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Abstract: This review is divided into two parts; the first one summarizes the main features of surface
modification by diazonium salts with a focus on most recent advances, while the second part deals
with diazonium-based biosensors including small molecules of biological interest, proteins, and
nucleic acids.
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1. An Overview of the Reactions of Diazonium Salts with Surfaces

1.1. The Principle of the Reaction

The simplest way to represent the grafting of aryldiazonium salts on surfaces is shown in Scheme 1.
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1.1. The Principle of the Reaction 

The simplest way to represent the grafting of aryldiazonium salts on surfaces is shown in 
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Scheme 1. Electrografting of diazonium salts. 

A substituted aryldiazonium salt dissolved in an aqueous medium or in acetonitrile (ACN) is 
reduced by one electron; as a result, the electrode is modified by aryl groups [1]. This is a very 
simple reaction with many experimental alternatives concerning the process itself, the surfaces, and 
the choice of the substituent. The result is a modified surface with strongly bonded aryl groups [2–5]. 

The main characteristics of this reaction are as follows: 

* Diazonium salts are easily synthetized (isolated or not) from aromatic amines, many of which 
are commercially available. 
* All surfaces can be modified by this reaction, conductive or not. 
* The reaction can be performed by electrochemistry, spontaneously, by photochemistry, and 
by other methods. 

Scheme 1. Electrografting of diazonium salts.

A substituted aryldiazonium salt dissolved in an aqueous medium or in acetonitrile (ACN) is
reduced by one electron; as a result, the electrode is modified by aryl groups [1]. This is a very simple
reaction with many experimental alternatives concerning the process itself, the surfaces, and the choice
of the substituent. The result is a modified surface with strongly bonded aryl groups [2–5].

The main characteristics of this reaction are as follows:

* Diazonium salts are easily synthetized (isolated or not) from aromatic amines, many of which are
commercially available.
* All surfaces can be modified by this reaction, conductive or not.
* The reaction can be performed by electrochemistry, spontaneously, by photochemistry, and by
other methods.
* The resulting modification is very stable due to the formation of a covalent bond between the surface
and the aryl group.

Biosensors 2020, 10, 4; doi:10.3390/bios10010004 www.mdpi.com/journal/biosensors

http://www.mdpi.com/journal/biosensors
http://www.mdpi.com
https://orcid.org/0000-0002-1440-137X
https://orcid.org/0000-0003-3901-8358
https://orcid.org/0000-0001-6176-8636
http://www.mdpi.com/2079-6374/10/1/4?type=check_update&version=1
http://dx.doi.org/10.3390/bios10010004
http://www.mdpi.com/journal/biosensors


Biosensors 2020, 10, 4 2 of 32

* The key species of this reaction is an aryl radical, and this reaction presents the typical behavior of
radical reactions.
* The reaction provides most often disordered oligomers (“multilayers”).

Below, we review these different points with a focus on most recent examples.

1.2. Synthesis and Stability of Diazonium Salts

Surface modification of diazonium salts was achieved starting either from isolated salts or from
solutions of in situ synthetized compounds [6]. The diazoniation was achieved with NaNO2 in acidic
aqueous solution, or with t-butylnitrite or NOBF4 in ACN. As many aromatic amines are commercially
available, the use of simple diazonium salts only necessitates a minimum effort of synthesis.

The stability of diazonium salts was measured; 4-nitrobenzenediazonium tosylate and
tetrafluoroborate have half-life times close to 4.5 years, whereas 4-nitrobenzenediazonium triflate is
much more stable with a half-life time of 46 years. These half-lives are more than sufficient to obtain
reliable experiments [7]. However, chlorides and other salts are explosive.

When dissolved in ACN or aqueous acidic solution, the diazonium salts are present as Ar-N≡N+;
however, as the pH increases in aqueous solution, they exist as Ar-N=N-OH (diazohydroxide) and
Ar-N=N-O− (diazoate). The first pKa of 4-nitrobenzenediazonium is 5.24. In ACN and aqueous
acidic solution, diazonium salts are relatively stable (kdec = 8.26 × 10−6 s−1 in aqueous acidic solution);
however, as the pH increases, the rate of decomposition of 4-methylbenzenediazonium increases
(kdec ≈ 1.3 × 10−2 and 3.5 × 10−2 s−1 at pH 4 and 8, respectively (60 ◦C, in EtOH/H2O) [8,9]. The
dediazoniation occurs either heterolytically or homolytically to give either a carbocation or a radical;
as concerns the grafting reaction, there is only a very minor involvement of carbocations in the case of
spontaneous reactions [10].

1.3. Different Grafting Methods of Diazonium Salts

As diazonium salts are easily reduced, a number of methods permit their homolytic dediazoniation;
the most used ones are presented below.

By electrochemistry. As indicated in Scheme 1, triggering of the reaction is possible by
electrochemistry. The voltammograms obtained for the reduction of diazonium salts are very
characteristic, showing a broad irreversible wave at potentials close to 0 V/SCE (Saturated Calomel
Electrode). The wave is irreversible due to the cleavage and loss of N2; it is broad because the surface
is modified during the voltammogram. Upon repetitive scanning, this wave decreases and finally
disappears as an insulating organic film forms on the electrode (Figure 1) [11]. Repetitive cyclic
voltammetry (5–10 cycles) and chronoamperometry at a potential equal or negative to the reduction
peak are common methods for the modification of electrodes.Biosensors 2020, 10, x FOR PEER REVIEW 3 of 35 
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diazonium was prepared from the corresponding aniline in ACN + t-butylnitrite, and grafting took 
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obtained with a water contact angle of 158°, and, in the second one, it was possible to grow 
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Anthraquinonediazonium prepared in ACN reacts with carbon black just by overnight reaction at 
room temperature [17], and graphene was modified with 3,5-bis difluorobenzenediazonium in 
acidic medium (the same medium used for the preparation of the diazonium cation) [18]. 

By reducing reagents. Even very mild reducing agents such as hypophosphorous acid, ascorbic 
acid, and iron powder are able to reduce diazonium cations leading to aryl radical formation. Coal 
powder was modified by 4-nitrophenyl groups via reduction of the corresponding diazonium cation 
by hypophosphorous acid. This modified coal embedded in reverse osmosis membranes improved 
their performance [19]. TiN is a ceramic material used in microelectronic devices, solar cells, 
electrical, interconnections, orthopedic prostheses, and cardiac valves. Its surface was modified by 
reaction of the mono-diazonium salt of p-phenylenediamine (NH2-C6H4-N≡N+) in the presence of 
hypophosphorous acid or iron powder [20]. This reaction offers the first step of an alternative to the 
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Figure 1. Cyclic voltammograms (scans 1–3) at fluorine tin oxide (FTO) electrode in HCl 0.5 M + 2 × 10−3

M 4-aminobenzoic acid + 2.2 × 10−3 M NaNO2. Scan rate of 0.1 V·s−1. By courtesy of C. Cannizzo.
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By spontaneous reaction. As the pH of an aqueous solution increases, the diazonium cation is
transformed into the much more unstable diazohydroxide and diazoate. Consecutive homolytic
cleavage of these species provides a radical that reacts with the surface. For example, a diazonium salt
bearing an Iniferter initiator (a group acting as initiator, transfer, and terminator agent of controlled
free radical polymerization) was grafted on isolating silica particles in basic medium to give a silica
core@poly(acrylic acid) shell [12]. Trifluoromethylphenyl layers were grafted by immersing SnO2

plates in an aqueous solution of trifluoromethylbenzenediazonium for 8 h, in the dark [13].
By reducing surfaces. As diazonium salts are very easily reduced (Figure 1), materials such as

copper, iron, and even carbon are reducing enough to perform the spontaneous grafting reaction
onto their surface. A nanostructured and oxidized copper surface was grafted spontaneously by
a perfluorobenzenediazonium salt [14] or an Iniferter initiator [15] through a one-pot reaction; the
diazonium was prepared from the corresponding aniline in ACN + t-butylnitrite, and grafting took
place spontaneously in the same solution. In the first case, a super-hydrophobic surface was obtained
with a water contact angle of 158◦, and, in the second one, it was possible to grow polyacrylic brushes
by Iniferter polymerization.

