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IFN-g is a pleiotropic cytokine with immunomodulatory and tumoricidal functions. It has
been used as an anti-tumor agent in adjuvant therapies for various cancers. Paradoxically,
recent advances have also demonstrated pro-tumorigenic effects of IFN-g, especially in
promoting cancer metastasis, with the mechanism remains unclear. This will undoubtedly
hinder the application of IFN-g in cancer treatment. Here, we verified that IFN-g treatment
led to activation of the epithelial-to-mesenchymal transition (EMT) programme and
metastasis in cell lines of various cancers, including the kidney cancer cell line Caki-1,
the lung cancer cell line A549, the cervical carcinoma cell line CaSki, the breast cancer cell
line BT549 and the colon cancer cell line HCT116. We further disclosed that midkine
(MDK), an emerging oncoprotein and EMT inducer, is a common responsive target of IFN-
g in these cell lines. Mechanistically, IFN-g upregulated MDK via STAT1, a principle
downstream effector in the IFN-g signalling. MDK is elevated in the majority of cancer
types in the TCGA database, and its overexpression drove EMT activation and cancer
metastasis in all examined cell lines. Targeting MDK using a specific MDK inhibitor (iMDK)
broadly reversed IFN-g-activated EMT, and subsequently abrogated IFN-g-triggered
metastasis. Collectively, our data uncover a MDK-dependent EMT inducing mechanism
underlying IFN-g-driven metastasis across cancers which could be attenuated by
pharmacological inhibition of MDK. Based on these findings, we propose that MDK
may be used as a potential therapeutic target to eliminate IFN-g-elicited pro-metastatic
adverse effect, and that combined MDK utilization may expand the application of IFN-g in
cancer and improve the clinical benefits from IFN-g-based therapies.
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INTRODUCTION

Interferons (IFNs) constitute a family of cytokines that have
antiviral, antiproliferative and immunomodulatory properties
(1). There are three main classes of cytokines in the IFN
family: IFN-I (IFN-a, b, ϵ, k, and w), IFN-II (IFN-g), and
IFN-III (IFN-l1, l2, l3, and l4) (2). These cytokines play
pivotal roles in host defense against viral and bacterial
infections, as well as immunosurveillance for malignant cells (3).

IFN-g, encoded by the gene IFNG, is the only member of IFN-
II. It is a pleiotropic cytokine with a long history of clinical trials in
cancer treatment (4, 5). Since the first clinical trial conducted
in 1985 (6), the therapeutic application of IFN-g has been tested in
a variety of malignancies, including melanoma, leukemia, ovarian
cancer, renal cell carcinoma, hepatocellular carcinoma, lung
cancer, breast cancer, bladder cancer and colorectal cancer (7).
Clinical benefits derived from IFN-g-based therapies have been
reported in several cancers (8–10), highlighting the therapeutic
value of IFN-g in combating cancers.

IFN-g exerts anti-tumor effects by boosting antitumor
immunity and by direct effects on cancer cells (1, 11). IFN-g
enhances the activity of cytotoxic CD8 T cells, NK cells, Th1
cells, dendritic cells and macrophages; stimulates the expression
of the major histocompatibility complex (MHC) class I and II
molecules in tumor cells and APCs; promotes differentiation of
macrophages towards a pro-inflammatory (M1-like) phenotype;
and bridges the innate and adaptive immune responses (3, 12,
13). IFN-g also exerts direct cytotoxic effects on neoplastic cells
through anti-proliferative, anti-angiogenic and pro-apoptotic
mechanisms (7, 14, 15).

Despite these anti-tumor activities, IFN-g has been
paradoxically reported to increase the risk of tumor metastasis
(16–22). This pro-tumorigenic activity has been reported in
colon adenocarcinoma (16), non-small cell lung cancer (20),
prostate cancer (17), renal cancer (18), triple-negative breast
cancer (21), and melanoma (19, 22) via multiple mechanisms.
However, the mechanisms underlying IFN-g-induced metastasis
remain unclear, and whether there is a shared mechanism
mediating IFN-g-induced metastasis in cancers of different
origins is still unknown.

