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Abstract

Low success rates during drug development are due, in part, to the
difficulty of defining drug mechanism-of-action and molecular
markers of therapeutic activity. Here, we integrated 199,219 drug
sensitivity measurements for 397 unique anti-cancer drugs with
genome-wide CRISPR loss-of-function screens in 484 cell lines to
systematically investigate cellular drug mechanism-of-action. We
observed an enrichment for positive associations between the pro-
file of drug sensitivity and knockout of a drug’s nominal target,
and by leveraging protein–protein networks, we identified
pathways underpinning drug sensitivity. This revealed an unappre-
ciated positive association between mitochondrial E3 ubiquitin–
protein ligase MARCH5 dependency and sensitivity to MCL1
inhibitors in breast cancer cell lines. We also estimated drug on-
target and off-target activity, informing on specificity, potency and
toxicity. Linking drug and gene dependency together with genomic
data sets uncovered contexts in which molecular networks when
perturbed mediate cancer cell loss-of-fitness and thereby provide
independent and orthogonal evidence of biomarkers for drug
development. This study illustrates how integrating cell line drug
sensitivity with CRISPR loss-of-function screens can elucidate
mechanism-of-action to advance drug development.

Keywords CRISPR-Cas9; drug mechanism-of-action; protein networks

Subject Category Pharmacology & Drug Discovery

DOI 10.15252/msb.20199405 | Received 18 December 2019 | Revised 14 May

2020 | Accepted 21 May 2020

Mol Syst Biol. (2020) 16: e9405

Introduction

Understanding drug mechanism-of-action and evaluating in cellular

activity is challenging (Santos et al, 2017), and widespread target

promiscuity contributes to low success rates during drug develop-

ment (Klaeger et al, 2017). For target-based drug development, a

detailed understanding of drug mechanism-of-action provides infor-

mation about specificity and undesirable off-target activity which

could lead to toxicity and a reduced therapeutic window (Lin et al,

2019). Furthermore, molecular biomarkers can be used to monitor

drug activity for patient stratification during clinical development.

The cellular activity of a drug is influenced by multiple factors

including the affinity and selectivity of the compound for its target

(s) and the penetrance of target engagement on cellular phenotypes.

An array of biochemical, biophysical, computational and cellular

assays are used to investigate drug mechanism-of-action (Schenone

et al, 2013). For example, protein kinase inhibitors are profiled

in vitro for their specificity and potency against panels of purified

recombinant protein kinases. While informative, this approach fails

to recapitulate the native context of the full-length protein in cells

which could influence true drug activity, nor does it identify poten-

tial non-kinase off-target effects. Cellular-based approaches to inves-

tigate mechanism-of-action include transcriptional profiling

following drug treatment of cells, chemical proteomics approaches

such as kinobeads (Bantscheff et al, 2007; Médard et al, 2015) and

cellular thermal shift assay (Savitski et al, 2014) to measure drug–

protein interactions, and multiplexed imaging or flow-cytometry to

measure multiple cellular parameters upon drug treatment (Li et al,

2017; Subramanian et al, 2017; Reinecke et al, 2019). Despite the

utility of these different approaches, gaining a full picture of drug

mechanism-of-action, particularly in cells, remains a challenge and

new approaches would be beneficial.
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Pharmacological screens (Barretina et al, 2012; Garnett et al,

2012; Iorio et al, 2016; Subramanian et al, 2017; Lee et al, 2018)

have been used to profile the activity of hundreds of compounds in

highly annotated collections of cancer cell lines with the aim of

identifying molecular markers of drug sensitivity to guide clinical

development (Cook et al, 2014; Nelson et al, 2015). More recently,

CRISPR-based gene-editing has enabled the evaluation of highly

specific and penetrant gene knockout effects on cell fitness genome-

wide in hundreds of cancer cell lines (Jinek et al, 2012; Shalem

et al, 2014; Hart et al, 2015; Meyers et al, 2017; Behan et al, 2019).

This has provided rich functional resources to explore cancer

vulnerabilities and to identify candidate drug targets (Marcotte et al,

2016; Meyers et al, 2017; Tsherniak et al, 2017; Behan et al, 2019).

Parallel integration of gene loss-of-function screens with drug

response can be used to investigate drug mechanism-of-action

(Deans et al, 2016; Subramanian et al, 2017; Jost & Weissman,

2018; Wang et al, 2018; Zimmermann et al, 2018; Hustedt et al,

2019a,b).

Here, we integrate recent genome-wide CRISPR-Cas9 loss-of-

function screens with pharmacological data for 397 unique

anti-cancer compounds in 484 cancer cell lines. This provided an

unsupervised and comprehensive characterisation of drug mecha-

nism-of-action using CRISPR-Cas9 screens and recapitulated nomi-

nal drug targets, gave insights into drug potency and selectivity, and

defined cellular networks underpinning drug sensitivity. Illustrating

the utility of our approach, we identified a link between mitochon-

drial ubiquitin ligase MARCH5 in the response to MCL1 inhibitors,

especially in breast cancer cell lines. Furthermore, we defined

robust pharmacogenomic associations, represented by genetic

biomarkers independently supported by drug response and gene fit-

ness measurements. These identify genetic contexts associated with

drug-pathway dependency and provide a more refined set of

biomarkers. Collectively, we present an approach to leverage phar-

macological and CRISPR screening data to inform on drug in cellular

mechanism-of-action and thus guide drug development.

