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Infection Biology––Hans Knöll Institute (HKI) Jena, Beutenbergstrasse 11a, 07745 Jena, Germany, 3Theoretical
Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany,
4Center for Molecular Biology at Heidelberg University (ZMBH), German Cancer Research Center
(DKFZ)-ZMBH-Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany, 5Department of Molecular
Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel, 6Department of Bioinformatics and
Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, and Bioquant, University of Heidelberg, Im
Neuenheimer Feld 267, 69120 Heidelberg, Germany and 7Telomere Biology Group, Institute of Molecular Biology
(IMB), Ackermannweg 4, 55128 Mainz, Germany

Received February 19, 2015; Revised January 20, 2016; Accepted January 25, 2016

ABSTRACT

Understanding telomere length maintenance mech-
anisms is central in cancer biology as their dysreg-
ulation is one of the hallmarks for immortalization
of cancer cells. Important for this well-balanced con-
trol is the transcriptional regulation of the telomerase
genes. We integrated Mixed Integer Linear Program-
ming models into a comparative machine learning
based approach to identify regulatory interactions
that best explain the discrepancy of telomerase tran-
script levels in yeast mutants with deleted regulators
showing aberrant telomere length, when compared
to mutants with normal telomere length. We uncover
novel regulators of telomerase expression, several
of which affect histone levels or modifications. In
particular, our results point to the transcription fac-
tors Sum1, Hst1 and Srb2 as being important for the
regulation of EST1 transcription, and we validated
the effect of Sum1 experimentally. We compiled our
machine learning method leading to a user friendly
package for R which can straightforwardly be applied
to similar problems integrating gene regulator bind-
ing information and expression profiles of samples
of e.g. different phenotypes, diseases or treatments.

INTRODUCTION

Telomeres protect the eukaryotic chromosomal ends
against fusion, degradation and unwanted double-strand
break repair mechanisms. The length and structure of
telomeres is tightly controlled (1). Telomeric DNA is syn-
thesized by telomerase, an enzyme not expressed in most
somatic cells. In humans, the majority of cells lack telom-
erase activity and telomeres shorten gradually with each
cell division. The accumulation of critically short telom-
eres leads to replicative senescence and eventual cell death.
About 85–90% of primary tumors re-express telomerase ac-
tivity, thereby enabling those cells to become immortal by
maintaining their telomere length (2). Thus, understand-
ing the mechanisms that maintain telomere length can have
substantial medical implications, in particular for ageing
and carcinogenesis. Saccharomyces cerevisiae is a well stud-
ied model organism with an active telomerase enzyme (3).
Telomerase of S. cerevisiae is comprised of the RNA tem-
plate, TLC1, and the ‘Ever shorter telomere’ proteins Est1,
Est2 and Est3. Est2 is the catalytic subunit of telomerase,
while Est1 and Est3 are TLC1-RNA-associated proteins
(4). Cdc13 (Est4) is a sequence-specific telomere-DNA-
binding protein, involved in telomere capping to protect the
chromosomal ends from degradation and it interacts with
Est1 to recruit the telomerase complex (2).

The yeast genome has close to 6000 recognized genes. By
systematically deleting each individual non-essential gene,
a collection of 4700 mutants (knockouts) was established
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[non-essential yeast mutant collection (5)]. This collection
was later complemented by two additional libraries of mu-
tants of all the essential genes (yeast has ∼1300 essen-
tial genes) whereby either hypomorphic (6) or temperature-
sensitive alleles (7) of the genes were created. Systematic
mutant screens can be carried out with these mutant col-
lections even if the phenotype of interest is not selectable.
Genome-wide screening efforts resulted in a comprehen-
sive list of genes that, when mutated, affect telomere length
in S. cerevisiae (8–12). These systematic screens revealed
that ∼8% of the genes within the yeast genome affected
(either directly or indirectly) telomeric length homeostasis.
Indeed, a total of ∼500 of such telomere-length mainte-
nance (TLM) genes were identified. About 60% of the iden-
tified TLM genes lead to short telomeres when mutated
compared to the wild-type and the other 40% to elongated
telomeres. TLM proteins have many different biochemical
functions and localize to several compartments in the cell.
Most of these were not known to play a role in homeostasis
of telomere length, and their mechanism of action is only
now starting to be studied.