Silica nanoparticles were modified with a molecule terminated by an aniline group that
could be diazotized and grafted spontaneously on an iron surface at room temperature [16].
Anthraquinonediazonium prepared in ACN reacts with carbon black just by overnight reaction
at room temperature [17], and graphene was modified with 3,5-bis difluorobenzenediazonium in acidic
medium (the same medium used for the preparation of the diazonium cation) [18].

By reducing reagents. Even very mild reducing agents such as hypophosphorous acid, ascorbic
acid, and iron powder are able to reduce diazonium cations leading to aryl radical formation. Coal
powder was modified by 4-nitrophenyl groups via reduction of the corresponding diazonium cation
by hypophosphorous acid. This modified coal embedded in reverse osmosis membranes improved
their performance [19]. TiN is a ceramic material used in microelectronic devices, solar cells, electrical,
interconnections, orthopedic prostheses, and cardiac valves. Its surface was modified by reaction of the
mono-diazonium salt of p-phenylenediamine (NH2-C6H4-N≡N+) in the presence of hypophosphorous
acid or iron powder [20]. This reaction offers the first step of an alternative to the metallization of
titanium nitride by direct electrochemical deposition.

By photochemistry. Diazonium salts were grafted on metals gold, copper, and iron under UV
(UltraViolet) light by irradiation in the presence of a photosensitizer (Ru(bipy)3

2+ or eosin Y). In this
way, gold and polyvinylchloride surfaces were modified by 4-phenylacetic, 4-carboxy, 4-methoxy, and
3,5-bis trifluoromethyl phenyl groups [21]. The reaction also took place under visible light by irradiation
of charge transfer complexes such as 1,4-dimethoxybenzene and pentafluoro benzenediazonium cation
(λmax ~400 nm) [22].

Surface modification can also be triggered by localized surface plasmon excitation [23–25]. Using
this approach, 4-[1-(2-bisthienyl)], 4-carboxy 4-hydroxyethyl benzenediazonium cations were grafted
on gold nanostructures. Upon irradiation, hot collective oscillation of the conductive electrons at the
particle surface provides the localized surface plasmon resonances (LSPR); hot electrons are generated
on nanostructures particularly at the extremities of nanorods, nanotriangles, etc. These hot electrons
induce the reduction of diazonium salts, the homolytic dediazoniation, and grafting at the extremities of
gold nanostructures. In this way, regioselectively modified gold nanodiscs were obtained by successive
use of two different light polarizations in the presence of two diazonium salts (Figure 2). Recently,
diazonium-modified graphene-protected metal thin films (Cu) SPR biochips were designed for the
detection of toxins [26].
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measured as one aryl group per 100 carbon atoms [30]. 
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Figure 2. SEM image of (A) Au nanotriangles after irradiation with visible light in the presence of
4-[1-(2-bisthienyl)]benzenediazonium, (B) nanodiscs modified with visible light (Ba) with carboxyphenyl
films grafted along the Y-direction, (Bb) additional hydroxyethyl phenyl films along the X-axis, (Bc)
Schematic presentation of the modified nanodisk. From References [23–25], with permission of the
American Chemical Society (ACS) and the Royal Chemical Society, respectively.

1.4. The Different Surfaces That Can be Grafted

Many examples of grafting diazonium salts on glassy carbon, metals, and semiconductors are
described [2]. Due to the current interest in nanoscience, more recent investigations examined one- and
two-dimensional (1D and 2D) materials, as well as nanoparticles [27–29] (carbon nanotubes, graphene,
graphene oxide, MoS2) as substrate.

Carbon nanotubes (CNT). A detailed investigation of the grafting of 4-iodobenzenediazonium on
SWCNTs (single-walled carbon nanotubes) showed that (i) the bonded aryl groups were very stable, as
they cleaved above 200 ◦C, (ii) a logarithmic correlation between the degree of functionalization and
diazonium concentration was observed, and (iii) the maximum surface concentration was measured as
one aryl group per 100 carbon atoms [30].

In view of biological applications (antifouling properties), the surface of carbon nanotubes
was modified in order to inhibit the growth of uropathogenic Escherichia coli. This was achieved
by spontaneously grafting polyethyleneglycol (PEG) chains terminated by mannose at one and a
benzenediazonium at the other end [31] (Figure 3).

Crosslinked assemblies of bonded CNTs were prepared using a molecule with three diazonium
functional groups. The walls of the CNTs were firstly protected by wrapping DNA to limit their
functionalization and favor the modification at nanotube end; then, the triple diazonium salt molecule
was reacted spontaneously. The SWCNTs were bonded mainly through side-to-end junctions, and
eventually through side-to-side interactions (Figure 4) [32].

Graphene; graphene oxide (GO), reduced graphene oxide (RGO), highly oriented pyrolytic graphite (HOPG),
carbon dots. Graphene sheets were obtained by electrochemical exfoliation and functionalization of
graphite using diazonium salts. Both functionalization and exfoliation occurred at the same time; in
this way, mono- or few-layer graphene was functionalized and stabilized in situ before it aggregated;
N2 generated during in situ diazonium reduction favored the separation of functionalized graphene
sheets [33]. In planes or edges, grafting was easily achieved with diazonium salts; GO and RGO were
modified with sulfophenyl groups up to 12 wt% [34].

The planes and edges of graphene (respectively, sp2 and sp3 carbons) have very different structures,
but both react with diazonium salts under electrochemical conditions.

The surface modification of HOPG was examined at the micrometer scale [35] using scanning
electrochemical cell microscopy where a dual-barrel micro-pipet explored the localized electrochemistry
of the surface. In the presence of diazonium salts, grafting occurred along with the re-hybridization of
surface carbons from sp2 to sp3 as confirmed by Raman spectroscopy; after diazonium modification,
the D-band developed at ~1350 cm−1, diagnostic of the local sp3 carbons.
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An electrode was constructed with only graphene edges exposed by cutting a connected
graphene monolayer embedded in a polymer with an atomically sharp microtome knife. This
graphene-edge electrode was modified by electrochemical reduction of 4-nitrobenzenediazonium. The
cyclic voltammetry of 4-nitrophenyl films was observed, and the signal of the redox probe Fe(CN)6

3−/4−

was completely inhibited, indicating a blocking of the electrode by the grafted film; this was confirmed
by the Raman spectrum that indicated an increase of the D-band [36].Biosensors 2020, 10, x FOR PEER REVIEW 5 of 35 
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The reactivity of graphene edges was harnessed to prepare covalently bonded graphene nanoflakes
further assembled by noncovalent interactions to give nanopapers. Binding of nanoflakes was achieved
by use of a bis-diazonium salt. This diazonium cation was prepared in situ and grafted by increasing
the temperature (Figure 5). Modification led to a 20% enhancement of the thermal conductivity, while
the cross-plane thermal conductivity was boosted by 190% [37].



Biosensors 2020, 10, 4 6 of 32

Biosensors 2020, 10, x FOR PEER REVIEW 6 of 35 

The planes and edges of graphene (respectively, sp2 and sp3 carbons) have very different 
structures, but both react with diazonium salts under electrochemical conditions. 

The surface modification of HOPG was examined at the micrometer scale [35] using scanning 
electrochemical cell microscopy where a dual-barrel micro-pipet explored the localized 
electrochemistry of the surface. In the presence of diazonium salts, grafting occurred along with the 
re-hybridization of surface carbons from sp2 to sp3 as confirmed by Raman spectroscopy; after 
diazonium modification, the D-band developed at ~1350 cm−1, diagnostic of the local sp3 carbons. 