Results

Cancer cell line drug sensitivity and gene fitness effects

We analysed data sets from a highly annotated collection of 484

histologically diverse human cancer cell lines (Dataset EV1). Cell

line information is available through the Cell Model Passports web

portal (http://cellmodelpassports.sanger.ac.uk/) (van der Meer

et al, 2019). These have been extensively genetically characterised

and utilised for both large-scale drug sensitivity testing and CRISPR-

Cas9 whole-genome loss-of-function screens (Garnett et al, 2012;

Iorio et al, 2016; Meyers et al, 2017; van der Meer et al, 2019; Picco

et al, 2019) as part of the Cancer Dependency Map initiative

(https://depmap.sanger.ac.uk/). We expanded on published single

agent drug sensitivity data (Garnett et al, 2012; Iorio et al, 2016;

Lynch et al, 2016; Picco et al, 2019) to consider 199,219 IC50 values

for 397 unique cancer drugs (480 drugs including duplicates,

Dataset EV2). These encompassed FDA-approved cancer drugs,

drugs in clinical development and investigational compounds, with

multiple modes of action, including 24 chemotherapeutic agents and

367 small molecule inhibitors. Drugs considered in this study had a

response in at least three cell lines (IC50 lower than half of the maxi-

mum screened concentration) and 86% of all possible drug/cell line

IC50 measurements have been experimentally evaluated (Fig EV1A,

Dataset EV3). Two experimental protocols were used to generate

drug sensitivity measurements, named GDSC1 (Iorio et al, 2016)

and GDSC2 (Picco et al, 2019) (Fig EV1B). A principal component

analysis (PCA) of IC50 values identified a screen specific batch effect

associated with principal component (PC) 2 which explained 2.8%

of the total variance (Fig EV1C). For this reason, despite the fact

that compounds screened with both technologies showed good

agreement (n = 66, mean Pearson’s R = 0.50), we analysed the

measurements of the screens separately. Analysis of the drug

response variation across cell lines revealed that PC 1 (28.7% vari-

ance captured) was significantly and negatively correlated with cell

line growth rate (Pearson’s R = �0.51, P-value = 1.2e-28), particu-

larly for chemotherapy agents and cell cycle inhibitors (Figs EV1D

and E).

Cell fitness effects for 16,643 gene knockouts have been

measured using genome-wide CRISPR-Cas9 screens at the Sanger

and Broad Institutes (Meyers et al, 2017; Behan et al, 2019; DepMap

Broad, 2019) (Dataset EV4). The first PC across the cell lines (6.8%

variance explained) separated the two institutes of origin

(Fig EV2A), consistent with a comparative analysis performed on

an overlapping set of cell lines (Dempster et al, 2019). Growth rate

was less significantly associated with CRISPR knockout response

(Figs EV2B and C).

Gene knockout fitness effects correspond with drug targets

We began by investigating the extent to which drug sensitivity

corresponded to CRISPR knockout of drug targets. In an unsuper-

vised way, we systematically searched for all possible associations

between the profile of drug sensitivity (n = 480) and gene fitness

effects (n = 16,643) across the 484 cell lines (Fig 1A). We expect

this to capture a variety of relationships ranging from direct drug–

target interactions to more complex associations arising from inter-

actions with regulators of the drug target(s). We tested a total of

7,988,640 single-feature gene–drug associations using linear mixed

regression models. Potential confounding effects such as growth

rate, culture conditions, data source and sample structure were

considered in the models. We identified 865 significant associations

(FDR-adjusted P-value < 10%, Dataset EV5) between drug response

and gene fitness profiles (Fig 1B), termed hereafter as significant

drug–gene pairs. For this analysis, we were able to manually curate

the nominal therapeutic target(s) for 94.7% (n = 376) of the anti-

cancer drugs screened (Fig EV3A and Dataset EV1).

For 26% (n = 94) of the 358 drugs with target annotation and for

which the target was knocked-out with the CRISPR-Cas9 library, we

identified significant drug–gene pairs with their putative targets

(Fig 1C). For example, there were strong associations between

MCL1 and BCL2 inhibitor sensitivity and their respective gene

knockouts (Fig 1D). Notably, drug–gene associations with the drug

target had a skewed distribution towards positive effect sizes

(Mann–Whitney U-test P-value < 1.36e-105, Fig EV3B) and were

amongst the strongest associations (Fig 1B). To investigate this

further, we utilised independently acquired kinobead drug–protein

affinity measurements for an overlapping set of 64 protein kinase

inhibitors which were profiled for their specificity against 202
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kinases (Klaeger et al, 2017). Drugs with significant associations

with knockout of their target also had stronger affinity to their target

in the kinobead assay, providing independent evidence that the

strongest drug–gene associations are enriched for targets of the

drugs (Fig 1E). Overall, we identified the nominal target of approxi-

mately one-quarter of the drugs tested using orthogonal CRISPR

gene fitness screens, and drug targets were amongst the most signif-

icant gene–drug associations.

Cellular networks underpinning drug response

For the remaining drugs (n = 264) which were not significantly

associated with the CRISPR loss-of-function measurements of their

nominal targets (Fig 1C), we reasoned that superimposing the

significant drug–gene pairs onto a protein interaction network may

shed further insights into the relationship of the associations. We

used a protein–protein interaction (PPI) network assembled from

the STRING database (Szklarczyk et al, 2017) (10,587 nodes and

205,251 interactions), and for the significant drug–gene pairs calcu-

lated the minimal distance between the drug nominal target(s) and

the associated gene. Out of the 264 drugs, 76 drugs had a significant

association with their target’s first neighbour or a protein closely

related in the network (1, 2 or 3 PPI distance from drug targets;

Fig 1B and C). Thus, despite these drugs not showing significant

associations with their nominal targets, CRISPR associations

revealed potential mechanisms-of-actions which are functionally

related to their targets. Taken together, for the 358 drugs with target

annotation and covered by the CRISPR-Cas9 screens, 47.5%

(n = 170) had an association with either the target (26.3%) or a

functionally related protein (21.2%; Fig 1C).

The strongest drug–gene pair associations were between a drug

and its canonical target(s) rather than components of the PPI

Figure 1. Integration of drug and CRISPR gene dependencies in cancer cell lines.

A Linear models were used to integrate drug sensitivity (IC50 values) and gene fitness measurements.
B Volcano plot showing the effect sizes and the P-value for statistically significant associations, Benjamini–Hochberg false discovery rate (FDR)-adjusted likelihood-ratio

test P-value < 10%. Drug–gene associated pairs are coloured according to their shortest distance in a protein–protein interaction network of the gene to any of the
nominal target of the drug.

