxy-chelerythrine MRSA Growth inhibition
Species:

Zanthoxylum
monophylum

[105]

Dihydrochelerythrine S. aureus Growth inhibition Species:
Zanthoxylum tingoassuiba [106]

Dihydrosanguinarine S. aureus Growth inhibition Species:
Zanthoxylum tingoassuiba [106]



Molecules 2020, 25, 3619 20 of 34

Table 4. Cont.

Common Name Chemical Structure Tested Microorganism Antimicrobial Effect Source Ref.

N-methylcanadine S. aureus Growth inhibition Species:
Zanthoxylum tingoassuiba [106]

6-Hydroxy-dihydrosanguinarine MRSA Growth inhibition Species:
Chelidonium maju [107]

6-Hydroxy-dihydrochelerythrine MRSA Growth inhibition Species:
Chelidonium maju [107]

Bisbenzylisoquinolines

Tetrandrine MRSA,
ESBL-producing E. coli Growth inhibition Species:

Stephania tetrandra [108,109]

Fangchinoline MRSA,
ESBL-producing E. coli Growth inhibition Species:

Stephania tetrandra [108,109]
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Table 4. Cont.

Common Name Chemical Structure Tested Microorganism Antimicrobial Effect Source Ref.

Aporphines

Roemerine S. aureus
B. subtilis

Efflux Pump Inhibitor
Membrane permeability

enhancer

Species:
Annona senegalensi,
Turkish Papaver and

Rollinialeptopetal

[110,111]
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2.2.1. Protoberberines

Protoberberines are the largest group of isoquinoline alkaloids, which makes them the most widespread
secondary metabolites containing nitrogen. Berberine (Table 4) is the main representative quaternary
ammonium salt of protoberberine’s class produced from Berberis spp. Numerous investigations described a
moderate antimicrobial activity of berberine, especially against Gram-negative bacteria. This is probably
due to its similarity with the substrate of the multi-drug resistance efflux pumps [112–115]. Accordingly,
the presence of MDR pump inhibitors remarkably increases the susceptibility of bacterial strains. Yu et al.
studied the antibacterial activity of berberine and the synergy with β-lactam antibiotics against several
MRSA clinical isolates and the standard MSSA. Berberine displayed antimicrobial activity against all
tested MRSA strains with MIC values ranging from 32 to 128 µg/mL, and a MIC of 128 µg/mL against
the standard MSSA strain. Interestingly, berberine strongly reduced the MICs of ampicillin and oxacillin
against MRSA and a standard MSSA. The fractional inhibitory concentration index (FICI) of berberine in
combination with ampicillin and oxacillin was 0.625 and 0.5 in MRSA, respectively. These data suggested an
additive effect for the first combination, and a synergistic effect for the second one. The authors postulated
that the synergistic activity of berberine and β-lactam antibiotics might be due to a different mode of
action of berberine, which could bind to minor groves of DNA and regulate the gene expression [100].
Despite the antimicrobial activity of berberine, the mechanism of action in bacteria has remained unclear.
Several studies demonstrated that berberine is a DNA-intercalating compound, however, recent data
have supported the hypothesis that inhibition of bacteria’s cellular division protein FtsZ is the primary
mechanism of its antibacterial activity [114–118]. Numerous scientists studied the effects of berberine
on RND efflux systems inhibition in P. aeruginosa and, recently, it was reported as a potential inhibitor
of MexXY-mediated resistance in this strain. Su et al. evaluated the efficacy of berberine alone and in
combination with imipenem against a clinical P. aeruginosa isolate (PA012) and the possible EPI mechanism.
The combination of berberine (1/4 MIC) with imipenem (1/8 MIC) exhibited a synergistic effect with a
FICI of 0.375. Further investigations confirmed that berberine displayed a synergistic effect with the
carbapenem antibiotic to resensitize imipinem-resistant P. aeruginosa via inhibition of the MexXY-OprM
efflux pump system [101,112,119–121]. Furthermore, Laudadio et al. developed an in silico protocol to
evaluate the putative ability of berberine to counteract the activity of the aminoglycoside extruder pump
MexXY-OprM. Interestingly, molecular docking analysis showed that the aminoglycoside tobramycin and
berberine competed for the same site but the MexY−berberine complex showed a much lower free energy.
These results indicated that the berberine has a higher binding affinity than the tobramycin suggesting that
it acts as a competitor of the antibiotic, preventing its extrusion. In vitro assays demonstrated a significant
reduction (16-fold, from 16 to 1 µg/mL) of the tobramycin MIC in combination with berberine against
P. aeruginosa strain C25, a CF isolate selected because of its MexY overexpression and a lack of acquired
tobramycin resistance genes, and a comparable synergistic activity was confirmed by the results obtained
with 12 additional P. aeruginosa clinical isolates [101].