An electrode was constructed with only graphene edges exposed by cutting a connected 
graphene monolayer embedded in a polymer with an atomically sharp microtome knife. This 
graphene-edge electrode was modified by electrochemical reduction of 4-nitrobenzenediazonium. 
The cyclic voltammetry of 4-nitrophenyl films was observed, and the signal of the redox probe 
Fe(CN)63−/4− was completely inhibited, indicating a blocking of the electrode by the grafted film; this 
was confirmed by the Raman spectrum that indicated an increase of the D-band [36]. 

The reactivity of graphene edges was harnessed to prepare covalently bonded graphene 
nanoflakes further assembled by noncovalent interactions to give nanopapers. Binding of nanoflakes 
was achieved by use of a bis-diazonium salt. This diazonium cation was prepared in situ and grafted 
by increasing the temperature (Figure 5). Modification led to a 20% enhancement of the thermal 
conductivity, while the cross-plane thermal conductivity was boosted by 190% [37]. 

O O

O O

N
+N

N
+ N

+ +

 
Figure 5. Binding graphene sheets using a bis-diazonium salt. From Reference [37] with permission 
of Wiley. 

It is also possible to prepare graphene ribbons from diazonium salts. Molecular junctions using 
aryl oligomers were obtained from diazonium salts [38]. An organic oligomeric aryl layer was grown 
on a conducting substrate and capped with, for example, a gold layer; this provided a molecular 
junction between two conducting materials [39]. Such molecular junctions are used in molecular 
electronic devices. These aryl oligomers were replaced by five-carbon-wide graphene ribbons (GR) 
with lengths of 2–12 nm; their conductance was more than one hundred times that observed for 
other molecular junctions of similar thicknesses. These nanoribbons were obtained and grafted by 
electrochemical reduction of the 1,8-bis naphthalenediazonium salt, as presented in Figure 6 [40]. 

Figure 5. Binding graphene sheets using a bis-diazonium salt. From Reference [37] with permission
of Wiley.

It is also possible to prepare graphene ribbons from diazonium salts. Molecular junctions using
aryl oligomers were obtained from diazonium salts [38]. An organic oligomeric aryl layer was grown
on a conducting substrate and capped with, for example, a gold layer; this provided a molecular
junction between two conducting materials [39]. Such molecular junctions are used in molecular
electronic devices. These aryl oligomers were replaced by five-carbon-wide graphene ribbons (GR)
with lengths of 2–12 nm; their conductance was more than one hundred times that observed for
other molecular junctions of similar thicknesses. These nanoribbons were obtained and grafted by
electrochemical reduction of the 1,8-bis naphthalenediazonium salt, as presented in Figure 6 [40].Biosensors 2020, 10, x FOR PEER REVIEW 7 of 35 
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carbon. From Reference [40] with permission of ACS.

Other 2D materials. Due to the interest in graphene, other 2D materials were modified with
diazonium salts.

Few layers of black phosphorous were modified with a zinc phthalocyanine-based diazonium salt
for applications in non-linear optics [41].

Metal dichalcogenides MX2, where M is a transition metal (M = Mo, W, Nb, Ta, etc.) and X is a
chalcogen (X = S, Se, or Te), were exfoliated into two-dimensional (2D) nanosheets. Among them, MoS2,
WS2, MoSe2, and WSe2 were modified with diazonium salts (Figure 7). The pnictogen chalcogenides
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Sb2S3 and Bi2S3 were exfoliated into one-dimensional (1D) nanoribbons and 2D nanosheets and
derivatized [42].
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MXenes are 2D nitrides and carbides; for example, Ti3C2 was intercalated by Na+ ions and
then grafted by reaction with 4-sulfonylbenzenediazonium to obtain enhanced super-capacitive
performances [43].

Nanoobjects. Nanoparticles were capped with aryl groups through diazonium chemistry to imbue
these objects with new properties such as catalysts, scavengers, and reagents [44]. It is also possible,
with the same reaction, to decorate various surfaces with nanoparticles.

Nanoparticles can be stabilized. Iron oxide Fe2O3 nanoparticles could be capped with BF4,
N2-C6H4-(CH2)2-OH by spontaneous reaction in basic aqueous medium. These nanoparticles retained
their magnetic properties and were soluble in apolar organic solvents such as dichloromethane,
tetrahydrofurane (THF), toluene, and chloroform, as well as in polar solvents such as methanol,
ethanol, or water [45,46]. Cerium oxide (CeO2) nanoparticles were grafted with 4-methyl-, 4-ethyl-,
and 4-n-butyl benzenediazonium; the water contact angle increased from 34◦ to 63◦ and 125◦ as the
chain length increased. With this modification, the cerium oxide NPs are more compatible with an
electrolytic solution for the formation of coatings or a metal composite matrix [47].

Nanoparticles can be used as catalysts. TiO2 nanoparticles were modified with 4-diphenylamine
groups (DPA) by reaction of the corresponding diazonium salt; from this surface, polyaniline (PANI)
was prepared by in situ polymerization of aniline. This bonding prevented polyaniline from leaching
in polar solvents. This TiO2–DPA–PANI assembly efficiently catalyzed the degradation of the dye
methyl orange in aqueous media under UV light [48].

Nanoparticles can also be attached to surfaces for increasing analytical sensitivity. Gold nanoparticles
were attached to the surface of screen-printed electrodes (SPE) derivatized with aminophenyl groups;
the amino group was transformed into a diazonium that reacts with gold nanoparticles. In turn, these
nanoparticles were modified by reaction of 4-carboxybenzenediazonium. With this system, it was
possible to detect Pb(II) down to 2.5 × 10−9 M (Figure 8) [49].
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1.5. The Surface Aryl Bond

One of the most important features of diazonium grafting is the stability of the construct; this was
demonstrated by several methods including (i) thermogravimetry, where exfoliated graphene lost only
7% of its coating at 400 ◦C [50], (ii) spectrometric methods, where a small Raman band at 412 cm−1 was
assigned to the Au(nP)–C(aryl) bond of gold nanoparticles modified by 4-nitrobenzenediazonium [51];
grafting of an aryl group on graphene [52] and carbon nanotubes [53,54] transformed an sp2 carbon
into a sp3, which translated into the growth of the D-band.

1.6. The Structure of the Grafted Film

The structure of the films obtained by dediazoniation of diazonium salts is quite complex and is
not yet been completely elucidated. Upon dediazoniation, radicals are responsible for the grafting
reaction and for the structure of the obtained nanometric films. The radicals react on the surface but
also on the first grafted groups to produce “multilayered” films. This term is widely but somewhat
abusively used in the literature as the structure of the film is not layered as, for example, layer-by-layer
constructs. Figure 9 presents a very schematic presentation of a film obtained from diazonium salts.
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Aryl–aryl bonds permit a free rotation; optical absorption spectroscopy of thin (1–15 nm) oligomeric
polyaromatic films attached to an atomically flat pyrolyzed photoresist film (PPF) permitted concluding
that the molecular layers were composed of n-mers possessing very limited conjugation that extended
only to one monomer [55]. However, by combining the electrografting of diazonium salts on Au and
the oxidative electropolymerization of biphenyl in an ionic liquid, a regular poly(para-phenylene) film
was obtained [56].
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The thickness of diazonium derived films is measured by ellipsometry, AFM (atomic force
microscopy), or STM (scanning tunneling microscopy). STM images (Figure 10A) showed a growing
film of 4-nitrophenyl groups on the surface of HOPG; one can observe isolated oligomeric groups
(up to 2 nm), indicating that, on this surface, the aryl radical reacts faster on the first grafted group
than on the surface [57]. On the contrary, on PPF, a uniform monolayer was obtained [58], indicating
that the reaction is faster on PPF than on the first grafted group (Figure 10C). This is related to the
difference in reactivity of the two different carbons. This renders the control, a priori, of the thickness
quite difficult.Biosensors 2020, 10, x FOR PEER REVIEW 10 of 35 
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pyrolytic graphite (HOPG) after spontaneous grafting of (A) 4-nitrobenzenediazonium and (B)
3,5-bis-tert-butylbenzenediazonium salts. (C) AFM (atomic force microscopy) image of a monolayer
obtained from 4-nitrobiphenyldiazonium salt (l = 1.21 nm) on PPF, a near-atomically flat carbon; in the
black square, the layer was erased by AFM scratching. From References [57,58] with permission of the
American Chemical Society.

