
Review article

Examining the evidence for immune checkpoint therapy in
high-grade serous ovarian cancer

A.E. Connor a,b,c,*, P.M. Lyons d, A.M. Kilgallon d, J.C. Simpson a,b,c, A.S. Perry a,b,1

, J. Lysaght d,1

a UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
b UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
c Cell Screening Laboratory, University College Dublin, Dublin, Ireland
d Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute and Trinity St.
James’s Cancer Institute, Trinity College Dublin, Dublin, Ireland

A R T I C L E I N F O

Keywords:
High-grade serous ovarian cancer
Immune checkpoint inhibitors
Tumour microenvironment

A B S T R A C T

The 5-year survival rate for ovarian cancer has remained relatively static over the past number of
years, which can be attributed in part to the lack of new therapeutic strategies to target this
disease. Although numerous other cancer types have benefited from the success of immune
checkpoint inhibitors, their use in clinical trials targeting ovarian cancer has shown limited ef-
ficacy. Most clinical trials have focused on PD-1/PD-L1 immune checkpoint blockade, either as a
monotherapy or in combination with chemotherapies, however inhibiting other pathways may
potentially be more efficacious in treating ovarian cancer. For example, drugs targeting some
emerging immune checkpoints (such as LAG-3, TIM-3, TIGIT and PVRIG), are entering into
clinical trials, which could show improved success for ovarian cancer patients. Similarly, pre-
dictive biomarkers that have been approved for use with immune checkpoint inhibitors, such as
PD-L1 expression, are limited, as only the presence or absence of PD-L1 is assessed. However, the
development of next generation predictive biomarkers, which assesses density and location of
tumour infiltrating lymphocytes, could be more beneficial for this heterogenous cancer. In this
review we discuss the use of immune checkpoint inhibitors in ovarian cancer, with a focus on
high-grade serous disease, and delve into what the future may hold for immunotherapy in this
cancer type.

1. Introduction

Ovarian cancer (OC) has a global incidence rate of 6.6 cases per 100,000 people and the highest mortality rate of all gynaecological
cancers [1]. Globally the estimated number of new cases is expected to increase from 314,000 in 2020 to 446,000 in 2040, with the
number of deaths also predicted to rise from 207,000 to 314,000 [2]. High-grade serous ovarian cancer (HGSOC) is the most prevalent
OC subtype accounting for 75 % of all cases, and is characterised by genetic alterations in the TP53 gene, as well as genes involved in
homologous recombination repair such as BRCA1, BRCA2 and PTEN [3]. HGSOC is also the most lethal OC subtype with ca. 70 % of
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patients being diagnosed at a late stage as a result of vague symptoms and lack of an appropriate screening test [3]. Elevated Cancer
Antigen 125 (CA-125) serum levels remains the only biomarker for detecting and managing OC. However, high numbers of false
positives occur when screening average-risk women due to the low incidence of OC [4]. The 5-year relative survival rate for late-stage
disease is 32 % compared to 92 % for localised disease [5]. This poor survival rate for late-stage disease is due in part to the standard of
care remaining relatively static for the past 20 years, consisting primarily of surgery combined with platinum-based chemotherapies
[6]. In addition, up to 70 % of patients experience a recurrence following platinum-based chemotherapy highlighting the urgent need
to find better treatment options for these women [6].

Some advances have been made in OC treatment. For example, three poly-ADP ribose polymerase inhibitors (PARPi), namely
olaparib, rucaparib, and niraparib are approved for use in OC (Fig. 1) [6–10]. Numerous clinical trials have investigated the use of
immunotherapies, specifically immune checkpoint inhibitors (ICIs) in OC, however, although approvals have occurred for other cancer
types, ICIs are still not recommended for use in OC (Fig. 1). ICIs block immune checkpoint pathways, which regulate the immune
response by managing the intensity and duration of immune reactions. This regulation helps avoid excessive and prolonged activation
of the immune system, which might otherwise result in tissue damage and the onset of autoimmunity [11]. Tumours can exploit this
system as a mechanism of immune evasion [11]. The goal of ICIs is to overcome this by blocking the checkpoint pathways, preventing a
dampening of the immune reaction, and thereby revitalising the body’s anti-tumour immune response.

The results so far for ICI monotherapy for OC have been disappointing (Table 1), which is why clinical trials have now focused on
combining ICIs with other treatments such as chemotherapy, Vascular endothelial growth factor (VEGF) inhibitors (Table 2), PARPi
(Table 3), or with different ICIs (Table 4) [12,13]. Several factors can influence ICI efficacy. These include intrinsic factors such as
quantity and activation of immune subsets within the tumour microenvironment (TME), the presence or absence of immune check-
points, as well as treatment regimens such as surgery and chemotherapy. Herein we discuss the evidence in relation to these factors and
the use of ICIs in OC, with a specific focus on HGSOC.

2. CTLA-4 and PD-1 in HGSOC

Numerous ICIs against the most widely studied immune checkpoints, CTLA-4 and PD-1, have proven beneficial in a number of solid
tumours. However, this success has not been seen in OC where ICI use is only approved for patients with high microsatellite instability
(MSI), which is a feature of ovarian clear cell carcinoma but is rare in HGSOC [57].

2.1. CTLA-4

In 1996, Cytotoxic T lymphocyte antigen 4 (CTLA-4) was reported as a potential target for cancer treatment when Leach et al.
described how colon tumours were rejected in mice following in vivo administration of antibodies targeting CTLA-4, resulting in
immunity to subsequent cancer cell exposure [58]. CTLA-4 regulates T cells in the lymph nodes during the early stages of an immune
response (Fig. 2A) [59].