2.2.2. Benzophenanthredines

Sanguinarine (Table 4) is a benzophenanthridine alkaloid derived from the roots of
Sanguinaria canadensis [122] structurally related to berberine. For this reason, it can be assumed
that it presents a similar antibacterial activity by the inhibition of the Z-ring formation on MRSA,
MSSA vancomycin-sensitive (VSE) and vancomycin-resistant strains (VRE) of E. faecalis [123–126] and
by the intercalation with bacterial DNA [127–129]. Hamoud et al. investigated the antimicrobial activity
of individual drugs, e.g., the DNA intercalating sanguinarine, the chelator ethylenediaminetetraacetic
acid (EDTA) and the antibiotic streptomycin; of two-drugs interaction between EDTA or antibiotics
and sanguinarine in comparison with the three-drug activities against several Gram-positive and
Gram-negative bacteria, including multi-resistant clinical isolates [102,127]. Among the three drugs,
sanguinarine demonstrated the strongest antibacterial activity against Gram-positive bacteria with
MIC values ranging between 0.5 µg/mL against S. epidermidis and 8 µg/mL against VRE, whereas
streptomycin showed the strongest activity against Gram-negative strains. EDTA showed only
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bacteriostatic activity. Interestingly, the three-drug combination displayed synergistic activity against
almost all the strains (except methicillin- resistant S. aureus), as well as a strong reduction (2–16 times)
in the effective doses (i.e., MIC of drug alone/MIC drug in combination) of sanguinarine, EDTA and
streptomycin. The authors postulated that the synergistic interactions are due to different modes of
action of the individual drugs: EDTA as a chelating agent disturbs the permeability of the bacteria
cell wall leading to a higher influx of sanguinarine and streptomycin into the bacterial cell [102,127].
Choi et al. reported that a structural homolog of sanguinarine, the 6-methoxydihydrosanguinarine
(Table 4), isolated from Hylomecon hylomeconoides, displayed an antibacterial activity higher than that of
the antibiotic ampicillin against S. aureus ATCC 25923 (MSSA), S. aureus ATCC 33591 (MRSA) and
DPS-1 (clinical MRSA) strains with MICs in the range of 1.9–3.9 µg/mL. These promising results
indicated the benzophenanthridine alkaloid sanguinarine as a potential agent against MRSA strains
paving the way for further studies [103]. Several studies reported a significant antibacterial activity of
chelerythrine (Table 4), a benzophenanthridine alkaloid structurally related to sanguinarine, especially
against Gram-positive bacteria [130,131]. Recently, He et al. investigated the antibacterial effect
and mechanism of action of chelerythrine isolated from Toddalia asiatica (Linn) Lam widely used in
traditional Chinese medicine. Interestingly, chelerythrine displayed a strong antibacterial activity
against Staphylococcus aureus (SA), methicillin-resistant S. aureus (MRSA) and extended spectrum
β-lactamase S. aureus (ESBLs-SA) with MIC values of 156 µg/mL. Further investigations on the
anti-bacterial mechanism indicated that chelerythrine may be capable of destroying the channels across
the bacterial cell membranes, leading to protein leakage to the outside of the cell, and to the inhibition
of the protein biosynthesis. Images of scanning electron microscope revealed important morphological
changes in chelerythrine-treated bacteria providing new insights in the antibacterial mechanism of
this alkaloid [104]. Extensive investigation of the antimicrobial activity of natural products from
Zanthoxylum genus, which represents the most important source of bioactive benzophenanthridine
alkaloids, was carried out. Rodriguez et al. evaluated the antibacterial activity against MRSA of
several compounds, isolated from Zanthoxylum monophylum widely used in Brazilian traditional
medicine for the treatment of different health problems. Among them, two chelerythrine analogs,
bis-[6-(5,6-dihydro-chelerythrinyl)]ether and 6-ethoxy-chelerythrine (Table 4), displayed a strong
activity against MRSA with IC50 values of 1.0, and 4.0 µM, respectively [105]. Furthermore, Costa et al.
reported the anti-MRSA activity of dihydrochelerythrine (Table 4) and N-methylcanadine (Table 4)
against four MRSA clinical isolates with MICs ranging from 85.8 to 171.7 µM and from 76.9 to 307.8 µM,
respectively [106]. In a previous work, Zuo et al. isolated the other three benzophenanthridine alkaloids,
6-hydroxydihydrosanguinarine, 6-hydroxydihydrochelerythrine and dihydrosanguinarine (Table 4),
from Chelidonium majus Linn., along with dihydrochelerythrine, and investigated their antibacterial
activity against twenty clinical strains of MRSA. The two non-hydroxylated benzophenanthridine
alkaloids exhibited moderate or no inhibitory effects at the tested maximum concentration of
3,000 µg/mL, whereas 6-hydroxydihydrosanguinarine and 6-hydroxydihydrochelerythrine reported
MICs/minimal bactericidal concentration (MBCs) values against MRSA strains as low as to 0.49/1.95
and 0.98/7.81 µg/mL, respectively [107]. These evidences supported the great potential of the
benzophenanthridine alkaloid scaffold for the further development of derivatives with improved
activity. Moreover, several structure–antimicrobial activity relationship studies of benzophenanthridine
alkaloids structurally related to sanguinarine and chelerythrine were carried out [132,133]. Miao et al.
evaluated the antibacterial activity of a series of alkoxyl and acetonyl derivatives at position 6
of sanguinarine and chelerythrine and postulated that the double bond of C=N+ was essential.
This hypothesis was confirmed by Tavares et al., who observed that the nitrogen ring substituted with
a methyl group, or in the form of a tertiary amine or a quaternary salt, is fundamental for antimicrobial
activity. These investigations also suggested that a methylenedioxy group at C-7 and C-8, such as in
sanguinarine, was responsible for a broader antibacterial spectrum than methoxyl groups at C-7 and
C-8, such as in chelerythrine [132]. A recent study, reported by Khin et al., supported SAR studies.
The authors evaluated the antimicrobial activity of sanguinarine and chelerythrine, isolated from
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Macleaya cordata (Chinese plume poppy), against wild-type, methicillin-resistant and multiple-resistant
strains of S. aureus (SA1199, AH1263 and IA116, respectively). The two benzophenanthridine alkaloids
exhibited a strong antibacterial activity against all strains of S. aureus with MICs ranging from 3 to
10 µg/mL, confirming the essential role of the double bond between carbon and positively-charged
nitrogen species and methoxyl- and methylenedioxy- substitutions at positions C-7 and C-8 for the
antibacterial activity [134].