Here, we reveal, for the first time, that the EMT inducerMDK, is
a common responsive target of IFN-g in all examined five cancer
cell lines, and that MDK confers the pro-metastatic function of
IFN-g in these cell lines by activating the EMT programme; while
pharmacologically targetingMDK using a specific inhibitor globally
attenuated IFN-g treatment-induced EMT and metastasis in all
examined cancers. We thus propose that blocking the pro-
tumorigenic activities of IFN-g using MDK inhibitors may help
to improve the clinical benefits from IFN-g-based therapies.
MATERIALS AND METHODS

Cell Lines and Culture
The human renal cancer cell line Caki-1, human lung cancer cell
line A549, human colorectal adenocarcinoma cell line HCT116,
Frontiers in Oncology | www.frontiersin.org 2
cervical cancer cell line CaSki, human breast cancer cell line
BT549 and human embryonic kidney cell line HEK293T were
acquired from National Collection of Authenticated Cell
Cultures (Beijing, China). Caki-1, A549 and HCT116 cells
were maintained in McCoy’s 5A medium modified (KeyGEN
BioTECH, Jiangsu, China). CaSki and BT549 cells were cultured
in RPMI-1640 medium (SIGMA, Vienna, Austria). HEK293T
were maintained in DMEM medium (Gibco, California, USA).
All mediums contained 10% fetal bovine serum (FBS, Ausbian,
Australia) and 1% penicillin–streptomycin mixture (Solarbio,
Beijing, China). All cell lines were incubated at 37°C with 5%
CO2 in a humidified incubator.

Antibodies and Reagents
MDK antibody (1:1000 dilution, 11009-1-AP) was purchased
from Proteintech Group Inc (Rosemont, IL, USA). E-cadherin
antibody (1:1000 dilution, 3195T), ZO1 antibody (1:1000 dilution,
8193T), Vimentin antibody (1:1500 dilution, 5741T) and Snail
antibody (1:500 dilution, 3879T) were from Cell Signaling
Technology (Danvers, Massachusetts, USA). STAT1 antibody
(1:5000 dilution, ab109320) and phospho-STAT1 (phosphor
Y701) antibody (1:1000 dilution, ab109457) were purchased
from Abcam (Cambridge, UK). b-actin antibody (1:1000
dilution, AF5001) was from Beyotime Biotechnology (Shanghai,
China). Recombinant human IFN-gwas acquired from PeproTech
(Rocky Hill, NJ, USA) and used at a concentration of 50 ng/ml for
48h. The MDK inhibitor iMDK was bought fromMerck Millipore
(Darmstadt, Germany) and diluted to a final concentration of
100nM in growth mediums. The STAT1 inhibitor Fludarabine
was purchased from Med Chem Express (New Jersey, USA) and
used at a concentration of 5 mM for 48h.

RNA Isolation and Quantitative Real-Time
PCR (qRT-PCR)
Total RNA was extracted using TRIeasy reagent (Yeasen
Biotechnology, Shanghai , China) according to the
manufacturer’s instruction. The concentration and purity of
RNA were determined by Nanodrop 1000. The ratio of OD 260/
OD 280 falling between 1.8 and 2.0 indicates acceptable values.
Reverse transcription was achieved with a total of 1 mg RNA using
the cDNA Synthesis SuperMix (Yeasen Biotechnology, Shanghai,
China). The primers (5′-3′) synthesized by Rui Biotech (Beijing,
China) were listed in Table S1. QRT-PCR was performed using
qPCR SYBR Green Master Mix (Yeasen Biotechnology, Shanghai,
China). Each sample was run in 3 duplicate wells, and the relative
RNA expression levels between different samples were analyzed by
2 –DDCt method, with b-actin as an internal control.

Lentivirus Production and
MDK Overexpression
The human MDK overexpression lentiviral vector (YOE-LV004-
hMDK) with neomycin resistance and the corresponding control
vector (YOE-LV004-Ctrl) were purchased form UBIGENE
(Guangzhou, China). Lentivirus was produced in HEK293T
cells by co-transfecting the lentiviral vector with the psPAX2
and pMD2G packaging vectors using Lipofectamine 3000
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(Invitrogen, Carlsbad, CA, USA). Caki-1, A549, HCT116, CaSki
and BT549 cells were infected with the packaged lentiviruses
with polybrene, and then selected with G418 (Solarbio, Beijing,
China) at a concentration of 400 mg/ml. The empty plasmid
(YOE-LV004-Ctrl) was used as a control.