There are limited data available for CTLA-4 in OC/HGSOC, but strong expression has been seen in residual HGSOC tumours after
cytoreductive surgery, suggesting that CTLA-4 blockade could be beneficial post-surgery [60]. There are also very few clinical trials
investigating the use of anti-CTLA-4 ICIs in this disease (Tables 3 and 4). One such trial found that the infusion of a CTLA-4 blocking
antibody reduced or stabilised CA-125 levels in twometastatic OC patients, suggesting that this blockade improved disease status [61].
Most research has concentrated on combination treatments, incorporating anti-CTLA-4 and anti-PD-1 ICIs, as this combination has had
success in other cancers.

Fig. 1. ICIs – first approval, PARPi – first approval in ovarian cancer, by both the FDA and EMA. PARPi (PARP inhibitors), ICIs (Immune Checkpoint
Inhibitors), FDA (United States Food and Drug Administration) EMA (European Medicines Agency).
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2.2. PD-1

In 1996, Programmed cell death 1 (PD-1) was found to be involved in inhibiting immune responses [62]. PD-1 is an immu-
noinhibitory receptor, which binds to two ligands, PD-1 ligand 1 (PD-L1) and 2 (PD-L2) [63,64] (Fig.2A). PD-1 regulates T cells in the
later stages of an immune response at the tissue site [59]. PD-1 inhibitors, nivolumab and pembrolizumab, were approved in 2014 for
patients with unresectable or metastatic melanoma (Fig.1) [65].

In contrast to CTLA-4, there has been extensive research into the PD-1 immune checkpoint pathway in OC with studies indicating
that the expression of PD-L1, and to a lesser extent PD-L2, is associated with a poorer prognosis [64]. A significant inverse correlation
between PD-L1 expression and CD8+ TILs has been observed, suggesting that PD-L1 could suppress CD8+ TILs [64]. HGSOC tumours
with positive PD-1 expression, showed significantly higher numbers of stromal CD3+ TILs and intraepithelial CD8+ TILs compared to
PD-1 negative tumours, however PD-1 was not associated with survival [66]. HGSOC tumours with a BRCA1/2 mutation have higher
expression of PD-1 and PD-L1 compared to BRCAwildtype, suggesting that these patients may respond better to PD-1/PD-L1 blockade
[67]. The blockade of this pathway with a bispecific antibody targeting both PD-1 and PD-L1 caused both Natural Killer (NK) cells and
a subset of T cells to shift to a more active cytotoxic state, suggesting that a dual blockade could improve efficacy in the PD-1 immune
checkpoint pathway [68].

Most clinical trials investigating the use of ICIs in OC have focused on the PD-1 pathway but despite initial results indicating a
tolerable safety profile for PD-1 or PD-L1 monotherapy (Table 1), response rates were modest for multiple trials with progression-free
survival ranging from 1.9 to 3.5 months [12–14]. This was not improved when combined with various chemotherapies or VEGF in-
hibitors (Table 2) [15,16].

3. The tumour microenvironment (TME) and external factors that can impact immune checkpoint inhibitor efficacy

The efficacy of ICIs is impacted by the TME. A ‘cold’ TME has lower numbers of tumour infiltrating lymphocytes (TILs) and a poorer
response to immune checkpoint blockade, as there is no immune response to reinvigorate. By contrast, a ‘hot’ TME has a higher number
of TILs and can thus benefit from ICIs, which can reinvigorate the immune response, and which in turn is associated with improved
clinical outcome, survival, prognosis and therapeutic efficacy [37–43]. OC is generally considered to have a cold TME and HGSOC is a
complex and heterogeneous disease where multiple distinct TMEs can co-exist between different tumours within the one patient
making its treatment challenging [37–44].

While the presence of TILs is a good prognostic indicator, the type of TIL is also important. For example, increased infiltration of
cytotoxic CD8+ T cells and decreased CD4+ regulatory T cells indicates a more favourable prognosis and improved therapeutic efficacy
[43]. The presence of CD103 is a common feature on TILs in the epithelium of primary OC, and CD103+ TILs are abundantly present in
HGSOC [45]. Tumour infiltration by these TILs is associated with better survival, so much so that patients with CD8+ TILs negative for
CD103 have a prognosis similar to that of patients completely lacking CD8+ TILs [45]. CD103+ TILs mostly consist of activated,
cytolytic CD8+ T cells, which suggests that CD103 could be a biomarker for highly activated cytolytic TILs [45]. PD-1 expression on
this TIL subset could also indicate functional exhaustion due to chronic stimulation [45]. Immune cell populations in metastatic
HGSOCs have higher immune infiltration (CD8+ T cells, CD20+ B cells, and NKp46+ NK cells), compared to matched primary samples.
However these cells are functionally impaired by high levels of immunosuppressive M2-like tumour associated macrophages (TAMs),
which limits a clinically relevant immune response [46].

Surgery remains one of the most important treatment options for HGSOC patients [47]. However, surgery may also impact the
immune response, creating a pro-tumour environment as the chemokines and cytokines released to promote surgical wound healing
also promote tumour growth, invasion and angiogenesis [54]. A small number of studies have investigated the impact of cytoreductive
surgery on the immune response in HGSOC patients. A post-surgical increase in circulatory anti-inflammatory cytokines (interleukin-6
and 10) and a decrease in the number and function of NK cells, indicates a dampening down of the immune response post-surgery [55].
The ICONIC clinical trial (NCT03959761) combined surgery with hyperthermic intraperitoneal chemotherapy (HIPEC) and an
intraperitoneal infusion of the PD-1 ICI nivolumab, to investigate a synergistic effect through an increase in tumour-antigen expression
and mutational load. Phase I trial results appear promising, indicating that intraperitoneal nivolumab is feasible and well tolerated
[56].

Table 1
Clinical trials investigating immune checkpoint inhibitor monotherapy for ovarian cancer.