2.2.3. Bisbenzylisoquinolines

Tetrandrine and fangchinoline (Table 4) are two bisbenzylisoquinoline alkaloids isolated from the
Chinese drug Stephania tetrandra. Zuo et al. evaluated the antimicrobial activity of these alkaloids and
their synergy potential with antibiotics ampicillin, azithromycin, cefazolin and levofloxacin against ten
clinical isolates of staphylococcal chromosomal cassette mec (SCCmec) III type methicillin-resistant
S. aureus (MRSA). The two bisbenzylisoquinoline alkaloids displayed a good anti-MRSA activity
with MIC/MBC values ranging from 64 to 128 µg/mL and from 256 to 1,024 µg/mL. Interestingly,
a significant synergistic/additive antibacterial activity against 90% of the isolates was observed
for the tetrandrine/cefazolin combination (FICIs ranged from 0.188 to 0.625) [108]. Furthermore,
Fu et al. investigated the inhibitory effect of tetrandrine and fangchinoline against MRSA 13366 and
ESBL-producing E. coli 13025. The results confirmed the potent antibacterial activity of tetrandrine,
which exhibited MIC values of 80 and 160µg/mL against MRSA and ESBL producing E. coli, respectively,
whereas fangchinoline showed a moderated activity with MICs of 160 and 320µg/mL [109]. Interestingly,
these data indicated that a little chemical modification of tetrandrine scaffold, such as a hydroxy group
at position 7 in fangchinoline leads to a lower antibacterial activity.

2.2.4. Aporphines

Roemerine (Table 4) is an aporphine alkaloid isolated from several plants (Annona senegalensi,
Turkish Papaver and Rollinialeptopetala), and previously reported for its activity against MDR bacteria.
Yin et al. confirmed its effectiveness in vitro against four S. aureus strains (with MIC values ranging
from 32 to 64 µg/mL) as well as in vivo against MRSA insepticemic BALB/c mice, and investigated
the underlying mechanism indicating that roemerine increases cell membrane permeability in a
concentration-dependent manner [110]. Recently, Akbulut et al. investigated roemerine as potential
efflux pump inhibitor. The authors demonstrated that in B. subtilis, two MDR pumps Bmr (MFS
transporter) and BmrA (ABC transports) were inhibited by this alkaloid. Several assays showed that
roemerine potentiated the effect of berberine with MIC values reduced from 256 and 64 µg/mL and
from 64 to 16 µg/mL, respectively, by inhibiting the Bmr efflux pump. In addition, transport assays
conducted using E. coli inverted membrane vesicles overexpressing BmrA confirmed that increasing
concentrations of roemerine inhibited the transport of the BmrA substrate, doxorubicin and through
this pump [111].