In this study, we followed a computational approach
and used this phenotypic information (aberrant telomere
length) as a starting point to elucidate the transcriptional
regulation of the telomerase holoenzyme. TLC1 was ex-
cluded from the analysis because no expression data was
available. To predict the effect of putative regulators (tran-
scription factors, chromatin modifiers) of the telomerase
genes, we followed a Mixed Integer Linear Programming
(MILP) approach we developed recently (13). MILP can be
used as a powerful linear regression method. Compared to a
lasso regression approach, the most prominent advantages
of an MILP-based regression are that the error penalties are
linear avoiding over-emphasizing outliers (L1 regression)
and MILP allows integrating binary switches or discrete
constraints [for details, see (13)]. We constructed regulatory
models using the MILP approach and a comprehensive set
of gene expression profiles of deletion strains of S. cerevisiae
(14,15). To restrict the TLM list to those that are expected to
impact on telomere length through a direct regulation of the
EST genes, we focused on deletion strains of transcriptional
regulators that lead to telomere shortening (short tlms). Pu-
tative binding interactions were inferred from ChIP experi-
ments of regulators binding to their targets [taken from the
database YEASTRACT (www.yeastract.com) and (16)]. To
select the regulators being relevant specifically for telomere
maintenance (and the corresponding telomere phenotype),
we set up a discriminative machine learning algorithm and
studied the regulation of the EST genes in regulator dele-
tion strains with aberrant telomere length (short tlm mu-
tants) compared to regulator deletion strains with normal
telomere length (non-TLM genes or controls). We identi-
fied genes affecting histone levels and modifications as the
main regulators of telomerase transcription in yeast, and we
identified the transcription factors Sum1, Hst1 and Srb2 as
most promising hits regulating EST1.

MATERIALS AND METHODS

Gene expression data

We used published microarray gene expression data of 269
yeast regulator deletion strains (strains BY4741, S288C and
BYTET). This dataset was originally generated by Hu et
al. and consisted of 588 two-color cDNA microarray hy-
bridizations of 269 regulator mutants against a reference
sample (14). The dataset of Hu et al. was re-analyzed by
Reimand et al. (15), and we used the data from the latter.
Briefly, all probes on the arrays which were not annotated as
open reading frames were removed. For duplicated and trip-
licated probes the average was calculated. The re-analysis
included a variance stabilizing normalization (15,17). Al-
together, this pre-processed dataset of Reimand et al. con-
sisted of expression values of 6253 protein-coding genes
for 269 regulator deletion strains and was taken from Ar-
ray Express (E-MTAB-109, www.ebi.ac.uk/arrayexpress/).
For our model, we performed a z-score transformation for
each gene across the whole dataset. To annotate each dele-
tion strain as a deletion of a TLM gene, we used the re-
sults from (8–12) yielding knockout samples for 18 tlm mu-
tants showing shortened telomeres (short tlm mutants), 11
showing elongated telomeres (long tlm mutants) and 240
non-TLM controls (normal telomere length) (Supplemen-
tary Table S1).

Constructing the regulatory network

To identify regulators of the EST genes, we first constructed
a regulatory network consisting of 6728 nodes and 203 234
edges between 382 regulators and 6346 target genes. The
network based on the binding information taken from the
YEAst Search for Transcriptional Regulators And Con-
sensus Tracking (YEASTRACT) database (www.yeastract.
com) and a study of Yu and Gerstein (16). To date (Au-
gust 2015), YEASTRACT bases on more than 1300 pub-
lications. We used only YEASTRACT entries annotated
as ‘documented’ (DNA binding plus expression evidence)
from high-throughput chromatin immunoprecipitation as-
says (ChIP-on-ChIP) and in silico refinements of this data
(15,18,19). In addition, we used binding information from
the study of Yu and Gerstein, who studied hierarchical
structures in gene regulatory networks of yeast (16). In the
following, these putative regulatory interactions of our reg-
ulatory network are denoted as ‘known binding’, the respec-
tive regulators ‘putative regulators’ and the targets ‘putative
targets’.

Modeling EST regulation

Typically several regulators bind to a gene’s promoter, each
contributing to the expression of the target gene (13,20–25).
We used a MILP approach to predict gene expression of
EST genes to (i) address additive cooperativity; and (ii) to
select the most relevant regulators of the EST genes.