Trial Name Phase Disease stage Drug Status Results Ref

JAVELIN
(NCT01772004)

Ib recurrent or
refractory OC

avelumab (anti-PD-
L1)

completed
with results

Demonstrated antitumor activity and acceptable safety
in heavily pre-treated patients with recurrent or
refractory ovarian cancer

[12]

KEYNOTE-028
(NCT02054806)

I PD-L1-positive
advanced OC

pembrolizumab
(anti-PD-1)

completed Pembrolizumab conferred durable antitumor activity
with manageable safety and toxicity in patients with
advanced PD-L1-positive ovarian cancer

[13]

KEYNOTE-100
(NCT02674061)

II advanced
recurrent ovarian
cancer

pembrolizumab
(anti-PD-1)

completed
with results

Single agent pembrolizumab showedmodest activity in
patients with ROC. Higher PD-L1 expression was
correlated with higher response

[14]
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4. Emerging immune checkpoint inhibitors in HGSOC

Innate or acquired resistance in patients receiving anti-PD1 or CTLA-4 treatments, combined with modest results, has fuelled
research into other immune checkpoints such as LAG-3, TIM-3, TIGIT, and PVRIG [69]. The number of phase I clinical trials inves-
tigating the use of these emerging ICIs are limited (Table 4), however preliminary results indicate tolerability, and activity has been

Table 2
Clinical trials investigating immune checkpoint inhibitor therapy in combination with chemotherapy and/or VEGF inhibitors for ovarian cancer.

Trial Name Phase Disease stage Drug Combination Status Results Ref

JAVELIN-200
(NCT02580058)

III platinum-resistant
or platinum-
refractory ovarian
cancer

avelumab (anti-PD-
L1)

pegylated
liposomal
doxorubicin
(PLD)

completed
with results

Neither avelumab plus PLD
nor avelumab alone
significantly improved
progression-free survival or
overall survival versus PLD

[15]

IMagyn500
(NCT03038100)

III newly diagnosed
stage III or IV
ovarian cancer

atezolizumab (anti-
PD-L1)

paclitaxel,
carboplatin and
bevacizumab

completed Current evidence does not
support the use of immune
checkpoint inhibitors in newly
diagnosed OC.

[16]

NRG-GY009
(NCT02839707)

II/III recurrent ovarian,
fallopian tube, or
primary
peritoneal cancer

atezolizumab (anti-
PD-L1)

pegylated
liposomal
doxorubicin
and/or
bevacizumab

active, not
recruiting

N/A 

IMagyn050/GOG
3015/ENGOT-
OV39
(NCT03038100)

III newly diagnosed
stage III/IV
ovarian cancer

atezolizumab (PD-
L1)

platinum-based
chemotherapy
and bevacizumab

completed Incorporation of atezolizumab
into standard therapy for
newly diagnosed ovarian
cancer does not significantly
improve efficacy or impose
additional treatment burden
for patients.

[17]

PemCiGem
(NCT02608684)

II recurrent
platinum-resistant
ovarian cancer

pembrolizumab
(anti-PD-1)

cisplatin and
gemcitabine

completed
with results

The addition of
pembrolizumab to cisplatin
and gemcitabine did not
appear to provide benefit
beyond chemotherapy alone
in patients with recurrent
platinum-resistant ovarian
cancer.

[18]

NCT02873962 II relapsed ovarian,
fallopian tube or
peritoneal cancer

nivolumab (anti-
PD-1)

bevacizumab active, not
recruiting

Nivolumab plus bevacizumab
appeared to show activity in
patients with relapsed ovarian
cancer, with greater activity in
the platinum-sensitive setting.

[19]

NCT03353831 III recurrent ovarian-
, fallopian tube, or
primary
peritoneal cancer

atezolizumab (anti-
PD-L1)

bevacizumab
chemotherapy

active, not
recruiting

N/A 

NCT02431559 I and
II

recurrent,
platinum-resistant
ovarian cancer

durvalumab (anti-
PD-L1)

pegylated
liposomal
doxorubicin
motolimod
(small-molecule
TLR8 agonist)

completed
with results

The combination of
durvalumab and pegylated
liposomal doxorubicin in
women with platinum-
resistant recurrent ovarian
cancer appears to have a
tolerable safety profile and
promising efficacy.

[20]

TRU-D (KGOG3046)
(NCT03899610)

II advanced-stage
ovarian cancer

durvalumab (anti-
PD-L1)
tremelimumab
(anti-CTLA-4)

neoadjuvant
chemotherapy

unknown N/A 

NRG GY003
(NCT02498600)

II persistent or
recurrent
epithelial ovarian,
primary
peritoneal, or
fallopian tube
cancer

nivolumab (anti-
PD-1)

ipilimumab (anti-
CTLA-4)

active, not
recruiting

Compared with nivolumab
alone, the combination of
nivolumab and ipilimumab in
epithelial OC resulted in
superior response rate and
longer, albeit limited, PFS,
with toxicity of the
combination regimen
comparable to prior reports.

[21]

ATALANTE
(NCT02891824)

III late relapse
ovarian cancer

atezolizumab (anti-
PD-L1)

platinum-based
chemotherapy
bevacizumab

active, not
recruiting

N/A 
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Table 3
Clinical trials investigating immune checkpoint inhibitor therapy in combination with PARP inhibitors for ovarian cancer.

Trial Name Phase Disease stage Drug Combination Status Results Ref

TOPACIO/KEYNOTE-
162
(NCT02657889)

I and
II

advanced or metastatic
TNBC or recurrent OC

pembrolizumab
(anti-PD-1)

niraparib completed
with results

Tolerable, with promising antitumor activity for patients who have
limited treatment options regardless of platinum, biomarker status, or
prior treatment with bevacizumab.