C Percentage of the 358 drugs with significant associations and their shortest distance in the PPI network to the drug nominal targets. T represents drugs that have a
significant association with at least one of their canonical targets, “�” represents no link was found, and X are those which have no significant association.

D Examples of the top drug response correlations with target gene fitness. Each point represents an individual cell line. MCL1_1284 and venetoclax are MCL1 and BCL2
selective inhibitors, respectively. Gene fitness log2 fold changes (FC) are scaled by using previously defined sets of essential (median scaled log2 FC = �1) and
non-essential (median scaled log2 FC = 0) genes. Drug response IC50 measurements are represented using the natural log (ln IC50).

E Kinobead affinity is significantly higher (lower pKd) for compounds with a significant association with their target (n = 20, Mann–Whitney P-value = 3.1e-07).
Box-and-whisker plots show 1.5× interquartile ranges and 5–95th percentiles, centres indicate medians.
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network, and significance decreased (along with the number of asso-

ciations) as the interaction distance increased (Fig 2A). To exclude

the possibility that this observation is biased by the topology of the

network, we calculated the length of all the shortest paths between

the drug target(s) and their associated genes and confirmed the

enrichment of first and second neighbours in significant drug–gene

associations (Fig EV3C). In comparison, cell line gene expression

identified considerably fewer associations with the PPI neighbours of

the drug target (Fig 2B; Dataset EV6). In particular, the number of

drugs significantly associated with their targets substantially

decreased (n = 17), and significant associations were predominantly

found with proteins further away in the PPI network, close to the

average length of all paths (lG = 3.9). As an example, MIEN1 gene

expression is positively correlated with multiple EGFR and ERBB2

inhibitors, which can be explained, not by a functional relationship,

but more likely by genomic co-localisation with ERBB2 on chromo-

some 17. Hence, CRISPR-Cas9 screens are powered to discriminate

genes which are likely to be functionally linked to drug response.

To investigate putative regulatory networks for drugs, we

weighted the PPI network edges with the correlation between the fit-

ness profiles of the two connected nodes and integrated the resulting

weighted network with drug response associations. EGFR inhibitors

are the most abundant drug class in our set, and we observed that

multiple inhibitors (e.g. cetuximab) showed significant associations

with EGFR and known pathway members, for example SHC1 and

GRB2 (Scaltriti & Baselga, 2006; Zheng et al, 2013) (Fig 2C). Addi-

tionally, the weighted network shows pathway members that have

strongly correlated fitness profiles, which are likely functionally

related (Wang et al, 2017a,b; Boyle et al, 2018; Pan et al, 2018;

Rauscher et al, 2018; Kim et al, 2019). For EGFR inhibitors, these

included receptor tyrosine kinase MET and the protein phosphatase

PTPN11 (Wang et al, 2017a; Pan et al, 2018) (Fig 2D). Drug–target

tailored networks can be used to understand drug mechanism-of-

action and have the potential to identify resistance mechanisms and

thus can be used to identify new alternative drug targets. Collectively,

our network analysis demonstrates that CRISPR screens can provide

functional insights into drug in cellular activity, extending beyond the

direct drug target, into the associated functional network.

Despite our finding that we can illuminate drug functional

networks, 46.6% (n = 167) of the tested drugs had no significant

drug–gene associations. A number of possible technical and

biological factors may underpin this observation. In support of a

link between drug selectivity and significant gene–drug associa-

tions (Fig 1B and E), drugs with no significant association with

their target had in general a higher number of putative targets

based on ChEMBL bioactivity profiles (two-sided Welch’s t-test
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Figure 2. Drug response protein–protein networks.

A Distribution of the FDR-adjusted P-values (top) and count (bottom) of the significant (FDR-adjusted likelihood-ratio test P-value < 10%) drug–gene (CRISPR)
associations according to their distance between the gene and corresponding drug targets in the protein–protein interaction network. T represents drugs that have
a significant association with at least one of their canonical targets and “�” represents no link was found. Box-and-whisker plots show 1.5× interquartile ranges
and 5–95th percentiles, centres indicate medians.

B Similar to (A), but instead gene expression (GExp) was tested to identify associations with drug response. T represents drugs that have a significant association with
at least one of their canonical targets and “�” represents no link was found. Box-and-whisker plots show 1.5× interquartile ranges and 5–95th percentiles, centres
indicate medians.

C, D (C), Representative example, i.e. cetuximab—EGFR inhibitor, of the associations and (D), networks that can be obtained from the integrative analysis. Edges in the
network are weighted with the Pearson correlation coefficient obtained between the fitness profiles of interacting nodes. For representation purposes only edges
with the highest correlation coefficient were represented, R2 > 0.3. Nodes with orange borders represent significant associations with drug response, cetuximab.

E Drug–target associations grouped by statistical significance (FDR-adjusted likelihood-ratio test P-value < 10%) and plotted against the standard deviation of the
drug–target CRISPR fold changes (significant “Yes” n = 129, significant “No” n = 684). Upper and lower dashed lines represent the standard deviations of essential
and non-essential genes, respectively. Box-and-whisker plots show 1.5× interquartile ranges and 5–95th percentiles, centres indicate medians.
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P-value = 0.003; Fig EV3D), and drugs with no significant associa-

tions were approximately three times less likely to be associated

with a genomic biomarker linked to sensitivity (Fig EV3E). Alterna-

tive explanations include lower variability in CRISPR fold change

measurements for the target of these drugs (Fig 2E). For example,

where genetic knockout of an essential gene induces a strong loss-

of-fitness effect uniformly across all cell lines, whereas a drug has

more variable effects likely due to incomplete target inhibition

(Fig EV3F). The lack of variability was much less pronounced in

the drug sensitivity measurements since we only considered drugs

which showed a minimal level of activity, i.e. IC50 lower than half

of the maximum screened concentration (Fig EV3G). Inhibition of a

protein is also intrinsically different than a knockout, as observed

for PARP inhibitors whose activity is mediated through formation of

cytotoxic PARP-DNA complexes, whereas PARP knockout has little

or no effect on cell fitness (Gill et al, 2015; Murai & Pommier, 2015;