As depicted in Supplementary Figure S1, the model con-
tained the three EST genes regulated by n regulators R1-Rn.
The predicted gene expression value g̃ik was calculated as:

g̃ik = β0 +
∑T

t=1
βt ∗ esti ∗ acttk (1)

http://www.yeastract.com
http://www.ebi.ac.uk/arrayexpress/
http://www.yeastract.com
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where, β0 was an additive offset, T the number of all investi-
gated regulators, βt was the optimization parameter for reg-
ulator t, esti was the edge strength between regulator t and
its putative target gene i and acttk the activity of regulator t
in sample k. To model strain specific effects of a regulator,
the activity was calculated as:

acttk =
∑n

i=1 esti ∗ |gik|∑n
i=1 esti

. (2)

acttk was the estimated effect of regulator t in strain k, esti
the edge strength between regulator t and gene i, gik the gene
expression of gene i in strain k. Equation (2) defines the ac-
tivity based on the cumulative effect of a regulator on all
its target genes, normalized by the sum of all target genes
to balance regulators with high and low numbers of targets.
As regulators may be post-transcriptionally regulated, we
didn’t use the expression values of a regulator to estimate
their sample specific effect. Instead, similar to Balwierz et al.
(26), we estimated the activity of a regulator in a deletion
strain by the differential expression of their putative target
genes. The basic idea is that a regulator is more likely to
be active in the specific sample if the putative targets are
differentially expressed. The edge strength esti was the edge
weight between the regulators and the target genes. It was
equal to 1 if gene i was reported to be a target of regulator
t (known-binding, selected from YEASTRACT), and was
zero otherwise.

The objective for the optimization problem was to mini-
mize the difference of the measured transcript level (from
the microarrays) and the predicted gene expression g̃ik
value, i.e. minimizing the error terms eik (L1 regression)

min
∑l

k=1
|gik − g̃ik| =

∑l

k=1
eik. (3)

Because the linear optimizer could not handle absolute
values, the absolute values were transformed into two in-
equalities for each gene i and knockout sample k,

gik − g̃ik − eik ≤ 0 (4)

− gik + g̃ik − eik ≤ 0. (5)

To solve this optimization problem we used the optimizer
Gurobi (www.gurobi.com, version 6.0–6.04). To gain a rep-
resentative variety of models with different sizes, we con-
structed models constraining the number of regulators. For
each EST gene, models were constructed starting by one
regulator up to a maximum of n-2 putative regulators (with
known binding), where n was the number of samples. Af-
ter constraining the number of regulators, the prediction er-
ror was minimized by the optimizer [Equation (3)]. To gain
an objective estimate for the performance and to circum-
vent overfitting, we performed cross-validation and resam-
pling (see next section). The prediction performance of our
model was estimated by the correlation between the mea-
sured (from the validation sets) and the predicted gene ex-
pression value (gained from the training sets).

The machine learning approach

A schematic overview of the workflow is given in Figure
1. To predict the transcript levels of each EST gene in the

Figure 1. Schematic overview of the computational workflow. Using the
expression profiles of short tlm knockout mutants as well as randomly se-
lected control samples, a cross-validation was performed employing our
linear modeling approach (inner loop for parameter optimization not
shown). A significance test was performed to identify significant regula-
tors being highly relevant for explaining expression of short tlm knockouts,
while being not relevant for the controls.

knockout strains which affect telomere length, we divided
the dataset into data from knockout strains that showed
short telomeres (short tlm mutants), long telomeres (long
tlm mutants) and a control dataset showing normal telom-
ere length. We mainly focused on the short telomere pheno-
type, because telomere elongation is an important hallmark
of cancerogenesis. This resulted in a dataset of 18 short tlm
mutants and 240 control knockout samples. For each target
gene (EST1, EST2, EST3), we performed a ten-times six-
fold cross-validation. Explicitly, the algorithm proceeded as
follows:

(i) We randomly selected 120 datasets of all control sam-
ples (drawing with replacement).

(ii) Datasets of the 18 short tlm mutants as well as of the
120 control samples were randomly divided into six
equally sized partitions. Five sixths (15 short tlm sam-
ples, 100 controls) were used to train the regulatory
model and the remaining sixth was used to validate
the predictions.