Thick films up to ~100 nm were obtained by electrografting 4-nitrobenzenediazonium at the
reduction potential of the nitrophenyl group [59]. At this potential, the radical anion of the nitrophenyl
group was formed, and electrons could transfer through the film, reach the surface, and reduce a
diazonium cation; this process permitted the thickening of the film.

Conversely, many efforts were devoted to the formation of monolayers. Indeed, such monolayers
would be very useful for the preparation of biosensors as they should provide faster and uniform
electron transfer to a bioreceptor. Figure 10B shows the STM image of a monolayer (thickness
~0.6–0.8 nm) of 3,5-bis-tert-butylbenzenediazonium [57]. The steric hindrance of the two bulky
tert-butyl groups prevented the aryl radicals from reacting of the aromatic ring and, consequently, the
growth of the film [60]. However, with this method, post-modification was not possible; later on, it
was modified to permit further reactions on the film [61].

A more general method [62] involves electrografting in the presence of redox mediators.
Monolayers (0.6–0.9 nm) of 4-bromo, 4-iodo, 4-methoxy, and 4-diethylamino phenyl groups were
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obtained in the presence of three redox mediators: 2,2-diphenyl-1-picrylhydrazyl, chloranil, and
dichlone. The efficiency of the method rests on a fast redox cross-reaction in the diffusion layer between
the diazonium compound and the reduced form of the selected inhibitor. This method should permit
preparing, in a repetitive manner, reactive monolayers that would be useful for biosensors due to their
fast electron transfer.

Disordered oligomeric films without regular patterns on the surface were obtained from diazonium
salts [2]. Using high-quality graphene and a diazonium with a long alkyl chain (C22H45-O-C6H4N2

+

BF4
−) [63], it was possible to obtain patterns of adsorbed molecules (imaged by STM); however, when

the diazonium salt was reduced, grafting occurred and a new pattern was obtained. In this way, the
authors obtained a pattern of grafted molecules; it is, however, surprising that the thickness of the
grafted pattern was only 2 nm. As the diazonium was para-substituted, the molecules should have
been more or less vertically aligned on the surface sp3 carbons (Figure 11).Biosensors 2020, 10, x FOR PEER REVIEW 11 of 35 
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2. Applications to Biosensors

A biosensor is composed of a bioreceptor (probe), which selectively binds the analyte of interest
(target), and a transducer, allowing the transformation of the probe/target recognition event into a
physical signal. Research and development of biosensors is extensively studied because they permit
easy, rapid, low-cost, highly sensitive, and selective detection of analytes. They allow ultrasensitive
point-of-care detection of markers for diseases and should lead to advances for next-generation
medicinal applications such as personalized medicine. In addition to biomedical applications,
biosensors are also capable of responding to the current needs for environmental monitoring. For
both fields of applications, the ongoing trend is miniaturization, parallelization, and integration of
sensors into everyday objects. However, despite the intense research and development activities
around biosensors, very few of them actually reached the market because of their non-optimal
performances [64].

The sensor selectivity, sensitivity, and robustness (stability, reproducibility, etc.) are mainly
controlled by the intrinsic bioreceptor characteristics, such as its affinity toward the target, as well as
its stability in the sensor operating conditions. In a biosensor, the bioreceptor is usually grafted onto a
surface, i.e., in the close vicinity of the transducer. Hence, sensor sensitivity and robustness depend
also on the methodology deployed for the bioreceptor immobilization onto the transducing surface.
The accessibility of the target to the recognition site of the biomolecule, the grafting stability, and the
distance between the receptor and the transducer (surface) are all parameters to be optimized in order
to improve the device analytical performance. All these parameters depend on the method chosen to
immobilize the biomolecule. Historically, conducting polymers (CP) were widely used as a conductive
matrix to produce affinity (DNA, proteins, etc.) or enzymatic electrochemical sensors. The possibility
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of inserting the biomolecule inside the transducer material (CP) led to many ultrasensitive enzymatic
sensors. However, CPs do not allow thin-film production, leading to sensors showing long response
times (long delays to reach a stable signal). The other widely used approach is to immobilize the
bioreceptor by self-assembly, including chemisorption of thiols. This approach led to the development
of complex (controlled immobilization of several bioreceptors) and ultrathin (few nm between the
binding site and the transducer) sensing systems presenting excellent analytical performance in terms
of sensitivity. However, critical disadvantages remain, such as (i) the weak stability of the metal–S
bond, (ii) the limited number of substrates (essentially noble metals), and (iii) the difficulty of localizing
the film deposition. Indeed, in the development of chips comprising several sensors, it is necessary to
have a functionalization method for addressing the deposition step. In this respect, electrodeposition is
definitely advantageous as it offers the possibility of functionalizing specific (polarized) zones directly
by the bioreceptor or an anchoring function thereof.

Electroreduction of diazonium salts is a rarely used functionalization method compared to CP and
self-assembly, despite the achievement of extremely stable surface modifications (covalent bonding)
that contribute to the stability of the biosensor. In addition, the high reactivity of the diazonium
function allows a fast and extremely dense grafting on a wide range of substrates.

Indeed, the interest in the diazonium salt electroreduction approach is largely related to the
remarkable reactivity of the diazonium function. However, its limited use in the field of biosensors is
probably due to the same reason. Indeed, this method generally leads to “multilayered” structures that
may increase the bioreceptor/surface (transducer) distance and, therefore, potentially provoke a loss of
sensitivity (issue 1). Moreover, in the case when the biomolecule itself is modified by a diazonium
salt, to ensure high affinity, it must be oriented with respect to the surface (accessibility to the target,
structural reorganization associated with recognition, etc.) and not denatured upon grafting. The
high reactivity of diazonium groups can lead to a random distribution and orientation of the receptors
(issue 2), as well as to their degradation (issue 3); the diazonium group attached to, for example, a
protein can react with a wide range of biological functional groups (phenols, amines, etc.) of the same
protein or another molecule. These issues need to be completely addressed in order to take advantage
of diazonium chemistry for the realization of biosensors.

In order to bind the receptor, an aryldiazonium group must be firstly equipped; this is generally
achieved by peptidic coupling. Conversely, a platform can be created by reacting the surface with a
diazonium, including a 4-substituent designed to react with the bioreceptor.

The many reviews (Table 1) published for the construction of biosensors using diazonium salts as
anchoring molecules testified to the interest in this method [7,8,65–69]. The objective of this section
is to carry out a review of biosensors using the electroreduction of diazonium salts structured by
analyte type, each of them having specificities in terms of sensor typology and expected analytical
performances. For each target, any progress made to address the aforementioned issues is highlighted.

Table 1. Reviews on biosensors built with the help of diazonium chemistry.