Antolin et al, 2020) (Fig EV3H). Similarly, redundancy of gene

paralogs when using single-gene CRISPR knockout may confound

comparisons with drugs that target multiple paralogs (preprint:

Dede et al, 2020). Thus, although the reasons may vary for each

drug, the absence of an association between drug sensitivity and

CRISPR loss-of-function effects could warrant further investigation

into drug mechanism-of-action to understand possible underlying

factors, such as low potency, alternative molecular mechanisms, or

polypharmacology.

Cancer drug mechanism-of-action

Next, we set out to investigate in detail some of the strongest drug

sensitivity and CRISPR gene fitness associations (Dataset EV5). Strik-

ingly, 46 of the top 50 strongly associated drugs had significant associ-

ations with their nominal target and with known functionally related

genes. Some of the strongest associations were between MCL1 inhibi-

tors and their target (Fig 3—MCL1 and BLC2 inhibitors panel), includ-

ing AZD5991 which is currently in clinical trials for treatment of

haematologic cancers (Hird et al, 2017). Additionally, for several

insulin-like growth factor 1 receptor (IGFR1) inhibitors the association

with the target was recapitulated. Moreover, significant associations

with proprotein convertase furin were observed, supporting the

genetic association that IGFR1 is a furin substrate. Moreover, increased

levels of furin are associated with increased levels of processed IGFR1

and worse prognosis in several cancers (Thomas, 2002).

The clinical development of kinase inhibitors is hampered by

poor selectivity because of the conserved structural features of the

commonly targeted kinase domain, which could lead to undesirable

off-target activity (Klaeger et al, 2017). Furthermore, some kinases

have multiple isoforms with non-redundant roles. For example,

isoform-selective PI3K inhibitors have been developed in part to

reduce toxicity and increase the therapeutic window (Thorpe et al,

2015). Interestingly, several PI3K inhibitors had strong associations

with only one gene encoding a single isoform (Fig 3—PIK3C inhibi-

tors panel). This together with the increased kinobead binding affin-

ity of significant associations (Fig 1E) suggests these are isoform-

selective compounds. For example, alpelisib was associated with

PIK3CA, consistent with its development as an alpha-isoform-selec-

tive compound (Thorpe et al, 2015), whereas AZD8186 was only

associated with PIK3CB confirming its beta-selectivity. Conversely,

two pan-PI3K inhibitors (buparlisib and omipalisib) displayed no

significant association with any PI3K isoform (Dataset EV5), consis-

tent with its lack of isoform specificity and potential polypharmacol-

ogy. Interestingly, MTOR and pan-PI3K inhibitor, dactolisib, had

significant associations with RPTOR and MTOR but none with PI3K

isoforms (Dataset EV5), consistent with recently reported greater

specificity for inhibition of the MTOR complex (Reinecke et al,

2019). Similarly, we observed that selective EGFR inhibitors cetux-

imab, erlotinib and gefitinib (Fig 3—EGFR inhibitors panel) were

associated with EGFR but not ERBB2, whereas sapatinib, afatinib

and poziotinib (Fig 3—ERBB2; EGFR inhibitors panel) were all asso-

ciated with both EGFR and ERBB2.

Our analysis can also provide insights into possible off-target

activity of drugs. Unsupervised clustering of the drug–gene associa-

tions effect sizes (betas) revealed classes of inhibitors with similar

targets and mechanism-of-action (Fig EV3I). Of note, BTK inhibitor,

ibrutinib, clustered with EGFR inhibitors and displayed significant

associations with EGFR and ERBB2 gene fitness (Fig 3—EGFR inhibi-

tors panel). This is consistent with recent findings that ibrutinib

covalently binds to and inhibits EGFR (Lee et al, 2018) and is also

supported by kinobead measurements (Klaeger et al, 2017). Addi-

tionally, 24 compounds have significant associations with genes

identified as essential core fitness (Behan et al, 2019) across multi-

ple cancer types, indicating an increased risk of cellular toxicity. Out

of these, two compounds, PD0166285 and CCT244747, have signifi-

cant associations with their nominal target (PKMYT1 and CHEK1/

WEE1) and the remaining compounds (n = 22) are correlated with

core fitness proteins closely connected in the PPI network.

A functional link between MARCH5 and MCL1 inhibitor sensitivity

Seven out of nine unique inhibitors of the anti-apoptotic BCL2

family member myeloid cell leukaemia 1 (MCL1) were strongly and

nearly exclusively associated with their putative target, suggesting

these are potent and specific compounds in cells (Fig 4A). MCL1 is

frequently amplified in human cancers (Beroukhim et al, 2010) and

associated with chemotherapeutic resistance and relapse (Wuillème-

Toumi et al, 2005; Wei et al, 2006). MCL1 is a negative regulator of

the mitochondrial apoptotic pathway, regulating BAX/BAK1 which

co-localise with Drp1/Fis1 in the mitochondria outer membrane and

control mitochondrial fragmentation and cytochrome c release, both

of which are important for inducing apoptosis (Youle & Karbowski,

2005; Mojsa et al, 2014; Morciano et al, 2016). Interestingly, knock-

out of a key regulator of mitochondrial fission, mitochondrial E3

ubiquitin-protein ligase MARCH5 (Karbowski et al, 2007), is signifi-

cantly associated with MCL1 inhibitors sensitivity (Fig EV4A) and

positively correlated with MCL1 gene fitness, suggesting a functional

relationship (Fig 4B). Correlation between MCL1 and MARCH5 fit-

ness profiles shows that cell lines dependent on MARCH5 are also

dependent on MCL1, while the inverse is not necessarily true with a

subgroup of cell lines dependent on MCL1 but not on MARCH5

(Fig 4B). Cell lines independently dependent on both gene products

have increased sensitivity to MCL1 inhibitors (Fig EV4B). This is

particularly marked in breast carcinoma cancer cell lines, with

MCL1- and MARCH5-dependent cells having similar sensitivity to

haematologic cancer cell lines (acute myeloid leukaemia), where

MCL1 inhibitors are in clinical development (Fig 4C).