[22]

DUO-O
(NCT03737643)

III advanced ovarian cancer durvalumab (anti-
PD-L1)

chemotherapy and
bevacizumab
followed by maintenance
durvalumab, bevacizumab
and olaparib

recruiting Statistically significant and clinically meaningful improvement in
Progression Free Survival vs paclitaxel/carboplatin + bevacizumab
followed by maintenance bevacizumab

[23]

NCT02484404 I and
II

advanced or recurrent
ovarian cancer

durvalumab (anti-
PD-L1)

olaparib and/or cediranib recruiting Treatment was tolerable and active in OC and patients without
germline BRCA mutation. Phase II expansion studies are now open to
accrual.

[24]

NCT02873962 II relapsed ovarian,
fallopian tube or
peritoneal cancer

nivolumab (anti-
PD-1)

bevacizumab or
bevacizumab
and rucaparib

recruiting Nivolumab/bevacizumab demonstrated clinical activity in women
with recurrent OC, with an overall confirmed response rate of 21 % and
a median PFS of 9.4 months.

[25]

NCT02571725 I and
II

BRCA1 and BRCA2
Mutation Carriers with
Recurrent Ovarian Cancer

tremelimumab
(anti-CTLA-4)

olaparib active, not
recruiting

The combination is tolerable in heavily pre-treated women with
recurrent BRCA-associated OC. Preliminary results demonstrate
evidence of therapeutic effect, supporting ongoing evaluation of this
regimen in Phase II trials.

[26]

OPAL (NCT03574779) I and
II

newly diagnosed and
recurrent ovarian cancer

TSR-042 (anti-PD-
1)

niraparib
bevacizumab
carboplatin
paclitaxel

recruiting Combination therapy with niraparib, dostarlimab, and bevacizumab is
tolerable and demonstrated clinical activity in patients with platinum-
resistant ovarian cancer, most of which were BRCA or Homologous
Recombination Repair wild type.

[27]

ATHENA
(NCT03522246)

III newly diagnosed ovarian
cancer patients

nivolumab (anti-
PD-1)

rucaparib active, not
recruiting

Rucaparib monotherapy is effective as first-line maintenance,
conferring significant benefit versus placebo in patients with advanced
ovarian cancer with and without HRD.

[28]
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Table 4
Emerging Immune Checkpoint Inhibitor clinical trials under investigation for use in ovarian cancer.

Trial Name Phase Disease stage Drug Combination Status Results Ref

NCT02465060 II patients with advanced refractory
solid tumours, lymphomas, or
multiple myeloma (inc. ovarian
cancer)

 nivolumab (anti-PD-1) relatlimab
(anti-LAG-3) included in a list of
40 other drugs

active, not
recruiting

There was an overall response rate of 16 % with copanlisib showing
clinical activity in select tumours with PIK3CA mutation in the refractory
setting.

[29]

NCT03219268 I advanced solid tumours (inc. ovarian
cancer)

tebotelimab (bi-
specific LAG-3 and PD-
1)

margetuximab (in HER2+
advanced solid tumours)

completed Tebotelimab is safe as a monotherapy and in combination with
margetuximab. Antitumor activity was observed tumours not typically
responsive to anti–PD-1.

[30]

DUET-4
(NCT03849469)

I advanced solid tumours (inc. ovarian
cancer)

XmAb22841 (bi-
specific LAG-3 and
CTLA-4)

pembrolizumab (anti-PD-1) completed No results posted yet 

CITRINO
(NCT03250832)

I advanced solid tumours in a broad
range of solid tumours

TSR-033 (anti-LAG-3) dostarlimab (anti-PD-1)
mFOLFOX6
mFOLFOX6
bevacizumab

completed No results posted yet 

NCT03538028 I aelect advanced malignancies (inc.
ovarian cancer)

INCAGN02385 (anti-
LAG-3)

N/A completed INCAGN02385 monotherapy was generally well tolerated. Phase 1b/2
studies are underway in melanoma and head and neck cancer to assess
response in combinations with other immunotherapies (NCT04370704,
NCT05287113)

[31]

NCT03652077 I select advanced malignancies (inc.
ovarian cancer)

INCAGN02390 (anti-
TIM-3)

N/A completed Anti-TIM-3 monotherapy was well tolerated [32]

NCT03365791 II Patients with advanced solid and
hematologic malignancies (inc.
ovarian cancer)

spartalizumab (anti-
PD-1)

lieramilimab (anti-LAG-3) completed Spartalizumab and LAG525 showed promising activity in neuroendocrine
tumours, small cell lung cancer and diffuse large B-cell lymphoma. The
Gastroesophageal cohort was declared futile. Remaining cohorts are
paused pending further analysis

[33]

NCT04354246 I advanced malignancies (inc. ovarian
cancer)

COM902 (anti-TIGIT) COM701 (anti-PVRIG) recruiting COM902 has an acceptable safety, tolerability, and PK profiles. [34]

NCT04254107 I advanced cancer SEA-TGT (anti-TIGIT) sasanlimab (anti-PD-1)
brentuximab vedotin (anti-CD30)

active, not
recruiting

N/A 

NCT04570839 I and
II

advanced solid tumours (inc. ovarian
cancer)

COM701 (anti-PVRIG) BMS-986207 (anti-TIGIT)
nivolumab (anti-PD-1)

active, not
recruiting

This combination demonstrates a favourable safety, tolerability, and PK
profiles.

[35]

NCT03667716 I advanced solid tumours (inc. ovarian
cancer)

COM701 (anti-PVRIG) nivolumab (anti-PD-1) active, not
recruiting

COM701 with or without nivolumab is well tolerated with no new safety
signals. Encouraging signal of antitumor activity including in pts with
prior treatment with ICI or prior treatment refractory disease.

[36]

NCT05746897 I advanced solid tumours (inc. ovarian
cancer)

NM1F (anti-PVRIG) pembrolizumab (anti-PD-1) recruiting N/A 
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observed in tumours that typically do not respond to anti-PD-1 therapy [30,83].