Transwell Assay
Transwell assays were used to assess the invasion and migration
abilities of cancer cells. Briefly, 1×105 cells in serum-free medium
were seeded into the upper chamber of transwell plates (Corning,
NY, USA), while the lower chamber was added with 10% FBS
medium. For invasion assay, the transwell chambers were pre-
coated with Matrigel (BD Biosciences, Palo Alto, CA).
Approximately 16-24 h after seeding, the cells remaining on
the upper chamber were carefully wiped off with cotton swabs,
while the migrated cells were fixed in 4% paraformaldehyde for
20 minutes and then stained in 0.2% crystal violet solution
for 20-25 minutes. After cleaning the chamber with wash
buffer for three times, the migrated cells were counted under
an inverted bright-field microscope.

Western Blotting Assay
Cell lysates were prepared in RIPA lysis buffer (Beyotime
Biotechnology, Shanghai, China) supplemented with 1x protease
inhibitor cocktail (Beyotime Biotechnology) and 1x
phenylmethylsulfonyl fluoride (PMSF, APPLYGEN, Beijing,
China). Protein concentrations were measured with a BCA assay
kit (KeyGEN BioTECH, Jiangsu, China). The protein samples (50
mg) were boiled at 100°C for 10 minutes, separated by 10-12%
SDS-PAGE, and then transferred onto PVDF membranes (Merck
Millipore, MA, USA) via semi-dry transfer unit. After blocked in
5% skim milk at room temperature for 1h, the membranes were
incubated overnight at 4°C with primary antibodies, and then
incubated with anti-rabbit or mouse IgG-HRP secondary antibody
for 2h at room temperature. Membranes were visualized using
Baygene Chemilmaging system (Baygene Biotech, Beijing, China)
with Super ECL Detection Reagent (Yeasen Biotechnology,
Shanghai, China).

Statistical Analysis
All statistical analysis was performed in GraphPad Prism 8.0
(GraphPad Software, La Jolla, CA, USA). Unpaired and multiple
T-test were used to assess the differences between control and
experimental groups. P value < 0.05 was considered statistically
significant. The results were presented as mean ± standard
deviation (SD). *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
RESULTS

IFN-g Treatment Enhances EMT and
Metastasis in Various Tumors
Interferon-gamma (IFN-g) is a pleiotropic cytokine with
antiproliferative, pro-apoptotic and immunomodulatory
functions. IFN-g has been used to treat a variety of malignancies
in pre-clinical and clinical trials; however, limited benefits have
Frontiers in Oncology | www.frontiersin.org 3
been achieved, presumably due to its pro-tumor adverse effects,
including eliciting metastasis (23). Prior to deciphering the
mechanism underlying IFN-g-induced cancer metastasis, we first
verified the pro-metastatic effect of IFN-g in five cell lines of
different human cancers (Figure 1A): the kidney cancer cell line
Caki-1, the lung cancer cell line A549, the cervical carcinoma cell
line CaSki, the breast cancer cell line BT549, and the colon cancer
cell line HCT116. Transwell assays demonstrated that IFN-g
exposure obviously increased the migration and invasion
abilities of all the five cancer cell lines (Figure 1A). This is in
line with the previous findings in colon cancer (16), prostate
cancer (17), non-small cell lung cancer (20), and melanoma (19),
suggesting that IFN-g treatment could globally enhance metastasis
of cancers.

EMT is a common mechanism driving metastasis of cancers
(24). We then examined the role of IFN-g in the EMT
programme. Western blotting results showed that IFN-g
treatment led to decreased expression of epithelial markers,
including ZO-1 and E-cadherin, and concomitant upregulation
of mesenchymal markers, such as Vimentin, Snail and Slug in the
above cell lines at the protein level (Figure 1B). The alterations in
expression of EMT markers were further verified at the mRNA
level (Figure 1C). These data indicate that IFN-g may promote
metastasis by activating the EMT programme in cancers.