[1] Some of advantages and disadvantages of alkanethiol and diazonium salts for the modification of electrode
surfaces, and selected examples

[66] The use of diazonium salts as surface modifiers and coupling agents, as well as some applications in biosensing

[67] A general overview of biosensors including different methods that permit attaching sensing groups to a surface

[68] A review of the author’s work concerning biosensing of antibodies, oligonucleotides, and enzymes onto
conductive supports

[69] Advances in the use of aryldiazonium salts for modifying interfaces in sensors and biosensors

[70] A review that outlines the potential of diazonium chemistry to prepare single or multianalyte electrochemical
affinity biosensors on screen-printed electrodes (SPEs)

[71] A review that evaluates the methods through which redox proteins can be attached to electrode surfaces in a
“wired” configuration that facilitates direct electron transfer

[72] Copper(I)-catalyzed click chemistry as a tool for the preparation of electrochemical (bio)sensors



Biosensors 2020, 10, 4 12 of 32

2.1. Detection of Small Molecules of Biological Interest

Glucose. The detection of glucose is a challenge related to diabetes; a number of papers were
published dealing with the detection and quantification of this molecule through diazonium chemistry.
Note that the normal glucose content of blood is from 3.9 to 7.1 mmol/L (70 to 130 mg/dL). However,
on the one hand, blood samples require the use of several membranes to avoid sensor biofouling, and,
on the other hand, current glucose monitoring approaches target tears or sweat as glucose vectors in
order to avoid body penetration. Therefore, accurate continuous glucose monitoring devices need a
concentration linearity range in the micromolar range.

Glucose is electrochemically detected through its oxidation into gluconolactone; this reaction is
catalyzed by glucose oxidase (GOx), which is reduced to its reduced form (GOxH2), which is then
reoxidized either directly by electron transfer from the electrode or more often through a mediator
such as ferrocene (Fc in Figure 12). In agreement with the subject of this review, we describe the
experiments where GOx is attached to the surface of the electrode by diazonium chemistry. Table 2
gives an overview of the different papers published on the subject. This table is divided into two parts:
electron transfer through a mediator or direct electron transfer.

As an example of the methods involving a mediator, we present the first paper describing
the use of a diazonium salt for detecting glucose. It involved the attachment of glucose oxidase
to a glassy carbon surface modified with 4-phenylacetic acid diazonium fluoroborate through
carbodiimide coupling [73]. Glucose was detected (Figure 12) through the electrochemical signal of the
ferrocene/ferricinium–methanol couple (Fc/Fc+) acting as an electron shuttle between the electrode
and GOx/GOxH2. Based on the catalytic regeneration of ferrocene, it was possible to determine
the surface concentration of the active enzyme as Γ ~1.8 × 10−13 mol cm−2, about one-tenth of the
estimated value of a monolayer of GOx (Γ ~1.7 × 10−12 mol·cm−2). A similar system was constructed
from trans-cinnamic acid, showing good selectivity for the various possible compounds interfering in
glucose analysis, namely, ascorbic acid and 4-acetamidophenol [74].
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Table 2. Glucose sensors based on diazonium grafting. GOx—glucose oxidase.

Surface (a) Attached Aryl
Group

Characteristics c =
Concentration Range

Γ (GOx) mol·cm−2, kET
T = Turnover
S= Sensitivity

Reference

Mediator

GC 4-phenylacetic Fc-CH2OH (b) Γ ~1.8 × 10−13 [73]

GC 4-phenylcinnamic Fc-CH2OH (b) - [74]

GC 4-phenylacetic +
layer by-layer (c) Fc-CH2OH b) Γ ~1.1 × 10−12 [77]

Aligned CNT 4-aminophenyl (d) Pt nanoparticles c = 1 × 10−2–7 mM
Stability 20 days

[78]

CNT 4-(2-aminoethyl)
phenyl Fc-CH2-CH2-COOH (e) c = 5–50 mM

s = 0.83 µA mM−1 [79]

GC Nile blue O2
f) c = up to 2.5 mM [80]

GC (g) 4-nitrophenyl Fe(CN)6
3−/4− c= up to10 mM [81]

Pt (h)
4-fluoro
4-methyl

4-methoxy
Fc-CH2OH

c = 0.2–10 mM
In the presence of ascorbic

acid and uric acid
[82]

Porous HOPG (i) To create the
porosity Fc-CH2OH 5 µM–100 mM [83]

Direct Electron Transfer

GC-Ar-GO-nP 4-carboxyphenyl Direct electron transfer
to GOx

C = 0.3–20 mM
kET = 8.3 s−1

T = 112 s−1.
[76]

GC
4-carboxyphenyl +
oligo(phenylethynyl)

(j)

Direct electron transfer
to GOx

0–25 mM
T = 1.1 s−1 [75]

GC 3-phenylboronic Direct complexation of
GOx −50 mM [84]

GC + GO (k) Thionine

Electrostatic
adsorption of

negatively charged
GOx on positively

charged functions of
thionine

c = 0.5–6.0 mM
s = 43.2 mA mM−1 cm−2 [85]

Pt/GO-SO3
−/PPy (l) 4-carboxyphenyl

c = 0.2 × 12 mM
s = 0.56 µA mM−1 cm−2

In the presence of ascorbic
acid (AA) and uric acid (UA)

[86]

(a) CNT: carbon nanotube, GC: glassy carbon, GO: graphene oxide, HOPG: highly oriented pyrolytic graphite. (b)

Fc: ferrocene, (c) 4-phenylacetic group + precursor film (PF) composed of one layer of poly(styrenesulfonate) (PSS)
sandwiched between two layers of poly(dimethyldiallylammonium) (PDDA); GOx is cast on this layer-by-layer
assembly and finally Nafion™ is deposited. (d) By reduction of the attached 4-nitrophenyl groups. (e)

Fc-CH2-CH2-COOH attached to an amino function of the grafted aryl group. (f) Oxygen is used to reoxidize
reduced GOx (GOxH2). (g) Interdigitated array of 1:1 aspect ratio carbon nanoelectrodes. (h) A crosslinked
chitosan–glutaraldehyde–GOx gel is deposited on the Pt electrode. (i) Graphene is made porous by grafting
diazonium salts, and GOx bonded to pyrenebutyric acid is adsorbed in the pores of HOPG. (j) Assembled by
simultaneous reduction of two diazonium salts; 20-Å-long molecular wire. (k) Thionine diazonium cation is
covalently attached onto the glassy carbon electrode via graphene nanosheets. (l) Nanocomposite layers are
deposited onto platinum electrodes through the electrochemical polymerization of pyrrole monomer in the presence
of reduced graphene oxide bearing phenylsulfonyl groups and further modified with carboxyphenyl groups via
electrochemical reduction of 4-carboxybenzenediazonium.

Direct electron transfer from the electrode to a GOx enzyme is also possible by diazonium
chemistry but requires fine control of the overall structure. Indeed, to obtain an efficient enzyme
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wiring, a bottom-up approach needs to be implemented. The active center of GOx is a flavine adenine
dinucleotide (FAD) buried deep inside the pocket of a proteinic structure of the enzyme. Gooding et
al. designed a molecular wire (a 20-Å-long oligo(phenylethynyl)) able to reach the FAD active site
and providing a fast electron transfer to GOx [75]. In addition, these bonded molecular wires were
diluted in 4-carboxyphenyl groups (30/1) that served the twin purposes of being a spacer between
molecular wires and an anchor to maintain the attached GOx on the surface via covalent peptidic
coupling (Figure 13). The surface coverage of active GOx was calculated to be 2.41 × 10−12 mol·cm2,
and the rate of electron transfer was kET = 78 s−1.Biosensors 2020, 10, x FOR PEER REVIEW 14 of 35 
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Another complex assembly is presented in Figure 14, where grafting of diazonium salts was used
for attaching (i) gold nanoparticles to graphene oxide (GO), (ii) modified GO to the glassy carbon (GC)
electrode, and finally (iii) GOx to gold nanoparticles [76]. These two examples underline the ability of
diazonium chemistry to form complex (nano)structures similar to those obtained by self-assembly.
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Table 2 gathers the different architectures for glucose biosensors obtained through diazonium
salt chemistry.

NAD+/NADH. The nicotinamide adenine dinucleotide redox co-factor, NAD+, is the coenzyme
of over 300 dehydrogenase enzymes (e.g., lactate dehydrogenase, alcohol dehydrogenase, glucose
dehydrogenase). The quantitative detection of the reduced form, NADH, can be used as a measure of
enzymatic activity. Amperometric biosensors based on this strategy were developed to assay of the
corresponding enzymatic substrate molecules (e.g., lactate, malate, and ethanol).