4.1. LAG-3

Lymphocyte activating gene 3 (LAG-3) is an inhibitory receptor with a similar structure to CD4 and has an affinity for binding with
MHC-II, galectin-3 and fibrinogen-like protein-1 (Fig. 2B) [69]. In 2022, the FDA approved opdualag, a relatlimab (anti--
LAG-3)/nivolumab (anti-PD-1) combination drug for the treatment of unresectable or metastatic melanoma [70].The success of this
dual blockade, which shows efficacy similar to anti-PD-1/anti-CTLA-4 but with lower adverse events led to a number of studies
investigating its use in OC [71]. Dual blockade of LAG-3 and PD-1 in murine OC models increased the anti-tumour immune response,
evidenced by an increase in the number of CD8+ TILs and suppression of regulatory T cells in the TME [72]. Single blockade of PD-1
caused an increase in the level of LAG-3 and CTLA-4, and similarly when LAG-3 was blocked, use of the PD-1 pathway increased [73].
This highlights the potential tumours have to adapt to single blockades using compensatory immune checkpoint pathways, supporting
a dual blockade approach. While PD-L1 and LAG-3 expression is reportedly low in most HGSOC, their expression is positively
correlated [74]. LAG-3 and PD-1 expressing CD8+ T cells exhibit less IFN-γ/TNF-α production compared to CD8+ TILs expressing only
LAG-3 or neither [75]. Dual blockade of LAG-3 and PD-1 restored the frequency and effect of CD8+ TILs that specifically target the
immunogenic tumour antigen NY-ESO-1 [75].

Fig. 2. Immune checkpoint receptors and binding ligands, and their immunologic effect. A) The B7-CD28 family: The binding interactions of three
of the receptors in this family; CTLA-4, CD28 and PD-1 to the ligands CD80, CD86, PD-L1 and PD-L2. B) LAG3 receptor binding ligands and their
immunologic effect. C) TIM-3 receptor binding ligands and their immunological effect. D) TIGIT family receptors: The binding interactions and
affinity between receptors and their corresponding ligands.
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4.2. TIM-3

T-cell immunoglobulin and mucin domain 3 (TIM-3) has been shown to be expressed on the surface of T cells, NK cells, B cells,
Dendritic Cells (DCs), macrophages and monocytes, and binds to the ligands galectin-9, carcinoembryonic antigen cell adhesion
molecule 1 (Ceacam-1), and the phosphatidyl serine (PtdSer) (Fig. 2C) [76].

TIM-3 is actually the most abundant immune checkpoint in epithelial OC, with more than 75 % of cases being TIM-3 positive [50].
TIM-3 is expressed intratumorally at high levels on CD8+ and CD4+ T cells at both the gene and protein level [89]. In HGSOC tumours,
immunosuppression was found to be dictated by TIM-3 with one third of CD8+ TILs in this cohort expressing TIM-3, which was almost
exclusively expressed together with PD-1 [77]. Cells positive for TIM-3 and PD-1 are characteristically exhausted, distinguished by a
state of T cell dysfunction, low levels of cytokine production, inability to kill and hypo-proliferation compared to cells positive for other
immune checkpoints such as CTLA-4 and LAG-3. These checkpoints did not indicate T-cell exhaustion, rather a continuing immune
response dependent on IFN-γ with positive outcomes. Furthermore CD8+ TILs with high TIM-3 expression are sensitive to TIM-3
blockade in combination with PD-1 but not CTLA-4 blockade, whereas low TIM-3 expressing cells are not sensitive [77]. These
findings provide support for the use of TIM-3 blockade in HGSOC.

4.3. TIGIT family

The TIGIT family of receptors, also known as the nectin and nectin-like family, consists of four receptors; CD226 (DNAM-1), TIGIT,
CD96 (TACTILE), PVRIG (CD112R) and five ligands; CD155 (PVR, Necl5), CD111 (Nectin-1, PVRL1), CD112 (Nectin-2, PVRL2),
CD113 (Nectin-3, PVRL3) and Nectin-4 (PVRL4) (Fig.2D) [78]. This family of proteins represent a co-stimulatory axis that could be
therapeutically targeted for the treatment of cancer. TIGIT (T-cell immunoglobulin and ITIM domain) is the best characterised of the
TIGIT family of receptors [78]. TIGIT binds to PVR, PVRL2 and PVRL3 and counteracts positive co-stimulatory signalling [78]. TIGIT
indirectly inhibits T cell activity by manipulating DC activity [79]. Both TIGIT and PD-1 limit CD8+ T cell responses through distinct
mechanisms, and therefore an anti-TIGIT/anti-PD-1 dual blockade has been suggested as a potential therapeutic showing promising
results in colon and breast cancer mouse models, where only a co-blockade of TIGIT and PD-L1, and neither alone, resulted in tumour
rejection [80].

In OC, TIGIT shows elevated expression on CD4+ regulatory T cells compared to effector CD4+ and CD8+ T cells, and NK cells. An
anti-TIGIT blockade reduces the number of regulatory T cells but effector CD4+ and CD8+ T cells and NK cells are not affected. This
reduction in CD4+ regulatory T cells resulted in a lowering of immunosuppression [81]. When specifically looking at HGSOC, TIGIT
levels are enhanced in recurrent tumours compared to matched primary samples [82].

Poliovirus receptor-related immunoglobulin domain-containing (PVRIG), also known as CD112R is a lesser-characterised member
of the TIGIT family receptors (Fig. 2D) [78]. PVRIG expression has been examined on TILs for a range of different cancer types and it
was found that OC had among the highest expression of PVRIG on CD4+ and CD8+ T cells in blood and tissues [78]. Furthermore its
ligand, PVRL2, also had the highest expression in OC samples on CD14+ (monocytes and tumour-associated macrophages), and CD45−

cells (tumour epithelial and other non-immune cells), and when compared to normal tissue, PVRL2 expression is higher in a number of
cancer types, including OC [78]. OC tissue also showed the highest percentage of PVR− PVRL2+ cells and had the highest ratio of
PVRL2 to PVR. This indicates that the PVRIG-PVRL2 pathway, rather than the TIGIT-PVR pathway, plays a more important role in
regulating the immune response in OC [78].