(iii) The modeling was done separately for the short tlm
mutants and the control datasets. To obtain solutions
of a large range of model sizes, we generated models
of different sizes:
(a) we started with constraining the models to

use only one regulator, i.e. the number of �-
parameters was limited to a maximum of two (�0
and one � for the optimal regulator).

(b) This was repeated increasing the limit by one, now
allowing one more �-parameter to be used by the
model.

(c) Step (b) was repeated until the allowed number
of �-parameters reached eleven (for 10 regula-
tors with known binding information to the target
gene, plus �0).

http://www.gurobi.com
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For each number of regulators we further did a
fivefold inner cross-validation, which means the
training dataset was divided into fifths and four
fifths were used to determine the combination of
regulators (training phase of the model) and the
remaining one fifth to test the performance of the
combination. The combination with the best per-
formance was then used for the remaining steps.
Running (a) to (c) yielded two lists of selected reg-
ulators, one list for the short tlm mutants, and one
list for the controls.

(iv) Steps (ii) and (iii) were repeated six times covering all
possible partitions to be training sets.

(v) To estimate the performance of the models, we used
the validation datasets and calculated the Pearson cor-
relation of the predicted gene expression values (bas-
ing on the �-parameters yielded from the training
sets) and the real expression values of the validation
datasets from all six runs.

(vi) Steps (ii) to (v) were one cross-validation, and we re-
peated these steps ten-times.

(vii) For the control samples, steps (i) to (vi) were repeated
ten-times to cover their large variety.

For each EST gene, altogether 60 different models were
constructed for the short tlm mutants and 600 for the con-
trol samples. For each model, we counted how often each
regulator was selected by the optimizer. With these distribu-
tions we did a one-sided Wilcoxon Test for each regulator in
the list to identify significantly different regulators between
the short tlm mutants and the control samples. Significant
levels (P-values) were corrected for multiple testing using
the Benjamini–Hochberg method (27).

Analyzing regulator activity correlation

To identify potential false negatives, we calculated the Pear-
son correlation between the activities of all pairs of regula-
tors (t, t’) of the EST genes across the investigated samples.
This was done separately for the dataset of short tlm mu-
tants and the controls and led to two correlation matrices,
one for each dataset, which we called TxT matrices. To get
regulators that were active specifically in the short tlm mu-
tants, we subtracted the TxT matrix of the controls from
the TxT matrix of the short tlm mutants leading to a dif-
ferential TxT matrix. All matrices can be found in the Sup-
plementary Material (Supplementary Table S4). Addition-
ally, we also calculated the correlation between the activ-
ity of all putative regulators (with known binding informa-
tion) of each EST gene and the gene expression values of the
corresponding EST gene, again separately for the short tlm
mutants and the controls to get further hints for regulators
which may have been disregarded in the modeling. The reg-
ulators were ranked by their correlations for both datasets
and also for the correlation differences between the datasets.
The results were then compared to the significant regulators
obtained by our modeling and to the top entries of the dif-
ferential TxT matrix to identify additional (potentially false
negative) regulators.

Co-regulation

To identify regulators with synergistic effects (complex part-
ners, similar activity values), we simulated regulator knock-
outs by disregarding the edge between the regulator and the
target gene. We then calculated models for the short tlm
samples and the control dataset as described above (’The
machine learning approach’). This was done exemplarily for
Hst1 and Sum1. We further constructed models mimick-
ing cooperative activity as described elsewhere (28) calcu-
lating the geometric mean. The activity of the combination
Sum1 Hst1 was calculated by

actSum1 Hst1,k = √
actSum1,k ∗ actHst1,k, (6)

of knockout sample k.