NADH was detected [87–90] on an array of five electro-addressable electrodes. All the electrodes
were grafted with 4-nitrophenyl groups; then, on two of these electrodes, the nitrophenyl group was
reduced to aminophenyl to which pyrroloquinoline quinone was bonded by peptidic coupling. This
quinone acts as a mediator for the oxidation of NADH [87]. In a similar way, anthraquinone, [89]
toluidine blue [88], and azure A (for the detection of ethanol) [90] were attached to electrodes.

Other biomolecules. Some sensors were described that, based on diazonium salts, can detect
different drugs; for example, ranitidine, a histamine H2 receptor antagonist, was detected on
aminophenyl-modified gold nanoparticle films deposited on a GC electrode by differential pulse
voltammetry (DPV) [91]. Calcitonin, a tumor marker, was detected on a GC electrode modified
by 4-carboxy or 4-nitrobenzenediazonium and attachment of gold nanoparticles and graphene
oxide; the increased surface area of the immunosensor translated into an enhanced sensitivity [92].
Uric and ascorbic acids were also detected by diazonium-based sensors [93–95]. For example,
uric acid was detected with an Au gate field-effect transistor (FET)-based sensor where the gold
surface was modified by a monolayer of 4-nitrobenzenediazonium in the presence of DPPH
(2,2-diphenyl-1-picrylhydrazyl) [95]. Estradiol was detected by attachment of an aptamer (NH2-APT)
to a GC-reduced graphene oxide surface modified by reaction of 4-carboxybenzenediazonium [96].

Toxins. Biosensors were developed against dangerous toxins. Aflatoxins are- highly toxic
mycotoxins produced by fungi. Among them, AFM1 can be found in commercially available milk; it
is, therefore, considered as one of the most serious problems of food safety, and the level of aflatoxin
in milk is subject to safety regulations. Okadaic acid is one of the most common marine biotoxins,
which is ingested through filter feeding mechanisms by various species of shellfish such as mussels.
Ochratoxin A is a carcinogenic mycotoxin that was identified as a contaminant in cereals, coffee, cocoa,
dried fruits, and pork. Therefore, electrochemical detection of these toxins is important, and biosensors
were constructed either via modifying a surface by attaching antibodies and aptamer or via modifying
the toxin itself and attaching the modified species (Table 3).
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Table 3. Detection of toxins. SWCNT—single-walled carbon nanotube.

Surface Diazonium Salt + Attached
Recognizing Group Analyte Detectable Label and

Detection Limit Reference

Attachment of toxins to surfaces modified by diazonium chemistry

SPE (a)
4-carboxybenzenediazonium +
hexaethyleneglycol-modified 21-mer
oligonucleotide

Aflatoxin M1
in milk
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For example, okadaic acid was recognized by its attached antibody and detected by Electron
Impedance Spectroscopy (EIS), as presented in Figure 15.
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Figure 15. A schematic presentation of the surface chemistry used for immobilization anti-okadaic acid
(OA) monoclonal antibody on an SPE electrode, and Nyquist plots of 1 mM [Fe(CN)6]4−/3− for (a) bare
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10 µg/L ochratoxin. The insert is the equivalent electric circuit applied to fit the impedance spectroscopy.
From Reference [98] with permission of Elsevier.

Biogenic amines. Biogenic amines are synthesized and degraded during normal metabolism
of animals, plants, and microorganisms. Histamine, putrescine, cadaverine, tyramine, tryptamine,
spermine, and spermidine are considered to be some of the most important biogenic amines in food.
They were detected by attaching monoamine oxidase to the surface of SPE detection in the presence of
ferrocene methanol as a detector [102].

2.2. Detection of Polypeptides and Proteins

Many polypeptides, proteins, and enzymes are important in biological or medical processes. Their
detection and quantification in very minute quantities in body fluids is necessary; this can be achieved
by using diazonium salts that provide an anchor to attach proteins to surfaces where they are detected.
Two methods were used: (i) the protein is modified with an aminophenyl group (mainly by peptidic
coupling), and this aminophenyl modified protein is then transformed to a diazonium salt that is
attached to the surface; (ii) a diazonium salt with an appropriate 4- substituent (mainly carboxylic
and amino groups) is attached to the surface and further reacts with the protein. These two methods
(Table 4) permit creating a diazonium-based sandwich immunoassay; an analyte (most often a protein)
is detected through the use of a diazonium-anchored antibody (also termed immunoglobulin IgG) (or
antigen), and the assay is completed by attaching a detectable group to this construct (for example, by
luminescence). Table 4 gathers examples of such biosensors.
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Table 4. Detection of proteins. IgG—immunoglobulin G.

Surface Diazonium Salt + Attached Recognizing Group Analyte Detectable Label and Detection Limit Reference

Proteins modified with an aryl diazonium group

SPE array Immunoglobulin modified by a diazonium salt after
coupling with 4-carboxymethylaniline Anti-rabbit IgG antibodies

Peroxidase-labeled anti-rabbit
or anti-human IgG antibodies.
LOD: 50 fmol (a)

[103]

SPE array Anti-human IgG Human IgG
Horseradish peroxidase (HRP)-modified
secondary antibody.
Detection limit: 60 nm human IgG [104–106] (b)

SPE array Rabbit IgG modified by a diazonium salt after coupling
with 4-carboxymethylaniline Rheumatoid factor (RF)

Horseradish peroxidase (HRP)-modified
secondary antibody.
Detection range: 5.3–485 IU·mL−1

SPE array HRP modified by a diazonium salt after coupling with
4-carboxymethylaniline HRP

Gold NPs (c) on SPE
Human prostate-specific antigen (PSA) modified by a
diazonium salt after coupling with
4-carboxymethylaniline

Prostate-specific antigen (PSA)
monoclonal antibody labeled
with biotin

Horseradish
peroxidase-labeled streptavidin
Detection range of 5–80 ng/mL

[107]

(SPRi) (e) gold chip
Anti-ovalbumin IgG modified by a diazonium salt after
coupling with 4-carboxymethylaniline Ovalbumin Direct reflectivity change.

LOD: 100 ng/mL (2 nM). [108] (d)

GC, Au
Biotinylated anti-TNF-antibody (Tumor Necrosis Factor)
modified by a diazonium salt after coupling with
4-carboxyaniline

Anti-TNF-antibody Avidin modified gold NPs
or avidin-HRP [109] (e)

Au Carboxybetaine aryldiazonium derivative + lectin Prostate-specific antigen (PSA)
EIS detection of
anti-PSA antibody-modified Au nanoshells
with a magnetic core

[110] (f)

Attachment of proteins to surfaces modified by diazonium chemistry

Modified Surface Analyte Detectable Label and Detection Limit

SPRi gold chip Gold surface modified Protein A Direct reflectivity change upon coupling the
protein to the attached carboxylic group [111] (g)

CNT
CNT modified by reaction of
4-carboxymethylbenzenediazonium + attachment of
mouse olfactory receptor proteins

Various odoriferant organic
compounds in vapor phase

Detection of odors: e-nose
For example, 7 ppb of toluene [112] (h)

Graphene-modified GC
Graphene surface modified by reaction of
4-aminobenzenediazonium + coupling with
A-Fetoprotein antibody

A-Fetoprein HRP-labeled anti-AFP antibody
LOD: 0.03 ng mL−1 [113] (i)
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Table 4. Cont.