5. Combination therapy

Clinical trials evaluating ICIs as a monotherapy for OC have yielded disappointing outcomes (Table 1), which is why research is
focused on combining ICIs with other treatment options. However, the combination of ICIs with chemotherapy and/or VEGF inhibitors
has also yielded disappointing results, with trials concluding that the addition of ICIs did not provide any additional benefit compared
to chemotherapy alone (Table 2). For this reason, studies have progressed to combining multiple ICIs together or ICIs with other
treatment options such as PARPi.

5.1. Chemotherapy

Standard of care for OC involves cytoreductive surgery to illicit local disease control and systemic chemotherapy for the treatment
of metastatic disease [47]. The timing of cytoreductive surgery in relation to systemic chemotherapy is still debated with most patients
undergoing surgery first, followed by chemotherapy [47]. However, neoadjuvant chemotherapy followed by surgery is becomingmore
widely accepted and is offered to patients if they have disease that is unlikely to be optimally cytoreduced or if they present at an
advanced age or with comorbidities [47]. The introduction of immunotherapies stands to make this an even more complex topic.
Evidence suggests that the timing and dose of chemotherapy can impact the immune response and increase the effectiveness of im-
munotherapies [48].

The standard first-line chemotherapy for OC consists of 3-weekly platinum and paclitaxel doses [47,49]. Carboplatin is the
preferred platinum-based agent, as cisplatin is associated with higher levels of toxicity [47]. Docetaxel or pegylated liposomal
doxorubicin can be used as alternatives to paclitaxel in the combination regimen for those patients who do not tolerate or develop an
allergy to paclitaxel [49]. For patients who become platinum-resistant or refractory, paclitaxel, topotecan, pegylated liposomal
doxorubicin and gemcitabine can be used to manage symptoms [49].
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Chemotherapy can potentially convert a ‘cold’ TME to a ‘hot’ TME, more favourable for ICI treatment. Following neoadjuvant
chemotherapy, immune checkpoint expression (IDO, PD-L1, LAG3, TIM3) was impacted in over 70 % of epithelial OC samples, where
expression either increased or decreased [50]. HGSOC tumours are heterogeneous; prior to chemotherapy both ‘hot’ and ‘cold’ TMEs
can often coexist within the same patient and even within the same tumour [44]. Neoadjuvant chemotherapy has been found to in-
crease the number of NK and T cells, indicating that chemotherapy increases the immune response and could improve response rates to
subsequent ICIs [44]. Indeed, neoadjuvant chemotherapy (carboplatin and taxane) increased TIL infiltration and PD-L1 levels in the
TME of HGSOC tumour samples, specifically on macrophages [51,52]. An increase in the ratio of effector to regulatory T cells, with
retention of immune checkpoints PD-1 and LAG3, and increased T-cell activation has also been observed in HGSOC omental biopsies
[52]. However, the significant increase of immune checkpoints PD-1, PD-L1 and CTLA-4 on T cells could dampen the immune
response, or perhaps provides an opportunity for sequential treatment with chemotherapy and ICIs [53].

5.2. Immune checkpoint inhibitor combinations

The rationale for ICI combination therapies comes from the findings that more than 50 % of epithelial OC tumours are positive for
two or more immune checkpoints [50]. As CTLA-4 typically operates in the early stages of an immune response, with PD-1 operating in
later stages, a dual blockade of these non-redundant pathways could improve patient response. This concept was proven in preclinical
OC mouse models, in which tumours were rejected when both PD-1 and CTLA-4 were blocked, leading to a reversal in CD8+ T cell
dysfunction [84]. To date, two clinical trials have investigated the use of this dual blockade in OC. The NRG GY003 trial concluded that
response rates were higher in epithelial OC patients (subtypes not specified) treated with a combination of nivolumab and ipilimumab,
compared to nivolumab alone [21]. The objective tumour response occurred within 6 months for 31.4 % of patients on the combi-
nation treatment and was significantly improved compared to only 12.2 % of patients on nivolumab alone. A longer, albeit limited,
progression-free survival (PFS) of 3.9 months was observed for the combination treatment compared to 2 months for nivolumab alone.
Although there were significant improvements with the combination treatment, there was still a lack of benefit for most patients. The
KGOG 3046 trial investigated the use of neoadjuvant chemotherapy in combination with anti-PD-1 (durvalumab) and anti-CTLA-4
(tremelimumab) in the treatment of newly diagnosed advanced-stage HGSOC. Promising results were indicated with this treatment
regimen with 12-month, 24-month, and 30 month PFS rates of 63.6 %, 45.0 %, and 40.0 %, respectively [85]. However, this study was
limited by a small sample size of only 23 patients, and lack of a control arm, instead comparing to a historical control. The small
number of clinical trials investigating this combination in OC and the fact that 55 % of patients experience adverse events of grade 3 or
4 indicates that this may not be a promising treatment approach [86]. However, results from NRGGY003 and KGOG 3046 indicate that
additional studies with further combinations are warranted to enhance durability of the dual regimen.

PVRIG-PVRL2 and TIGIT-PVR represent another two non-redundant T cell inhibitory checkpoints [78]. Blockade of both PVRIG
and PVR together resulted in higher production of IFN-γ when compared to the co-blockade of PVRIG and PVRL2 [78]. This indicates
the potential therapeutic strategy of a co-blockade of both TIGIT and PVRIG. This is further supported by experiments showing
minimal single agent activity in OC TILs following blockade with anti-TIGIT, anti-PVRIG or anti-PD-1. There are a limited number of
clinical trials investigating the combination of anti-TIGIT and anti-PVRIG blockade for advanced cancers including OC (Table 4).