Experimental validation: EST1 expression analysis

Yeast RNA was extracted as described previously (29). The
RNA was DNase I treated for 1 h at 37◦C using the RNase-
Free DNase Set (QIAGEN). A total of 3 �g RNA of wild-
type cells (BY4741 Mat a, BY4742 Mat �) and sum1 mu-
tants of both strains have been reverse transcribed with
oligodT12–18 (12.5 ng/�l) following the protocol of the Su-
perscript III RT Kit (Invitrogen). Respective minus-RT con-
trols were used to assess the DNA backgrounds. The cDNA
was diluted 2.5 times in H2O and analyzed by qPCR with
the DyNAmo Flash SYBR Green qPCR Kit (Thermo Sci-
entific) in technical triplicates: 10 min at 95◦C, 35 cycles
of 15 s at 95◦C and 1 min at 60◦C. qPCR-primers have
been used at a final concentration of 500 nM (EST1-FWD:
GCT GCC ACA ATG GGA AGT TTC G; EST1-REV:
TGC CAG GAG GGT TTG ATG ACG; ACTIN-FWD:
CCC AGG TAT TGC CGA AAG AAT GC; ACTIN-REV:
TTT GTT GGA AGG TAG TCA AAG AAG CC). The
EST1 values were normalized to ACTIN expression (�Ct
method). The expression (2−delta Ct) of EST1 in sum1 mu-
tants relative to the respective wild-type strain (Mat a/�)
is displayed for three biological replicates (Figure 2). Two-
tailed unpaired t-tests with Welch’s correction were per-
formed to test for significant differences.

RESULTS

Rationale

The TLM network represents a potentially useful target for
anticancer therapy, as telomere length maintenance is a pre-
requisite for the constant growth of cancer cells. In particu-
lar, we were interested in transcriptional regulators that lead
to short telomeres when deleted (abbreviated as ‘short tlm
mutants’ in the following). These mutants are defective for
positive regulators of telomere elongation and have a high
chance to modulate the expression of the EST genes, which
encode the telomerase complex. Thus, we investigated reg-
ulator knockout strains which were short tlm mutants and
analyzed their effects on the expression of the EST genes.
As samples for the modeling we used yeast deletion strains
of transcription factors or chromatin modifiers. These dele-
tion strains were then divided into a short tlm dataset and a
control dataset (and later also a long tlm dataset was used,
see below). The sample sizes and their overlaps between the
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TLM genes, the regulator deletion strains and the putative
regulators are shown in a Venn diagram (Supplementary
Figure S2). The workflow for our study is depicted in Fig-
ure 1. We assumed that TLM genes that, when mutated, re-
sult in short telomeres, may participate in a transcriptional
network culminating in the expression changes of the EST
telomerase components. To identify specific regulators best
explaining Est transcript levels in the short tlm knockout
strains, we constructed linear models for each EST gene.
The task for the linear models was to predict the gene ex-
pression of each EST gene in each sample using activity in-
formation (for each specific sample) of putative regulators.
Putative regulators were selected from a database according
to experimental evidence of the regulator’s binding to the
promoter of the EST gene (listed in Supplementary Table
S2). We note that the calculated sample specific activity of a
regulator is based on the cumulative differential expression
of the regulator in the according sample. The models were
optimized to select regulators which led to the best predic-
tion of EST gene expression in each sample. This procedure
was done twice, i.e. for the expression data of the short tlm
knockout mutants, and for the expression data of the con-
trols. We calculated models of different complexity for each
dataset (short tlm knockout strains and the controls) em-
ploying cross-validation. From all these different runs, we
counted how often each regulator was selected by the op-
timized models. This yielded two lists of regulator counts,
one list for the short tlm mutants and one for the controls.
To find regulators specifically explaining the regulation of
EST genes in the short tlm knockout strains, the frequency
of each regulator (Supplementary Figure S3) was compared
between the short tlm mutants and the models for the con-
trols. Performing a test of significance for each putative reg-
ulator led to the identification of regulators that specifically
affect EST expression in the short tlm knockout mutants.

Investigating the predictions of the model

Running our models as described above yielded 32 signif-
icant regulators for Est1, Est2 and Est3, respectively (Ta-
ble 1). The models were learned on training data. To esti-
mate their performances, we used independent validation
data for which we calculated the correlation of the modeled
predicted expression values and the experimental expres-
sion values. For the models predicting Est1 regulators, we
got a good overall Pearson correlation coefficient (PCC) of
r = 0.51, for Est2 and Est3 the performance was lower (PCC
r = 0.30 and r = 0.12, respectively). All correlations were
highly significant (for all: P < 2.2 E-16; more details on per-
formance estimates and model statistics, see Text S1 in the
Supplementary Material). In the following, we focus on pre-
dicted regulators with a high impact on the expression of the
predicted EST targets, i.e. we selected predicted regulators
with less than 1000 putative targets and a strong knockout
effect (absolute z-score > 1) or regulators which are TLM
genes. For each EST gene, the main regulators detected are
marked in bold in Table 1 (expression values are given by
z-scores, also in the following). A high value of expression
indicates an upregulation of the EST gene when the regu-
lator was knocked out. This suggests an inhibitory effect of
the regulator. Downregulation, in contrast, suggests an ac-