2.3. Piperidines

A further subclass of alkaloids, used for the treatment of MDR infections, is piperidines.
Biosynthetically, they are mostly derived from l-lysine and are characterized by a saturated
piperidine ring. The most significant from a pharmacological standpoint was piperine (Table 5),
the major constituent of black pepper (Piper nigrum) and long pepper (Piper longum). It is well
known that this alkaloid is able to inhibit several cytochrome P450-mediated pathways and human
P-glycoprotein [135,136], however, several studies reported the efflux inhibitory activity as a primary
antibacterial mechanism against S. aureus and MRSA [66,95,137,138]. As previously described,
Mothar et al. investigated antibacterial activity of several alkaloids and, except berberine, any inhibition
was detected even at 250 µg/mL, suggesting these alkaloids as candidates for an EPI evaluation assay.
Piperine was one of the alkaloids that exhibited notable potential EPI activities with a 8-fold EtBr MIC
reduction against N441, in addition to a 4-fold EtBr MIC reduction against U949 and ATCC 25923,
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respectively. The authors postulated that the highly conjugated diene linked to the aromatic ring is
essential for its EPI activity [66]. Khameneh et al. evaluated the synergistic antibacterial activity of
gentamicin and piperine against MRSA and underlying mechanism of modulating bacterial resistance
of piperine. The suitable way to administer this combination was via liposomal formulation, due to
the antibiotics’ hydrophilicity and hydrophobicity of the alkaloid. Interestingly, the MIC value of
gentamicin in the liposomal combination was reduced 32-fold when compared with the free respective
drug showing a higher antibacterial activity in comparison with that of vancomycin. The authors also
reported that accumulation study results indicated that percentages of entrapped ethidium bromide in
the presence of piperine in both forms were increased supporting its potential role as pump efflux
inhibitors. These findings suggested that piperine could enhance the antibacterial activity of gentamicin
by inhibiting the efflux of the antibiotic [55].

2.4. Other Alkaloids (Quinolone and Indoloquinazolines)

Several studies reported the anti-MRSA activity of the extracts from Tetradium ruticarpum (‘Fructus
Euodiae’), which is a considerable source of alkaloids [139–142]. Pan et al. investigated the anti-MRSA
activity of six novel quinolones featuring aliphatic side chains at C-2 position, and, four of them exhibited
activity against both the MRSA and standard strains with MIC values of 8 and 128 µg/mL, respectively.
Among them, evocarpine (Table 5) showed the highest activity with MIC value of 8 µg/mL, 16-fold
more active than oxacillin against MRSA, suggesting the role of 13-carbon monounsaturated aliphatic
side chain in the antibacterial activity. These findings furnished new insights in the SAR of quinoline
alkaloids [139]. Furthermore, Hochfellner et al. evaluated the antimycobacterial and modulating
activity of evocarpine and two indoloquinazoline alkaloids, evodiamine (Table 5) and rutaecarpine
(Table 5), isolated from Fructus Euodiae, against three MDR clinical isolates of Mycobacterium tuberculosis.
Evocarpine was the most active compound against the MDR strains with MIC values ranging from
5 to 20 µg/mL and, more interestingly, in combination with the two indoloquinazoline alkaloid the
growth inhibitory properties of the quinolone alkaloid were markedly attenuated. The authors
postulated that the structural similarities between these alkaloids, leading to potential competition
on the evocarpine molecular target, preventing these alkaloids from effectively disrupting the target
protein [140]. One potential mechanism of action of these last alkaloids could be the inhibition of
ATP-dependent MurE ligase of M. tuberculosis, enzyme involved in the biosynthesis of peptidoglycan
principal constituent of the bacterial cell wall, but further studies are required [143].
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Table 5. Summary of antimicrobial activity of some classes of piperidine and quinolone alkaloids.

Common Name Chemical Structure Tested Microorganism Antimicrobial Effect Source Ref.

Piperine

Molecules 2020, 25, x FOR PEER REVIEW 32 of 42 

Molecules 2020, 25, x; doi: FOR PEER REVIEW www.mdpi.com/journal/molecules 

Table 5. Summary of antimicrobial activity of some classes of piperidine and quinolone alkaloids. 