Surface Diazonium Salt + Attached Recognizing Group Analyte Detectable Label and Detection Limit Reference

Attachment of proteins to surfaces modified by diazonium chemistry

Modified Surface Analyte Detectable Label and Detection Limit

SPE Gold surface modified by reaction of
4-carboxybenzenediazonium Lysozyme

Biotinylated antibody avidin–alkaline
phosphatase
LOD: 4.3 fM

[114] (j)

Gold Gold NPs modified with 4-mercaptoaniline, attached to
gold surface by diazonium coupling

Five-amino-acid polypeptide
with a biotin group Peroxidase-labeled streptavidin [115]

Nanocomposite: gold
NPs loaded on reduced
graphene oxide

Gold NPs modified with 4-carbxyphenyl and
4-aminophenylphosphorylcholine + coupling with
anti-TNF-α capture antibody

Cytokine tumor necrosis
factor-alpha (TNF-α)

Coupling anti-TNF-α detection
antibody (Ab2) attached to graphene oxides
modified with ferrocenyl groups.
Electrochemical detection of ferrocene.
LOD: 0.1 pg·mL−1

[116] (k)

Indium tin oxide (ITO) Gold surface modified by reaction of the diazonium salt of
4-aminobutyric acid + peptidic coupling of antibody (Ab1) Tumor necrosis factor HRP-conjugated detection antibody (Ab2)

LOD: 10 pg/mL [117] (l)

SPRi biochip 4-Carboxybenzenediazonium + anti-ovalbumin antibody Ovalbumine Direct detection by SPR [118]

SPE

SPE surface modified by reaction of
4-methoxybenzenediazonium + oxidation of the grafted
methoxy group+ attachment of anti-growth hormone
antibodies

Growth hormone
EIS detection of 100 pg/mL growth hormone in
undiluted whole blood
LOD: 5 pg·mL−1

[119] (m)

Al–Mo nanoparticle
membrane on Si 4-formylbenzenediazonium

Monoclonal antibodies specific
for bovine herpes virus 1
(BHV-1)

Bovine herpes virus 1
Measurement of the resonance frequency shift
of the membrane

[120]

Biomembrane-like films

GC Gold NPs capped with myoglobin on 4-carboxaldehyde
diazonium salt + docecyl thiol Myoglobin Electrochemical detection of H2O2

0.3 µM [121]

(a) LOD: Limit of Detection. Sequential modification of the electrodes is possible without interference; (b) the binding of non-RF human antibodies was found to be negligible; (c) NPs:
nanoparticles; (c) SPRi: surface plasmon resonance imaging surface; (d) the integrity of the immobilized carboxymethylaniline-modified antibodies; the detection of ovalbumin by
immobilized IgG against ovalbumin was evaluated; (e) response time 5 s, selective detection, selectivity of a given cytokine; (f) LOD: 34 fg·mL−1and 108% recovery when spiking in a
female serum; (g) non-specific absorption of the rabbit IgG remained negligible on the inter-spot areas; (h) remained active with stable normalized responses for ~5 days when stored in a
humid environment; device responses to odorants show broad agreement with heterologous technique; (i) relative standard deviation was 4.5%, selectivity vs. bovine serum albumin and
carcinoembryonic antigen, stability: 10 days under proper conditions; (j) detection range: 5 fM to 5 nM, selectivity vs. bovine serum albumin, cytochrome c, recovery 95–102% in wine
samples; (k) selectivity vs. bovine serum albumin, prostate-specific antigen, cancer antigen-125, and mouse IgG, stability 30 days under proper conditions; (l) selectivity vs. hemoglobin,
human serum albumin, comparison with ELISA test; (m) relative standard deviation less than 6% in whole-blood and plasma samples, mean recoveries ranging from 94% ± 3% to
103% ± 2%.
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The first examples of such diazonium-based immunoassays were published by Marquette [103,104];
an array of individually addressable screen-printed electrodes was modified with an IgG. This was
achieved by (i) coupling the carboxylic group of 4-carboxyaniline to an amino group of IgG by peptidic
coupling (DCC/NHS, N-hydroxysuccinimide N,N′-dicyclohexylcarbodiimide), (ii) diazotizing the
pending amino group in acidic water (20 mM HCl and 20 mM NaNO2), and (iii) electrografting the
diazonium-labeled IgG to a connected electrode of the array. This electrografting was characterized, as
for other diazonium salts, by a decrease of the drawn-out wave of the diazonium salt upon repetitive
scanning. This reaction sequence is presented in Figure 16.
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From Reference [104] with permission of Wiley.

The final step of the assembly is presented in Figure 17 in the case of a rheumatoid factor (a family
of human antibodies largely involved in rheumatoid diseases) that binds to the surface-attached IgG.
The detection was achieved by binding a secondary antibody labeled by a horseradish peroxidase; this
final enzyme catalyzed the oxidation of luminol with light emission at 428 nm. Therefore, detection of
this emission permitted quantifying the presence of rheumatoid factor in human serum in the range
5.3–485 IU·mL−1. Detection was also achieved on SPRi (surface plasmon resonance imaging) surfaces
by direct reflectivity change.
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detection of tumor necrosis factor α (TNF-α) in whole blood [117]. TNF-α is a typical early-stage
indicator of an inflammatory reaction, in response to infection or cancer. Affinity biosensors are difficult
to operate in whole blood because biofouling of electrode surfaces compromises the performance
of the final device. To prevent this phenomenon, a platform was prepared on ITO by reduction of
two diazonium salts derived from 4-aminophenyl phosphorylcholine (PPC) and 4-(4-aminophenyl)
butyric acid (PBA). Therefore, this mixed surface comprised phosphorylcholine groups that prevented
biofouling of the electrode and phenylbutyic acid groups that permitted the attachment of antibodies
as biorecognition elements. Other anti-biofouling molecules could be attached to electrode surfaces
such as polyethyleneglycol molecules, but these types of long-chain molecules give rise to passivated
surfaces with high impedance. Upon electrochemical reduction, the diazonium salts of PPC (Ep = −0.55
V/(Ag/AgCl) and PBA (Ep = −0.58 V/(Ag/AgCl), as well as their mixture, gave rise to the typical pattern
of diazonium salts, where the current decreases upon repetitive scanning, as shown in Figure 18.
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Figure 18. Cyclic voltammetry of the diazonium salts of 4-aminophenyl phosphorylcholine (PPC),
4-(4-aminophenyl) butyric acid (PBA), and their mixture on an indium tin oxide (ITO) electrode. From
Reference [117] with permission of the American Chemical Society.

These modified ITO electrodes were characterized by XPS (X-ray Photoelectron Spectroscopy),
cyclic voltammetry of redox probes (Fe(CN)6

3−/4−), and EIS. The immunosensor was on this platform
as presented in Figure 19. The capture antibody (Ab1) was immobilized onto the PPC–PBA/ITO
surface via the classical EDC/NHS (EDC: 1-éthyl-3-(3-diméthylaminopropyl)carbodiimide) conjugation
reactions between COOH groups on the mixed layer surface and residual amino groups of the Ab1.
The final steps involved the binding of the analyte TNF-α and finally of the HRP-conjugated detection
antibody. The consumption of H2O2 by HRP was detected by amperometry, and TNF-α concentrations
in the range of 0.01–500 ng/mL were detected. The interference of human serum albumin or hemoglobin
was limited by the presence of phosphorylcholine on the surface [117]. This example illustrates the
possibility of realizing mixed layers with controlled structures. This new approach enhances the
analytical performance by implementing both a bioreceptor and a non-specific adsorption reducer.
Prior to this publication, only thiol-type self-assembly and co-polymerization approaches were used to
obtain such structures.
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Figure 19. Immunoassay of tumor necrosis factor α (TNF-α) factor based on a mixed antifouling
platform. From Reference [117] with permission of the American Chemical Society.