5.3. Immune checkpoint inhibitors combined with PARPi

PARPi have been a breakthrough treatment for OC and are another potential option for combination treatment with ICIs, especially
considering that there are already three PARPi approved for use, and BRCAmutational status may be a reliable biomarker for response
to ICIs (Fig. 1) [10]. There are a number of trials ongoing investigating this combination (Table 3), with initial results indicating
tolerability, promising anti-tumour activity, and even better than expected responses in patients without a BRCA mutation [22]. It is
noteworthy that specific signatures have been identified as determinants of response to the combination treatment of ICI and PARPi
[87]. These include a defective homologous recombination repair pathway and the presence of IFN-primed exhausted CD8+ T cells
[87]. The presence of either feature alone, or in combination, has been associated with improved outcome, while no response was seen
if both were absent [87].

6. Predictive biomarkers of ICI response

It may be that ICIs are not effective for all OC patients, instead a specific TMEmay indicate whether a patient will respond. The FDA
and EMA have approved the use of MSI, PD-L1 expression, as well as tumour mutational burden (TMB), as tissue biomarkers for
predicting response to ICIs [88,89].

6.1. Microsatellite instability (MSI)

In 2017, pembrolizumab was approved by the FDA for all advanced cancer patients with high MSI where no other treatment is
available, making this the first tissue-agnostic approval for any cancer treatment [90]. This paved the way for tumour type-agnostic
therapy, where treatments could be approved based on biomarker analysis rather than tumour site [90]. MSI is typically seen in only a
small subset of OC patients [91].
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6.2. PD-L1 expression

Currently the FDA and EMA have approved four assays for measuring the expression of PD-L1 (PD-L1 IHC 22C3 pharmaDx, PD-L1
IHC 28–8 pharmaDx assay, PD-L1 IHC SP 142, PD-L1 IHC SP263) for use in non-small cell lung cancer, urothelial cancer, head and neck
cancer, oesophageal cancer and triple-negative breast cancer [88,92]. However, this biomarker is limited because its predictive value
is impacted by cell type, tumour heterogeneity, and whether the assessment has been performed on the primary or metastatic site [63].
Improved survival has also been seen in patients with low or negative PD-L1 expression [93]. The assays use different antibodies,
scoring systems and thresholds, resulting in practical challenges for incorporating these tests clinically [88]. The development of the
Combined Positive Score (PD-L1 scoring method) has tried to overcome some of these limitations, resulting in greater correspondence
between PD-L1 presence and effective treatment response [94].

6.3. Tumour mutational burden (TMB)

The KEYNOTE-158 study employed the FoundationOne CDx assay, a targeted cancer gene panel to detect TMB, and found that in
patients with advanced solid tumours, a subset with high TMB had a durable response to pembrolizumab monotherapy [57]. TMB
alone was found to be predictive of response regardless of MSI, PD-L1 expression or tumour type. The FoundationOne CDx assay was
approved alongside pembrolizumab as a companion diagnostic for patients with unresectable or metastatic solid tumours with high
TMB, defined as ≥10 mutations/megabase [57]. A further study, which investigated the value of TMB in 12 trials using pem-
brolizumab as a monotherapy identified a clinically meaningful improvement in efficacy of pembrolizumab monotherapy with a TMB
≥175 mutations/exome [95]. In this study, OC was found in general to have a low TMB, which may explain why PD-1 monotherapy
has not been beneficial for many HGSOC patients.

6.4. BRCA mutation

A biomarker more relevant for HGSOC is the presence of a BCRA mutation. HGSOC patients with a BRCA1/2 mutation have
significantly increased expression of PD-1 and PD-L1 as well as significantly increased numbers of CD3+ and CD8+ TILs [67]. These
patients may respond better to PD-1/PD-L1 ICIs compared to patients without a mutation due to the higher number of tumour-specific
neoantigens associated with higher expression of the pro-inflammatory cytokine IFN-γ [67]. BRCA status and number of TILs have
been identified as independent indicators of prognosis with two distinct groups of patients; BRCA mutated with high number of TILs
had good prognosis, while patients without a BRCA mutation and low number of TILs had very poor prognosis [67].

6.5. Next generation biomarkers

The next generation of biomarkers for predicting response to ICIs has recently been reviewed [92]. The Immunoscore assesses the
density and location of cytotoxic and memory TILs and has shown prognostic ability in colorectal cancer and is now being investigated
for use in other cancer types. Tumour Gene Expression Profiles assess immunologic transcriptomic patterns and has been shown to
correlate with improved survival across nine cancer types [96]. Multiplex immunohistochemistry/immunofluorescence has shown
improved accuracy at predicting response to anti-PD-1/PD-L1 blockade [97]. HLA testing looks at the presence and functionality of the
antigen-presenting machinery, and has shown to be a reliable biomarker of response to anti-CTLA4 [98]. Peripheral blood biomarkers
are an attractive approach since they are less invasive. Cellular peripheral blood biomarkers, such as a rise in Ki-67+ PD1+ CD8+ T
cells, have correlated with clinical benefit in non-small lung cancer patients receiving anti-PD-1. Soluble peripheral blood biomarkers,
such as circulating tumour DNA, has been associated with response and improved survival in non-small cell lung cancer patients [99,
100]. Further work is needed to assess the functionality and potential benefit these biomarkers could provide for HGSOC.