IFN-g Exposure Promotes MDK Expression
in Cancers
MDK is a heparin-binding growth factor well-documented to
promote EMT and cancer metastasis (25). Though there is no
evidence suggesting the regulatory relationship between IFN-g
and MDK in the cancerous context, we found a previous report
indicating that the MDK expression in lymphocytes is
upregulated in response to IFN-g treatment (26). This gave rise
to the speculation that whether IFN-g treatment in cancers
would result in MDK activation, thereby triggering EMT and
metastasis. To verify this hypothesis, we treated different cancer
cell lines with IFN-g (50 ng/ml) and then examined the
alterations of MDK expression in the mRNA and protein
levels. Real-time qPCR assays demonstrated a dramatic
upregulation of MDK mRNA by IFN-g in all examined cancer
cell lines (Figure 2A), including the kidney cancer Caki-1, the
lung cancer A549, the cervical carcinoma CaSki, the breast
cancer BT549, and the colon cancer HCT116, which was
further validated by Western blotting at the protein level
(Figure 2B), suggesting that this is a shared regulation across
different types of cancers.

To further validate the IFN-g-MDK regulatory axis, we
treated the HCT116 cancer cell l ine with different
concentrations of IFN-g and verified that activation of MDK
by IFN-g was dose-dependent at both the mRNA (Figure 3A)
and protein (Figure 3B) levels. Furthermore, IFN-g treatment
also caused an obviously time-dependent upregulation of MDK
at both the mRNA (Figure 3C) and protein (Figure 3D) levels,
as well as time-dependent activation of EMT evidenced by time-
dependent downregulation of E-cad and ZO-1 but upregulation
of Slug and Snail (Figures 3D, E).
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IFN-g Activates MDK in a
STAT1-Dependent Manner
STAT1 is a key downstream effector in the IFN-g signalling (2),
which leads us to speculate that the IFN-g-MDK regulation may
rely on IFN-g-induced STAT1 activation. This speculation was
preliminarily supported by the significant correlations between
STAT1 and MDK in various cancers in the TCGA database
(Figure 4A). Moreover, as reported, real-time qPCR and
Western blotting assays showed that IFN-g exposure caused a
significant upregulation in levels of STAT1 abundance and
Frontiers in Oncology | www.frontiersin.org 4
phosphorylation (Figure 4B). Then we blocked STAT1
activation using a specific STAT1 inhibitor Fludarabine and
assessed its influence on IFN-g activation of MDK. Notably,
STAT1 inhibitor remarkably diminished IFN-g-induced
STAT1 activation, and substantially abrogated IFN-g-
induced MDK activation at the mRNA level in all examined
cell lines (Figure 4C), which was further validated at the protein
level by Western blotting analyses (Figure 4D). All these
demonstrate that IFN-g activates MDK via STAT1 in
cancer cells.
A B C

FIGURE 1 | IFN-g treatment enhances epithelial-mesenchymal transition (EMT) and metastasis in various tumors. (A) Transwell assays to detect the migration and
invasion abilities of different cancer cell lines without and with IFN-g treatment (50 ng/ml, 48 h). (B) Western blotting assays to examine the effect of IFN-g treatment
(50 ng/ml, 48 h) on expression of EMT markers at the protein level. (C) RT-qPCR assays to detect the changes in expression of EMT markers at the mRNA level
after IFN-g treatment (50 ng/ml, 48 h). Data are shown as the mean ± standard deviation (SD). *P < 0.05, **P < 0.01, ****P < 0.0001.
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MDK Promotes Cancer Metastasis by
Activating the EMT Programme
To further explore the possibility that MDK is a shared
mechanism underlying IFN-g-triggered metastasis in various
cancers, we first examined the effect of MDK on cancer
metastasis in the above cancer cell lines. Transwell assays clearly
showed that MDK overexpression (Figure 5A) enhanced the
migration and invasion capacities of all five cancer cell lines
(Figure 5B). In accordance, MDK overexpression resulted in
activation of the EMT programme, as evidenced by loss of
epithelial markers, and concomitant gain of mesenchymal
Frontiers in Oncology | www.frontiersin.org 5
markers at the both protein (Figure 5C) and mRNA
(Figure 5D) levels. To further validate that MDK is necessary
for cancer metastasis, we silencedMDK expression using a specific
MDK inhibitor iMDK, which demonstrated high efficiency in
decreasing endogenous MDK expression (Figure 5E) and
subsequent EMT activation in all five cell lines (Figure 5F). In
accordance, iMDK suppressed the migration and invasion in all
five cell lines in transwell assays (Figure 5G). In line with its
oncogenic role, MDK is elevated in the majority of cancer types in
the TCGA dataset (Figure S1).