We investigated the molecular mechanisms underlying the

responses of MCL1 inhibitors. MCL1 copy number and gene
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expression alone are not a good predictor of MCL1 inhibitors sensi-

tivity (Figs 4D and EV4C). This is in contrast to BCL2 and BCL2L1

inhibitors, where their target gene expression is significantly corre-

lated with drug sensitivity (Fig 4D). Next, we used multilinear

regression models to predict sensitivity to each MCL1 inhibitor

using gene fitness and/or gene expression of known regulators of

MCL1 (e.g. BCL2, BCL2L1, BAX) (Czabotar et al, 2014) and

MARCH5. For two MCL1 inhibitors, MIM1 and UMI-77, the trained

models performed poorly, likely due to lack of in cellular activity of

these compounds as suggested by their drug response poor correla-

tion with MCL1 gene essentiality profiles (Figs 4A and EV4A). For

the remaining seven MCL1 inhibitors, drug response was well

predicted (CRISPR + GEXP mean R2 = 0.55). Models trained with

only CRISPR displayed overall better predictions compared to

models only trained with gene expression, and models trained with

both data types out-performed all others (Fig 4E). As expected,

MCL1 fitness effect was the most predictive feature, followed by

decreased BCL2L1 expression and increased MARCH5 essentiality

(Fig 4F). No genomic feature, mutation or copy number alterations

correlated significantly with MCL1 inhibitors response, including

MCL1 amplifications (Fig EV4C), likely a consequence of the strong

post-transcriptional regulation and short half-life of the MCL1

protein.

Altogether, these results highlight a functional link between

MARCH5 and sensitivity to MCL1 inhibitors. This is consistent with

recent reports of a synthetic-lethal interaction between MARCH5 and

the MCL1 negative regulator BCL2L1 (DeWeirdt et al, 2020), and

MARCH5-dependent degradation of the MCL1/NOXA complex (Dja-

jawi et al, 2020; Haschka et al, 2020). With further investigation, the

link between MCL1 and MARCH5 could shed light on the mecha-

nism-of-action of MCL1 inhibitors and the development of stratifi-

cation approaches in solid tumours, such as breast carcinomas.

Robust molecular markers of drug sensitivity networks

The identification of molecular biomarkers of drug sensitivity is

fundamental to guide drug development. We hypothesised that

molecular biomarkers independently linked with both drug response

and gene fitness would be of particularly high value—termed robust

pharmacogenomic biomarkers. To identify these, we used the set of

significant drug–gene pairs (n = 865) and we searched indepen-

dently for significant associations between each measurement type
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Legend:

Figure 3. Representative examples of top most significantly associated drug classes.

Each bar plot group represents a unique drug where genes are ranked by statistical significance (likelihood-ratio test P-value) of their association. Effect sizes of the
associations are reported under the bars along the x axis. Shortest distance (number of interactions) in a protein–protein interaction network between the gene and the drug
nominal target(s) is represented on the top of the bars, where T and orange bar represent the target and “�” represents no link was found.
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(drug response or gene fitness) and 519 genomic (mutations and

copy number alterations) and 15,368 gene expression features

(Figs 5A and EV5A) (Garnett et al, 2012; Iorio et al, 2016; Garcia-

Alonso et al, 2018). This analysis recapitulated established genomic

and expression biomarkers of either drug sensitivity or gene fitness

effects in cancer cells (Figs EV5B and C). A total of 224 and 679

robust pharmacogenomic associations (FDR < 10%) were identified

with genomic (Dataset EV7) and gene expression features (Dataset

EV8), respectively. Overall, 30.6% (265 of 865) of drug–gene pairs

have at least one robust molecular marker that correlated signifi-

cantly with both drug response and gene fitness (Fig 5B). The

number of robust pharmacogenomic biomarkers was smaller than

the number of biomarkers associated with only one type of measure-

ment, likely due to the stringent requirement for an independent

association with both drug sensitivity and gene fitness effects.

From the subset of 129 drug–gene pair associations that were

linked by the drug target, 50.4% (n = 65) had one or more robust

pharmacogenomic associations (Fig EV5D). Most of these were

established dependencies of cancer cells, including Nutlin-3a sensi-

tivity and MDM2 gene fitness independently associated with TP53

mutation status; BRAF and PIK3CA mutation induced drug and

CRISPR dependency; olaparib sensitivity mediated by the presence

of EWSR1-FLI1 fusion, also recapitulated by FLI1 essentiality profile;

MCL1 inhibitor and gene fitness associations with BCL2L1 expres-

sion, and Nutlin-3a sensitivity and MDM2 gene fitness associated

with BAX expression (Figs 5C and EV5E and F). Similarly, of the

413 significant gene–drug pairs closely related within the PPI

network (≤ 3 interactions from the drug target), we identified robust

pharmacogenomic associations for 29.5% (n = 122; Fig EV5D),

enabling the discovery of cellular contexts where drug response

networks are important. For example, we identified increased

tumour necrosis factor (TNF) expression as a robust pharmacoge-

nomic marker for drugs targeting the downstream cellular inhibitor

of apoptosis (cIAP) proteins BIRC2 and BIRC3 (e.g. IAP_5620), and
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Figure 4. MCL1 inhibitors associations.