7. Conclusions

ICI treatment has dominated the field of immunotherapy for solid malignancies and has improved patient outcomes. However, this
effect is yet to be reported for HGSOC. The heterogeneity observed, not just between patients but between metastatic tumours from the
same patient and even within the same tumour could impact ICI efficacy in this cancer. There are multiple factors at play when it comes
to ICI efficacy, including both intrinsic and external components, but by understanding the TME, the impact of chemotherapy, and
surgery on the immune response we can begin to overcome ineffective treatments. The development of biomarkers has resulted in the
approval of companion diagnostics for certain ICIs in some cancer types but so far these have not proven beneficial for HGSOC patients,
but the next generation of biomarkers could change this. Lastly there has been extensive work investigating the use of ICIs against PD-1
and PD-L1, with little success so far, but it may be that success could come from investigating new emerging checkpoints such as LAG-3,
TIM-3, PVRIG, and TIGIT and even combining ICIs against a number of these pathways. Additionally, investigations into combina-
tional therapy regimes with PARPi could strengthen responses by simultaneously targeting multiple hallmarks of cancer.
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[93] J. Brahmer, K.L. Reckamp, P. Baas, L. Crinò, W.E. Eberhardt, E. Poddubskaya, et al., Nivolumab versus docetaxel in advanced squamous-cell non-small-cell

lung cancer, N. Engl. J. Med. 373 (2) (2015) 123–135.

A.E. Connor et al. Heliyon 10 (2024) e38888 

13 

http://refhub.elsevier.com/S2405-8440(24)14919-5/sref52
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref52
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref53
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref53
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref54
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref54
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref55
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref55
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref56
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref56
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref56
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref57
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref57
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref57
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref58
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref59
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref60
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref61
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref61
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref62
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref62
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref63
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref63
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref64
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref64
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref65
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref66
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref66
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref67
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref67
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref67
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref68
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref68
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref69
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-opdualag-unresectable-or-metastatic-melanoma
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-opdualag-unresectable-or-metastatic-melanoma
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref71
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref71
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref72
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref72
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref73
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref73
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref74
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref74
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref75
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref75
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref76
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref77
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref77
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref78
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref78
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref79
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref79
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref80
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref80
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref81
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref81
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref82
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref82
https://oncologypro.esmo.org/meeting-resources/esmo-congress-2022/first-in-human-phase-i-study-of-incagn02390-a-tim-3-monoclonal-antibody-antagonist-in-patients-with-advanced-malignancies
https://oncologypro.esmo.org/meeting-resources/esmo-congress-2022/first-in-human-phase-i-study-of-incagn02390-a-tim-3-monoclonal-antibody-antagonist-in-patients-with-advanced-malignancies
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref84
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref84
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref85
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref85
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref86
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref87
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref87
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref88
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref88
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref89
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref89
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref90
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref91
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref91
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref92
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref93
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref93


[94] K. Kulangara, N. Zhang, E. Corigliano, L. Guerrero, S. Waldroup, D. Jaiswal, et al., Clinical utility of the combined positive Score for programmed death ligand-
1 expression and the approval of pembrolizumab for treatment of gastric cancer, Arch. Pathol. Lab Med. 143 (3) (2019) 330–337.

[95] R. Cristescu, D. Aurora-Garg, A. Albright, L. Xu, X.Q. Liu, A. Loboda, et al., Tumor mutational burden predicts the efficacy of pembrolizumab monotherapy: a
pan-tumor retrospective analysis of participants with advanced solid tumors, J Immunother Cancer 10 (1) (2022).

[96] M. Ayers, J. Lunceford, M. Nebozhyn, E. Murphy, A. Loboda, D.R. Kaufman, et al., IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade,
J. Clin. Invest. 127 (8) (2017) 2930–2940.

[97] S. Lu, J.E. Stein, D.L. Rimm, D.W. Wang, J.M. Bell, D.B. Johnson, et al., Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint
blockade: a systematic review and meta-analysis, JAMA Oncol. 5 (8) (2019) 1195–1204.

[98] S.J. Rodig, D. Gusenleitner, D.G. Jackson, E. Gjini, A. Giobbie-Hurder, C. Jin, et al., MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade
in untreated metastatic melanoma, Sci. Transl. Med. 10 (450) (2018).

[99] A.O. Kamphorst, R.N. Pillai, S. Yang, T.H. Nasti, R.S. Akondy, A. Wieland, et al., Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted
therapy in lung cancer patients, Proc Natl Acad Sci U S A. 114 (19) (2017) 4993–4998.

[100] S.B. Goldberg, A. Narayan, A.J. Kole, R.H. Decker, J. Teysir, N.J. Carriero, et al., Early assessment of lung cancer immunotherapy response via circulating
tumor DNA, Clin. Cancer Res. 24 (8) (2018) 1872–1880.

A.E. Connor et al. Heliyon 10 (2024) e38888 

14 

http://refhub.elsevier.com/S2405-8440(24)14919-5/sref94
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref94
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref95
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref95
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref96
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref96
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref97
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref97
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref98
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref98
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref99
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref99
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref100
http://refhub.elsevier.com/S2405-8440(24)14919-5/sref100

	Examining the evidence for immune checkpoint therapy in high-grade serous ovarian cancer
	1 Introduction
	2 CTLA-4 and PD-1 in HGSOC
	2.1 CTLA-4
	2.2 PD-1

	3 The tumour microenvironment (TME) and external factors that can impact immune checkpoint inhibitor efficacy
	4 Emerging immune checkpoint inhibitors in HGSOC
	4.1 LAG-3
	4.2 TIM-3
	4.3 TIGIT family

	5 Combination therapy
	5.1 Chemotherapy
	5.2 Immune checkpoint inhibitor combinations
	5.3 Immune checkpoint inhibitors combined with PARPi

	6 Predictive biomarkers of ICI response
	6.1 Microsatellite instability (MSI)
	6.2 PD-L1 expression
	6.3 Tumour mutational burden (TMB)
	6.4 BRCA mutation
	6.5 Next generation biomarkers

	7 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Abbreviations:
	References