Pharmacologically Targeting MDK
Abrogates IFN-g-Induced Metastasis
To test whether MDK inhibition would attenuate IFN-g-induced
metastasis, we added iMDK (100 nM) to the IFN-g-treated
cancer cells, which resulted in no conspicuous cell death under
microscope. As expected, iMDK efficiently eliminated IFN-g-
induced MDK expression at both the mRNA and protein levels
(Figures 6A, B), reversed IFN-g-driven EMT activation
determined by Western blotting and RT-qPCR (Figure 6B),
and subsequently abrogated IFN-g-triggered migration and
invasion as shown in transwell assays (Figure 6C) in all
examined cancer cell lines. These data suggest that MDK
confers the IFN-g-elicited metastasis in various cancers, and
that pharmacologically inhibiting MDK can broadly and
efficiently abrogate IFN-g treatment-induced cancer metastasis.
DISCUSSION

Accumulative evidence suggests that IFN-g functions as a ‘‘two-
edged sword’’ in cancer treatment (15, 23). IFN-g is conventionally
considered a promising cancer therapeutic agents for its potent
tumoricidal and immunoregulatory activities, and certain positive
responses have been reported in multiple pre-clinical and clinical
trials (7). Tamura et al. reported that intralesional injection of
IFN-g could induce lasting remissions of T cell leukemia (8).
Giannopoulos et al. demanstrated that intravesicle instillation of
IFN-g was effective in preventing bladder cancer recurrence (9). A
randomized phase III trial showed that inclusion of IFN-g in the
first-line chemotherapy could prolong the progression-free
survival of ovarian cancer patients (10).

Despite these encouraging results, a lack of beneficial effect
has been observed in small-cell lung cancer, advanced colon
cancer, metastatic renal cell carcinoma, and breast cancer (12, 15,
23). On the contrary, the pro-metastatic adverse effect of IFN-g
mediated by multiple mechanisms have been reported.
Preincubation of murine colon adenocarcinoma cells with
IFN-g produced a significant increase in pulmonary metastases
in mice (16). IFN-g induced cancer invasiveness in prostate
cancer via transcription of IFN-induced tetratricopeptide
repeat 5 (IFIT5) (17). Low-dose IFN-g enhanced the stemness
and metastasis of non–small cell lung cancer via the intercellular
adhesion molecule-1 (ICAM1)-PI3K-Akt-Notch1 axis (20). IFN-
g withdrawal after immunotherapy potentiates B16 melanoma
invasion and metastasis by intensifying tumor integrin avb3
A B

FIGURE 2 | IFN-g treatment promotes MDK expression in different cancers.
(A) RT-qPCR assays to detect the expression of MDK in five cancer cell lines
without and with IFN-g treatment (50 ng/ml, 48 h). (B) Western blotting assay
to determine the influence of IFN-g treatment (50 ng/ml, 48 h) on MDK protein
levels in five cancer cell lines. Data are shown as the mean ± standard
deviation (SD). **P < 0.01, ***P < 0.001, ****P < 0.0001.
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signaling (19). More recently, Singh et al. reported that loss of the
tumor suppressive transcription factor Elf5 in triple-negative
breast cancer mediated IFN-g signalling-promoted tumor
progression and metastasis (21).