tivating effect of the regulator. Interestingly, several of the
regulators identified in our study are by themselves TLM
genes, and when mutated affect telomere length. Regula-
tors that cause short telomeres when mutated (8,10) were
Sum1, Hst1, Srb2 and Sin3 and are marked in red in Ta-
ble 1. One of the regulators of EST3 (Dig1, blue in Table
1), causes telomere elongation when deleted (10). To inves-
tigate if aberrant telomere length in general is putatively due
to transcriptional regulation, we also investigated our mod-
els feeding them with expression data of short and long tlm
mutants. Again, we compared the results to the control sam-
ples. Consistently, we yielded quite similar results as using
the data of only the short tlm mutants (see Supplementary
Table S3).

Regarding the results of the short tlm mutants, for EST1,
we found Sum1 (P = 1.96 E-29), Hst1 (P = 1.96 E-29)
and Srb2 (P = 1.14 E-7) to be highly significantly enriched
in our predictions. For the predicted regulators, we inves-
tigated the literature (Pubmed, www.ncbi.org) in the con-
text of ‘telomere’, ‘telomerase’ and each of the EST gene
symbols. Sum1 is a general chromatin silencing factor, as
well as an initiation factor of replication. Furthermore, it
is involved in the regulation of middle-sporulation genes.
Sum1 builds a complex with the sirtuin protein Hst1 and the
protein Rfm1, repressing genes through histone deacety-
lation (30–33). The sirtuin family members Sir2 and Hst1
have been reported to show similarity with Sum1 in telom-
ere maintenance because of their specific co-enriched bind-
ing sites and their interaction with Rap1, a protein bind-
ing at the telomeric repeat regions (30–33). Srb2 is a sub-
unit of the RNA polymerase II mediator complex. It is ei-
ther directly involved in TLC1 transcription or indirectly in
TLC1 accumulation (34). In the data we analyzed, Sum1
influenced the regulation of EST1 most strikingly: for the
sum1 knockout strain, EST1 showed the highest expression
level among all knockout mutants investigated (z-score =
6.85, log-fold change = 0.93, see also Supplementary Fig-
ure S4a). EST1 expression was also distinctively upregu-
lated in the hst1 (z-score = 3.61) and srb2 knockout mu-
tants (z-score = 2.08). In summary, Sum1, Hst1 and Srb2
are very likely to regulate EST1 by inhibition. This result
is unexpected, as strains deleted for SUM1, HST1 or SRB2
exhibit short telomeres (see ‘Discussion’ section). We exper-
imentally validated this new finding exemplarily with Sum1
(see next section). Gln3 is the only significant regulator of
EST2 fulfilling the z-score and the target number criteria.
Gln3 is involved in Tor Complex 1 regulated telomere short-
ening upon starvation by controlling the level of the Ku het-
erodimer (35). For EST3, the regulators Ume6, Sin3, Srb2,
Hir1 and Dig1 were highly significant. Sin3 interacts with
Rpd3 and Rpd2 to form histone deacetylase complexes. It
is involved in the transcriptional repression and activation
of diverse processes (36). Sin3 plays a role in silencing, re-
pair of DNA double-strand breaks, and telomere length
maintenance. In the complex with Rpd3, Sin3 affects si-
lencing at the telomeres (36). Ume6 is another interactor
of Rpd3 and a key regulator of early meiotic genes. It is in-
volved in chromatin remodeling and in the recruitment of
Sin3 and Rpd3 subunits of the histone deacetylase complex
(37). Thus, our approach identified two different proteins
of the Rpd3-based histone deacetylase complexes. In sum-

http://www.ncbi.org
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Table 1. Significant regulators of EST genes
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mary, our machine learning based linear modeling predic-
tions identified mainly regulators involved in the regulation
of chromatin and histone modifications.