An “e-nose” capable of detecting different odors (eugenol, n-amylacetate, etc.) was constructed
as shown in Figure 20 by coupling mouse olfactory receptor proteins (ORs) with carbon nanotube
transistors. The CNT was modified with 4-carboxybenzenediazonium, and the ORs were attached by
peptidic coupling. The resulting devices transduced signals associated with odorant binding to ORs in
the gas phase under ambient conditions [112].
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2.3. Detection of DNA

Affinity sensors using nucleic acids as bioreceptors are probably the most common biosensors.
Indeed, nucleic acids are used to bind another nucleotide sequence (DNA, RNA, microRNA (miRNA),
etc.) or, in the case of aptamers, a different type of target (e.g., small organic molecules, metal cations,
proteins, etc.). Biosensors including a diazonium electroreduction step in their fabrication process
already proved their relevance for DNA sensing. Methods for recognition of DNA sequences were as
follows: (i) the DNA sequence to be recognized was equipped with a diazonium salt, electrografted
and recognized in different ways [103]; (ii) the target DNA sequence was bonded to the surface through
avidin–biotin recognition [122] or another method [123]; (iii) the target DNA sequence was linked to
the surface and recognized by its complementary sequence [124,125]; (iv) a symmetric reaction where
the complementary sequence was bonded to the surface was also possible [126]. The detection was
achieved either by fluorescence or by electrochemistry (DPV, EIS) (Table 5).
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Table 5. Detection of DNA

Surface Diazonium Salt + Attached Recognizing Group Analyte Detectable Label and Detection Limit Reference

Modification of the Surface

Carbon nanofibers
4-Nitrobenzenediazonium and reduction of 4-nitrophenyl
to 4-aminophenyl groups after electrografting + reaction
of a maleimide linker (a)

Thiol-terminated DNA attaches to the
linker

Fluorescently labeled, perfect complement to the grafted
oligonucleotides [123]

Vertically aligned
diamond nano-wires

4-Nitrobenzenediazonium and reduction of 4-nitrophenyl
to 4-aminophenyl groups after electrografting +
maleimide linker (a) + thiol-terminated DNA, 23-mer
cancer marker cytokeratin

The complementary DNA sequence
The complementary sequence detected by Differential
Pulsed Voltammetry (DPV)
LOD ~2 pM

[124] (b)

Array of gold electrodes 4-Carboxybenzenediazonium and a bis-diazonium salt
with a COOH terminal group + amino-terminated DNA

Human papillomavirus sequences
terminated by tetramethylbenzidine Electrochemical detection of tetramethylbenzidine [127]

Vertically aligned carbon
nanotubes

Diazonium salt of an aminophenyl group substituted +

β-cyclodextrin (β-CD)

DNA probe substituted on one end by a
dabcyl group and a CdS nanoparticle at
the other end

In the presence of the complementary sequence, the probe
could be captured by the β-CD-modified CNT electrode
LOD by DPV: 5.0 × 10−13 M

[128] (c)

ITO, gold, GC 4-Carboxybenzenediazonium + attachment of avidin Biotinylated DNA from influenza virus
(type A)

Avidin–biotin recognition. Detection through the CV of
ferro/ferricyanide
LOD: 8.51 × 10−14 M

[122]

SPE 4-Nitrobenzenediazonium and reduction of 4-nitrophenyl
to 4-aminophenyl groups after electrografting

Amine-modified (polyA)25 DNA
probe.

Reaction between the diazonium group and NH2-DNA and
recognition of the hybridization by EIS and DPV
LOD: 4.65 nm

[129] (d)

GC 4-Carboxybenzenediazonium and a naphthoquinone (e) to
give a mixed layer + DNA probe attached to the surface

Fluorescent complementary DNA
strand

Hybridization was detected by fluorescence and Alternative
Current (AC) voltammetry
Detection limit ca. 10 pM

[125]

Au
Mixed layer obtained from the diazonium salts bearing (i)
a sulfobetaine group, (ii) a phenylmaleimido group +
DNA probe attached to the surface

New Delhi metallo-β-lactamase
(NDM)-Coding Gene

CV and chronoamperometric detection of the charges on the
phosphate groups of DNA
Detection limit: 54 pM

[130] (f)

The diazonium salts of 4-aminophenylacetic acid +
covalent immobilization of streptavidin and incubation of
a biotinylated DNA capture probe

Biotinylated DNA target sequence
associated with the human
papillomavirus

HRP-DNA probe + electrochemical detection of tetramethyl
benzidine
Detection limit: 0.50 nM

[126] (g)

ITO 1-Naphthalenesulfonate diazonium salt MicroRNA

Discrimination ability over single-mismatch, high
sensitivity in the aM range thanks to the use of isothermal
amplification strategy
Detection limit: 25 aM

[131] (h)

SPE 4-Carboxybenzenediazonium + peptidic attachment of a
DNA probe

Determination of DNA damage by various reagents using
EIS [132] (i)

(a) Sulfosuccinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate;(b) concentration range: from 2 to 10 × 10−12 M, no degradation over 30 cycles of DNA hybridization/denaturation;
(c) linear concentration range 1.0 × 10−7 to 1.0 × 10−12 M; (d) reproducibility: 7%, stability: retained 60% of its initial response after one month; (e) 5-hydroxy-1,4-naphthoquinone (juglone);
(f) stability: >5 days; (g) linear range: 0–20 nM; (h) selectivity vs. concomitant miRNA, family members with sequence homology, recovery: 100% in 10% diluted human serum samples;
(i) retained about 83% of its initial response after three weeks under proper conditions.
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A mixed layer obtained from two diazonium salts (4-carboxybenzenediazonium + the diazonium
salt of an amino derivative of 5-hydroxy-1,4-naphthoquinone, juglone) was prepared. The carboxylic
group was activated by EDC/NHS, and a primary amine-functionalized DNA strand (NH2-DNA
probe) was coupled to the carboxylic acid. This attached DNA sequence recognized its complementary
chain equipped with a fluorescent label, but hybridization was also detected by 3AC) voltammetry of
the naphthoquinone group [128].

Human papillomavirus is a DNA virus responsible for cervical cancer. It can be detected based
on the sequence of reactions presented in Figure 21. Carbon nano-onions are multilayered fullerenes
concentrically arranged one inside the other; they were deposited onto a GC surface to form a stable
micrometric film. This carbonaceous film was modified by the diazonium salt of phenylacetic acid.
The COOH groups of the surface were activated using carbodiimide chemistry, followed by covalent
immobilization of streptavidin and incubation of a biotinylated DNA capture probe (Figure 21a–c).
Hybridization was accomplished with the target DNA sequence. Finally, an HRP-labeled reporter
probe was introduced, and amperometric detection of the oxidation of tetramethylbenzidine permitted
quantifying the analyte down to 0.11 µA·nM−1. Incorporation of carbon nano-onions on the surface
resulted in better sensitivities and lower limits of detection than unmodified GC due to the increased
surface area [130].
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2.4. Cells

Gold SERS (surface-enhanced Raman spectroscopy) active substrates were modified with
4-carboxyphenyl groups, and the carboxylic groups were coupled to amino groups of folic acid.
With such a surface, it was possible to test the presence of normal and melanoma-associated cells in
a cultivation medium. The SERS spectra of the folic acid modified surface indicated the presence of
differences arising from the interaction of the bio-liquid with the functional surface [133] (Figure 22).
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3. Concluding Remarks

The large and growing demand for robust and reliable detection devices continues to motivate
much work around biosensors. Given the advantages of the electroreduction of diazonium salts in
terms of stability of (bio)molecular buildings, it is very likely that this method will contribute to
improving the reliability and stability of detection systems. However, before being able to take full
advantage of diazonium chemistry, attention must be paid to reach a finer control of film thickness
and composition, which is the current main challenge. Recent advances in controlling the thickness
and composition of mixed layers obtained by reduction of diazonium salts are the first steps toward
the realization of covalent buildings of controlled architecture. Beyond the classical approaches
of biodetection, there is a tendency to integrate biosensors into everyday objects through printing
methods. The reactivity of the diazonium function makes it possible to consider, as a future prospect,
the development of a new generation of functional inks able to bind covalently to the surface of the
substrate or to an underlying layer. This capability would allow the integration of a variety of functions,
including biosensing ones, under ambient conditions over a wide range of surface areas.
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