A Top three CRISPR associations with all MCL1 inhibitors screened. Each bar represents the likelihood-ratio test P-value of each drug–gene (CRISPR) association and
effect sizes reported under the bars. Shortest distance (number of interactions) in a protein–protein interaction network between the gene and the drug nominal
target(s) is represented on the top of the bars, where T and orange bar represent the target and “�” represents no link was found.

B Association between the gene fitness profiles of MCL1 and MARCH5.
C Stratification of the MCL1 inhibitor sensitivity according to the essentiality profile of MCL1 and MARCH5, where MCL1 + MARCH5 represents a cell line that is

independently dependent on both genes. Dashed orange line (left) represents the mean IC50 in acute myeloid leukaemia cell lines. Grey dashed line (right) represents
the maximum concentration used in the dosage response curve. Box-and-whisker plots show 1.5× interquartile ranges and 5–95th percentiles, centres indicate
medians.

D BCL2, BCL2L1 and MCL1 inhibitors and the respective association with their targets, on the x axis with CRISPR gene fitness and on the y axis with gene expression.
The statistical significance (FDR-adjusted likelihood-ratio test P-value < 10%) of the association is represented with a backward slash for CRISPR and forward slash
for GEXP.

E Regularised multilinear regression to predict drug response of all MCL1 inhibitors using gene expression, fitness or both of known regulators of the BCL2 family and
MARCH5. Predictive performance is estimated using R2 metric represented in the x axis.

F Effect size of each feature used in each MCL1 inhibitor model.
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based on CRISPR dependency data, for multiple members of the

cIAP pathway, including BIRC2, MAP3K7 and RNF31 (Beug et al,

2012) (Fig 5D).

Discussion

Understanding drug mechanism-of-action and the biological path-

ways underpinning drug response is an important step in preclinical

studies. Here, we demonstrate how the integration of drug sensitivity

and CRISPR-Cas9 gene fitness data can be used to inform on multiple

aspects of drug mechanism in cells, including drug specificity,

isoform selectivity and potency. Our analysis recapitulated drug

targets for approximately a quarter of the drugs tested and for

approximately another quarter revealed associations enriched for

proteins closely related with the drug target(s). Critically, the strength

of these associations reflects specificity and polypharmacology of the

cancer drugs, with highly selective and potent drugs showing the

strongest associations with their nominal target. Significant drug–

gene associations define networks of protein interactions that are

functionally related with drug targets and underpin drug response.

This revealed a previously unappreciated interaction between

MARCH5 and MCL1 inhibitors, with potential utility to derive predic-

tive models of MCL1 inhibitor response across multiple cancer types,

and particularly in solid tumours such as breast carcinomas. Robust

pharmacogenomic biomarkers leveraged both data sets to provide

refined biomarkers that are correlated with both drug response and

biological networks. Interestingly, the networks we have defined can

provide alternative targets that are functionally related with the drug

target and mediate similar effects on cell fitness, potentially providing

strategies for combination therapies to limit therapy resistance.

Preclinical biomarker development is an important step in drug

discovery and is associated with increased success rates during clin-

ical development (Nelson et al, 2015). Traditionally, this has been

Figure 5. Robust pharmacological associations.

A Diagram representing how genomic and gene expression data sets are integrated to identify significant associations with drug–gene pairs that were previously found
to be significantly correlated.

B Number of drug–gene pairs with at least one significant association with drug response, gene fitness or both, considering either genomic or gene expression profiles.
C Canonical examples of robust pharmacological associations. Box-and-whisker plots show 1.5× interquartile ranges and 5–95th percentiles, centres indicate medians.
D Representative example of a BIRC2/BIRC3 inhibitor, IAP_5620, showing the significant associations (FDR-adjusted likelihood-ratio test P-value < 10%) with CRISPR

gene fitness profiles and their location in a representation of the TNF pathway. Bar plot is defined similarly to Fig 3.
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performed by building predictive models of drug response using

mutation, copy number and gene expression (Iorio et al, 2016;

Tsherniak et al, 2017). Here we extended this approach and propose

what we term as robust pharmacogenomic association—a drug

response and gene fitness pair that are significantly correlated and

are also both significantly related to the same molecular biomarker.

This approach gives greater confidence in molecular biomarkers

identified, since they are recapitulated using data from two orthogo-

nal assays and provides markers at the level of the network. In addi-

tion, by focusing only on drugs involved in significant gene–drug

pairs, we enrich for drugs most likely to have greater specificity,

and thereby better enabling biomarker discovery.

Nearly half of the drugs did not have a significant association

with gene fitness effects and may warrant further investigation.

Possible explanations for this include the following: (i) drug

polypharmacology which is difficult to deconvolute using single-

gene knockout data; (ii) intrinsic difference between protein inhibi-

tion and knockout; (iii) a dosage-dependent response leading to

incomplete inhibition of the drug target; (iv) functional redundancy

between protein isoforms resulting in less penetrant effects with

gene knockout; and (v) technical limitations of CRISPR-Cas9 screens

such as the introduction of DNA double-strand breaks and sgRNA

on-target and off-target effects variability across cancer cell lines.

We expect that some of these issues can be addressed by expanding

this analysis to integrate other types of functional genomic screens,

such as CRISPR inhibition, which might mimic drug inhibition more

closely and does not introduce double-strand breaks.

We used CRISPR loss-of-function data sets to comprehensively

study drug mechanism-of-action in cancer cells. CRISPR screening

data are now available for many cell lines, and the profiling of

compounds across cell line panels is already regularly performed,

and so this approach could become a routine step during drug

development. In particular, it is likely to have utility during the

hit-to-lead or lead optimisation stages of drug development to

select compound series with optimal potency and selectivity. It

could also be useful for novel and uncharacterised cell active

compounds, particularly if integrated with orthogonal experimental

(e.g. such as kinobead assays) or computational approaches (e.g.

drug pocket binding) to find direct targets and interrogate mecha-

nisms-of-action. The utility of this approach is likely to expand as

the availability of CRISPR knockout screening data, and other data

sets such as CRISPR activation and inhibition, increases across

ever larger collections of highly annotated cancer cell models. In

conclusion, this study illustrates a new approach for investigating

cellular drug mechanism-of-action that can be applied to multiple

critical aspects of drug development.