Experimental validation of the predicted effect of Sum1 on
EST1 expression

Because the sum1 deletion strain showed the highest effect
on EST1 expression (Supplementary Figure S4a) and was
a distinctively significant hit of our predictions, we inves-
tigated gene expression of EST1 in the wild-type and the
sum1 mutant. Because Sum1 is involved in mating-type reg-
ulation (38), the expression of EST1 was measured for sum1
mutants of both mating types, Mat a and Mat �, by RT-
qPCR. The results are shown in Figure 2. For both sum1
mutants, EST1 was highly upregulated (4.37-fold ± 0.67
SEM for Mat a and 6.00-fold ± 0.48 SEM for Mat �). This
high upregulation of EST1 in the sum1 mutants observed
by individual PCR is comparable to our observation of the
investigated microarray gene expression data (15), which we
used for our modeling analysis. In summary, we could show
that the sum1 knockout has a strong repressive effect on the
expression of EST1.

Correlation analysis between regulator activities and EST ex-
pression

If the activity of a regulator was very similar to the activ-
ity of another regulator in each of the investigated samples,
the model may have difficulties distinguishing between them
and may neglect one of these regulators causing false neg-
atives. To identify such potential false negatives, we calcu-
lated the correlation between all regulator activities (Sup-
plementary Table S4) as well as between the regulator ac-
tivities and the expression of the EST genes (Supplemen-
tary Tables S5–S7). This was done separately for the short
tlm mutants and the controls, and the regulators with the
largest differences were selected to obtain short tlm mutant
specific regulators (Supplementary Table S8 shows the se-
lected candidates, Supplementary Table S4 contains the cor-
relations of activities of all potential pairs of regulators of

Figure 2. Expression of EST1 in sum1 deletion strains of both mating-
types (left: mating-type a; right: mating-type �) compared to the wild-type
(measured by RT-qPCR). The expression values are given relative to the
control (actin). The error bars indicate the standard error (SEM) over the
three replicates. Two-tailed unpaired t-tests with Welch’s correction were
performed to test for significant differences.

short tlm mutants, controls and the differences, for details
of this analysis, see Text S2 in the Supplementary Material).
For EST1 and EST2 no further regulators were found. In-
terestingly, we found good correlation of Sum1 and Hst1
suggesting a cooperativity which was supported by a model
for this (details, see Supplementary Text S3). For EST3, we
found Gln3 as a potential further regulator with similar ac-
tivity and expression correlation as Dig1 (Supplementary
Tables S7 and S8).

Software implementation and availability

The method is implemented within the software package
MIPRIP for R (www.r-project.org). It is freely available at
http://www.leibniz-hki.de/en/miprip.html. MIPRIP is plat-
form independent and runs on R version 3.1.2 together with
RStudio version 0.98.1103 and Gurobi version 6.0.4. In-
stead of solving the Mixed Integer Linear Models directly,
all analyses were implemented in R using the Gurobi R API.
MIPRIP uses the standard CRAN R package slam.

DISCUSSION

Telomere length needs to be precisely controlled during em-
bryogenesis and for cancer cell immortalization. Central for
this well balanced control is the transcriptional regulation
of the telomerase, a protein complex encoded in S. cerevisiae
by the three EST genes and TLC1. S. cerevisiae is a well
suited model organism to study telomere biology of cancer
cells as more than a quarter of all yeast genes have human
homologs and the telomerase is constitutively expressed
and functional in yeast (3). The candidate regulators we se-
lected mainly based on ChIP-binding information. Hence,
the regulators of the EST genes we used for the modeling are
able to bind to the promoters of the target genes. To identify
regulators best explaining the expression of the EST genes
we used our previously developed linear modeling approach
based on MILP (13). This method was embedded into a ma-
chine learning procedure to identify regulators that specifi-
cally regulate telomerase. Models of knockout strains show-
ing short telomeres were compared to controls, hypothe-
sizing that the absence of these regulators may directly in-
fluence telomerase expression and hence reduce telomerase
activity. Although telomerase is regulated at various post-
transcriptional levels and by many signaling processes, our
aim was to find novel transcriptional regulators of telom-
erase. Hence, a hidden assumption of our approach was that
transcription levels of the EST genes could be a limiting fac-
tor in telomere maintenance and we investigated EST ex-
pression of strains with knocked out regulators which by
themselves are TLM genes that show abnormal telomere
length when deleted. For EST1, our most prominent hits
were Sum1 and Hst1. Sum1 is a general chromatin silenc-
ing factor. In a complex with Hst1 and Rfm1, it represses
gene expression through histone deacetylation at their pro-
moters. In the context of telomeres, Sum1 is known to be
involved in telomere maintenance through an interaction
with Rap1, similarly to sirtuins Sir2 and Hst1 (30). How-
ever, a role for Sum1 in directly regulating the expression
of telomerase genes has not been reported so far. Further-
more, we identified Srb2 to be highly significant for EST1