Common Name Chemical Structure Tested Microorganism Antimicrobial Effect Source Ref. 

Piperine MRSA 

Efflux Pump and 

cytochrome P450-mediated 

pathways Inhibitor 

Species: 

Piper nigrum Piper longum 
[55]MRSA Efflux Pump and cytochrome

P450-mediated pathways Inhibitor
Species:

Piper nigrum Piper longum [55]

Molecules 2020, 25, x FOR PEER REVIEW 32 of 42 

Molecules 2020, 25, x; doi: FOR PEER REVIEW www.mdpi.com/journal/molecules 

Table 5. Summary of antimicrobial activity of some classes of piperidine and quinolone alkaloids. 

Common Name Chemical Structure Tested Microorganism Antimicrobial Effect Source Ref. 

Piperine MRSA 

Efflux Pump and 

cytochrome P450-mediated 

pathways Inhibitor 

Species: 

Piper nigrum Piper longum 
[55]

Evocarpine

Molecules 2020, 25, x FOR PEER REVIEW 33 of 42 

 

Evocarpine 

 

MRSA 

M. tubercolosis 

Peptidoglycan biosynthesis 

Inhibitor 

Species: 

Tetradium ruticarpum 
[139,140] 

 

 

Evodiamine  

 

M. tubercolosis 
Peptidoglycan biosynthesis 

Inhibitor 

Species: 

Tetradium ruticarpum 
[140,143]  

Rutaecarpine 

 

M. tubercolosis 
Peptidoglycan biosynthesis 

Inhibitor 

Species: 

Tetradium ruticarpum 
[140,143]  

MRSA
M. tubercolosis

Peptidoglycan biosynthesis
Inhibitor

Species:
Tetradium ruticarpum [139,140]

Molecules 2020, 25, x FOR PEER REVIEW 33 of 42 

 

Evocarpine 

 

MRSA 

M. tubercolosis 

Peptidoglycan biosynthesis 

Inhibitor 

Species: 

Tetradium ruticarpum 
[139,140] 

 

 

Evodiamine  

 

M. tubercolosis 
Peptidoglycan biosynthesis 

Inhibitor 

Species: 

Tetradium ruticarpum 
[140,143]  

Rutaecarpine 

 

M. tubercolosis 
Peptidoglycan biosynthesis 

Inhibitor 

Species: 

Tetradium ruticarpum 
[140,143]  

Evodiamine

Molecules 2020, 25, x FOR PEER REVIEW 33 of 42 

 

Evocarpine 

 

MRSA 

M. tubercolosis 

Peptidoglycan biosynthesis 

Inhibitor 

Species: 

Tetradium ruticarpum 
[139,140] 

 

 

Evodiamine  

 

M. tubercolosis 
Peptidoglycan biosynthesis 

Inhibitor 

Species: 

Tetradium ruticarpum 
[140,143]  

Rutaecarpine 

 

M. tubercolosis 
Peptidoglycan biosynthesis 

Inhibitor 

Species: 

Tetradium ruticarpum 
[140,143]  

M. tubercolosis Peptidoglycan biosynthesis
Inhibitor

Species:
Tetradium ruticarpum [140,143]

Rutaecarpine

Molecules 2020, 25, x FOR PEER REVIEW 33 of 42 

 

Evocarpine 

 

MRSA 

M. tubercolosis 

Peptidoglycan biosynthesis 

Inhibitor 

Species: 

Tetradium ruticarpum 
[139,140] 

 

 

Evodiamine  

 

M. tubercolosis 
Peptidoglycan biosynthesis 

Inhibitor 

Species: 

Tetradium ruticarpum 
[140,143]  

Rutaecarpine 

 

M. tubercolosis 
Peptidoglycan biosynthesis 

Inhibitor 

Species: 

Tetradium ruticarpum 
[140,143]  M. tubercolosis Peptidoglycan biosynthesis

Inhibitor
Species:

Tetradium ruticarpum [140,143]



Molecules 2020, 25, 3619 27 of 34

3. Conclusions

The drastic drop in the number of new antibiotics on the market has led scientific research to
reassess nature as an invaluable source of biologically active compounds. Among these, alkaloids of
plant origin represent an interesting example of compounds for their biological and chemical properties.
In this review we highlighted the potential of these alkaloids as antimicrobials specifically against
strains resistant to conventional antibiotics or as adjuvants to be used in combination. The various
data reported here have clearly shown that alkaloids can also be used as chemical scaffolds for further
structural modifications. Taken all together, the data collected in this manuscript reinforce the idea
that alkaloids can be considered as new alternative antimicrobials.
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