Materials and Methods

Reagents and Tools table

Software

Python v3.7.3 https://www.python.org/downloads/release/python-370/

Matplotlib v3.1.0 https://matplotlib.org/ (Hunter, 2007)

Seaborn v0.10.0 https://seaborn.pydata.org/ (Waskom et al, 2020)

Limix v3.0.3 https://docs.limix.io/ (preprint: Lippert et al, 2014; Casale et al, 2017)

Numpy v1.18.1 https://numpy.org/ (van der Walt et al, 2011)

Scipy v1.4.1 https://www.scipy.org/ (Virtanen et al, 2020)

Pandas v1.0.1 https://pandas.pydata.org/ (McKinney, 2010)

Scikit-learn v0.21.2 https://scikit-learn.org/ (Pedregosa et al, 2011)

Pydot v1.4.1 https://pypi.org/project/pydot/

Python-igraph v0.7.1 https://igraph.org/python/ (Csardi & Nepusz, 2006)

Crispy (Cy) v0.4.6 https://pypi.org/project/cy/ (Gonçalves et al, 2019)

Methods and Protocols

Cancer cell lines panel
The 484 cancer cell lines used in this manuscript have been

compiled from publicly available repositories as well as private

collections and maintained following the supplier guidelines. STR

and SNP fingerprints were used to ensure cell lines selected were

genetically unique and matched those in public repositories

(http://cancer.sanger.ac.uk/cell_lines/download). Detailed cell line

model information is available through Cell Model Passports data-

base (https://cellmodelpassports.sanger.ac.uk/) (van der Meer

et al, 2019). Cell lines growth rate is represented as the ratio

between the mean of the untreated negative controls measured at

day 1 (time of drug treatment) and the mean of the DMSO treated

negative controls at day 4 (72 h post-drug treatment).

High-throughput drug sensitivity
Experimental details of both GDSC1 and GDSC2 screens can be

found in the Genomics of Drug Sensitivity in Cancer (GDSC) project

(www.cancerRxgene.org) (Yang et al, 2013). Cell viability and dose

response curve fitting models were previously described in detail

(Iorio et al, 2016; Vis et al, 2016). Maximum screened drug concen-

trations (lM) are provided in Dataset EV1. Each compound was

measured on average across 393 cell lines rendering a nearly

complete matrix with only 14.2% missing values. All considered

compounds displayed an IC50 lower than half of the maximum
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screened concentration in at least three cell lines. This ensures the

compounds display an informative profile in at least a subset of cell

lines. Drug nominal oncology target(s) annotation was manually

curated from literature (Dataset EV1).

Genome-wide CRISPR-Cas9 dropout screens
The CRISPR-Cas9 screens for the 484 cancer cell lines considered in

this study (Dataset EV4) were assembled from two distinct projects,

320 were generated as part of Sanger DepMap Project Score (Behan

et al, 2019) and 164 from the Broad DepMap version 19Q3 (Meyers

et al, 2017; DepMap, 2019). Only cell lines that passed quality

control filtering similarly to Behan et al (2019) and with matched

drug response measurements were considered. Different CRISPR-

Cas9 sgRNA libraries were used in each project (Koike-Yusa et al,

2014; Doench et al, 2016; Tzelepis et al, 2016). Consequently,

library-specific effects were present (Dempster et al, 2019)

(Fig EV2A) which hampers averaging of cell lines that were screened

in both data sets. Thus, for the overlapping cell lines only data from

Sanger DepMap Project Score was used. This also minimises poten-

tial cell line specific differences, for example due to genetic drift

(Ben-David et al, 2018), and thereby increasing concordance with

the drug response data set also generated at the Wellcome Sanger

Institute. Fold changes (log2) were estimated comparing samples

with the respective control plasmid. Gene-independent deleterious

effects induced by copy number amplifications in CRISPR-Cas9

screens (Aguirre et al, 2016; Munoz et al, 2016; Gonçalves et al,

2019) were corrected on a per sample basis using the unsupervised

method CRISPRcleanR (Iorio et al, 2018). Replicates were mean

averaged, and gene level fold changes were estimated by taking the

mean of all the mapping sgRNAs. Gene level fold changes were

quantile normalised per sample and then median scaled using previ-

ously defined lists of cancer cell lines essential and non-essential

genes (Hart et al, 2015); thus, essential genes have a median log2
fold change of �1 and non-essential genes a median log2 fold change

of 0. Only overlapping genes between the two libraries were consid-

ered, thus generating a full matrix of 16,643 genes across the 484 cell

lines. A cell line was considered dependent on a gene if the knockout

had a log2 fold change of at least 50% of that expected of essential

genes (scaled log2 fold change < �0.5).

PCA of drug sensitivity and gene fitness
Principal component analysis was performed using scikit-learn

(Pedregosa et al, 2011) and the sklearn.decomposition.PCA class

with default parameters and the number of components (n_compo-

nents) set to 10. For the drug response data set, and only for the

PCA analysis, missing values of each drug were imputed using the

drug mean IC50 response across the rest of the cell lines. Imputation

was not required for the CRISPR-Cas9 data set since the matrix had

no missing values.

Drug response linear mixed model associations
Associations between drug response and gene fitness scores were

performed using an efficient implementation of mixed-effect linear

models available in the Limix Python module (preprint: Lippert

et al, 2014; Casale et al, 2017). We considered the following covari-

ates in the model: (i) binary variables indicating the institute of

origin of the cell line CRISPR-Cas9 screen; (ii) principal component

1 of the drug response data set which is a correlative of cell lines

growth rate; and (iii) growing conditions (adherent, suspension or

semi-adherent) represented as binary variables. Additionally, gene

fitness similarity matrix of the samples is considered as random

effects in the model to account for potential sample structure. Taken

together, we fitted the following mixed linear regression model for

each drug–gene pair:

d ¼ b0M þ b1eþ lX þ e (1)

where d represents a vector of the drug response IC50 values across

the cell lines; M is the matrix of covariates; b0 is the vector of

effect sizes; e is the vector of gene CRISPR-Cas9 log2 fold changes

and b1 the effect size; X the similarity matrix based on the CRISPR-

Cas9 gene fitness measurements; l is the random effects; e is the

general noise term. For each drug, cell lines with missing values

were dropped from the fit.