http://www.r-project.org
http://www.leibniz-hki.de/en/miprip.html
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regulation. In addition, Gln3 is a significant regulator of
EST2 and Sin3, Dig1, Srb2, Hir1 and Ume6 are regulators
of EST3. Similarly, no previous reports linked these reg-
ulators to the regulation of telomerase expression. EST1
expression was highly upregulated in the sum1, hst1 and
srb2 knockout strains (Supplementary Figure S4a); EST2
was highly downregulated in the gln3 mutant (Supplemen-
tary Figure S4b) and EST3 was highly upregulated in the
ume6 mutant and downregulated in sin3, srb2, dig1 and hir1
(Supplementary Figure S4c). The different effects of delet-
ing UME6 and SIN3, two genes that in meiosis usually act
together to repress expression of meiotic genes (39) is sur-
prising, although not unseen: previous work has shown that
the repressive effect of Ume6 can be switched, so it can
act as a positive regulator (40,41). Our results suggest that
Sum1 and Hst1 may act in combination in EST1 regula-
tion, consistent with the idea that they do so as part of the
histone deacetylase complex they form together with Rfm1
(30–33). It was shown elsewhere that Rfm1 tethers Hst1 and
Sum1 (32), hence it is likely that Rfm1 may be indirectly in-
volved in EST regulation. Our quantitative RT-PCR results
confirmed the upregulation of EST1 in a sum1 mutant, in
line with the investigated microarray data from Reimand et
al. (15). This implies a role for Sum1 in negatively regulat-
ing EST1. However, contrary to the expectations, deletion
of SUM1 leads to a short telomere phenotype. We there-
fore speculated that high EST1 expression may have a nega-
tive effect on telomere length. We investigated EST1 expres-
sion in all 18 short tlm regulator knockouts and compared
it with the non-TLM controls. Indeed, we found a signif-
icant difference (P = 0.047, Student’s t-test): for the short
tlm mutants the average expression of EST1 was z-score =
0.78, while it was z-score = -0.056 for the control group.
Thus, EST1 seems to be upregulated in the short tlms. We
speculate that excessive EST1 may cause an imbalance be-
tween the subunits of the telomerase holoenzyme, limiting
telomerase activity, for example by titration of factors im-
portant for telomerase activity, such as the RNA template
Tlc1 or the recruiting factor Cdc13. Alternatively, it may
bind to telomeres (42) and compete with functional com-
plexes. Such a mechanism suggests a further role of Sum1
and Hst1 in telomere maintenance besides their role in Rap1
dependent telomeric recruitment (30).

Although to date the identified regulators had not been
shown to regulate the telomerase complex directly on a
transcriptional level, some of the regulators we found were
reported to be involved in telomere maintenance (by e.g.
chromatin remodeling). Thus, we hypothesize the existence
of feed-forward loops strengthening the regulatory signal.
Such feed-forward loops have been intensively investigated
for cellular networks, as a way to improve signal to noise
ratios as they respond to rather persistent signals (43–46).
We suggest that Sum1 together with Hst1 and EST1 form
an incoherent feed-forward loop regulating telomere length,
where Sum1/Hst1 and EST1 positively regulate telomeres
and Sum1/Hst1 negatively regulates EST1 (Supplementary
Figure S5) whose over expression may compromise normal
telomere elongation activity.

In summary, we embedded our novel concept of linear
regulation models based on MILP into a useful machine
learning strategy which enabled us to identify novel regula-

tors of the telomerase holoenzyme, where Sum1 is the most
promising regulator of EST1.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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