We statistically assessed the significance of each association by

performing likelihood-ratio tests between the alternative model (ch1)
and the null model which excludes the CRISPR gene fitness scores

vector e and its parameter b1ðch1Þ. The parameter inference is

performed using maximum likelihood estimation:

ch1 ¼ argmax p djM;X; hð Þ: (2)

And the P-value of the association is defined by:

p djM;X;ch0� �
p djM;X;ch1� �

:
(3)

We tested all the single-feature pairwise associations between

the 480 compounds and the 16,643 genes, making a total of

7,988,640 tested associations. P-value adjustment for multiple test-

ing was performed per drug using the Benjamini–Hochberg false

discovery rate (FDR). Contrary to performing the adjustment across

all tests, per drug correction has the following benefits: (i) associa-

tions assembled from the different screening platforms (GDSC1 and

GDSC2) are kept separate hence not biasing for measurement type;

and (ii) drugs with responses across larger subsets of cancer cell

lines, for example Nutlin-3a response across TP53 wild-type cell

lines, display stronger associations than most drugs; thus, correcting

across all drugs would retain more associations from these drugs at

a specific error rate, i.e. 10%, compared to the rest.

Protein–protein interaction network
We assembled from the STRING database (Szklarczyk et al, 2017) a

high confidence undirected protein–protein interaction network. We

only consider interactions with a combined confidence score higher

than 900. STRING identifiers were converted to HUGO gene symbols,

and those not mapping or with multiple mappings were removed.

Using igraph Python wrapper (Csardi & Nepusz, 2006), the network

was simplified by removing unconnected nodes, self-loops and

duplicated edges, leaving a total of 10,587 nodes and 205,251 inter-

actions. A weighted version of the network was also assembled by

correlating the gene fitness profiles of the connected nodes. Network

nodes, and corresponding edges, that were not covered by the

CRISPR-Cas9 screens were removed, making a total of 9,595 nodes

and 172,584 weighted interactions.
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Robust pharmacogenomic associations
Robust pharmacological associations were estimated similarly to

the previous associations, but in this case only drug–gene pairs

that are significantly correlated were considered to test associa-

tions with the genomic features (binarised copy number and muta-

tion status (Iorio et al, 2016)) and gene expression profiles (RNA-

seq voom (Law et al, 2014) transformed RPKMs (Garcia-Alonso

et al, 2018)). A robust pharmacogenomic association is defined as

follows: (i) a drug–gene pair whose drug sensitivity and gene fit-

ness is significantly correlated, and (ii) genomic alteration or gene

expression profile is significantly correlated with both drug

response and gene fitness. Log-ratio test P-values are indepen-

dently estimated for drug response and gene fitness measurements

and corrected per drug–gene. Drug–gene pairs where both are

associated with a genomic or gene expression feature with an FDR

lower than 10% are called robust pharmacogenomic associations

(Datasets EV7 and EV8).

Predictive models of drug response of MCL1 inhibitors
L2-regularised linear regression models to predict MCL1 inhibitors

drug response were trained using gene fitness, gene expression

measurements or both of canonical regulators of MCL1, namely

MARCH5, MCL1, BCL2, BCL2L1, BCL2L11, PMAIP1, BAX, BAK1,

BBC3, BID, BIK, BAD. For the 9 MCL1 inhibitors considered in this

study, predictive models of drug response measurements were

trained using Ridge regressions with an internal cross-validation

optimisation of the regularisation parameter, implemented in

Sklearn with RidgeCV class (Pedregosa et al, 2011). Additionally,

drug response measurements are split randomly 1,000 times, where

70% of the measurements are for training the model and 30% are

left out as a test set. Model’s performance is quantified using the R2

metric on the test set, comparing the predicted vs the observed drug

response measurements.

Unsupervised drug target annotation using ChEMBL
bioactivity profiles
Curated therapeutic targets were extracted from the ChEMBL

database (version 25) (Mendez et al, 2019) for each drug,

where available. Additional targets (including potential off-

targets) were identified from the in vitro bioactivity data in

ChEMBL where the “target type” description was one of the

following: “single protein,” “protein complex,” “protein complex

group,” “protein–protein interaction” or “protein family.” Only

assays where the target organism corresponds to “Homo sapi-

ens” were considered.

In order to define whether a drug is considered active in an

in vitro assay, only those situations where a pChEMBL value

was defined were selected for inclusion in the subsequent analy-

sis. The pChEMBL value is aimed to harmonise all the compara-

ble measures of half-maximal responses (molar IC50, XC50,

EC50, AC50, Ki, Kd, potency and ED50) on a negative logarith-

mic scale, and it is calculated only when the standard relation

in an assay is known to be “=”. Activity thresholds were defined

according to the target protein family, based on the Illuminating

the Druggable Genome consortium (IDG https://druggablege

nome.net/ProteinFam) as follows: Kinases: ≤ 30 nM; GPCRs:

≤ 100 nM; Nuclear Receptors: ≤ 100 nM; Ion Channels: ≤ 10 lM;

Others: ≤ 1 lM.

Data availability

Source code, analysis reports and Jupyter notebooks are publicly

available in GitHub https://github.com/EmanuelGoncalves/dtrace.

Drug response and CRISPR-Cas9 measurements are included in

Datasets EV3 and EV4, respectively, and available at FigShare

https://doi.org/10.6084/m9.figshare.10338413.v1.

Expanded View for this article is available online.
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