Though the IFN-g-mediated metastasis has been indicated in a
variety of cancers, no shared mechanism has been revealed. Here,
Frontiers in Oncology | www.frontiersin.org 6
we verified that IFN-g exerted its pro-metastatic effect via a
common EMT activating mechanism in all examined cancer cell
lines, including the kidney cancer Caki-1, the lung cancer A549,
the cervical carcinoma CaSki, the breast cancer BT549, and the
colon cancer HCT116. The EMT programme is a developmental
program broadly promoting metastasis of various cancers.
A B

D

E

C

FIGURE 3 | Dose- and time-dependent effects of IFN-g on MDK induction. (A) RT-qPCR assays to examine the effect of IFN-g concentration on MDK induction in
the HCT116 cell line. (B) Western blotting assays to examine the effect of IFN-g concentration on MDK induction in the HCT116 cell line. (C) RT-qPCR assays to
examine the effect of IFN-g treatment time on MDK induction in the HCT116 cell line. (D) Western blotting assays to examine the effect of IFN-g treatment time on
MDK induction and EMT activation in the HCT116 cell line. (E) RT-qPCR assays showing the effect of IFN-g treatment time on EMT markers in the HCT116 cell line.
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. ns, not significant.
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A

B

D

C

FIGURE 4 | IFN-g activates MDK via STAT1. (A) Correlation analyses using the GEPIA 2 online tool (http://gepia2.cancer-pku.cn/#correlation) to shown the
correlation relationship between STAT1 and MDK using the RNA-seq data of different cancers from the Cancer Genome Atlas (TCGA) database. KIRC, kidney renal
clear cell carcinoma; LUSC, Lung squamous cell carcinoma; CESC, Cervical squamous cell carcinoma and endocervical adenocarcinoma; BRCA, breast invasive
carcinoma; COAD, colorectal adenocarcinoma. (B) RT-qPCR and Western blotting assays to detect the effect of IFN-g treatment (50 ng/ml, 48h) on levels of STAT1
and phosphorylated STAT1 (p-STAT1) in five cancer cell lines. (C) RT-qPCR assays to the effect of STAT1 inhibitor on mRNA levels of STAT1 and MDK in five
cancer cell lines. (D) Western blotting assays to examine the effect of STAT1 inhibitor on protein levels of STAT1, p-STAT1 and MDK in five cancer cell lines. Data are
shown as the mean ± standard deviation (SD). **P < 0.01, ***P < 0.001, ****P < 0.0001.
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A

B

D

E

F

G

C

FIGURE 5 | MDK promotes cancer metastasis by activating the EMT programme. (A) RT-qPCR validation of MDK overexpression in five cancer cell lines.
(B) Transwell assays to assess the alteration of cell invasion and migration abilities by MDK overexpression in five cancer cell lines. (C) Western blotting assays to
assess the effect of MDK overexpression on expression of EMT markers. (D) RT-qPCR assays to assess the effect of MDK overexpression on expression of EMT
markers. (E) RT-qPCR validation of MDK inhibition by iMDK (100nM, 48h). (F) RT-qPCR and Western blotting assays to assess the effect of iMDK on EMT in five
cancer cell lines. (G) Transwell assays to assess the effect of iMDK on cell invasion and migration in five cancer cell lines. Data are shown as the mean ± standard
deviation (SD). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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A B C

FIGURE 6 | Targeting MDK abrogates IFN-g-induced tumor metastasis. (A) RT-qPCR validation of MDK suppression by MDK inhibitor in IFN-g-treated cancer cells.
(B) Western blotting and RT-qPCR assays to assess the effect of iMDK on IFN-g-activated EMT in five cancer cell lines. (C) Transwell assays to examine the effect of
iMDK on IFN-g-driven cell invasion and migration. Data are shown as the mean ± standard deviation (SD). **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Activation of EMT enables cancer cells to lose their epithelial
property but acquire a mesenchymal, migratory phenotype
through downregulating epithelial markers including ZO-1 and
E-cadherin and upregulating mesenchymal markers such as N-
cadherin and Vimentin (24). In consistence with our finding, IFN-
g activation of EMT has also been reported in prostate cancer (17),
suggesting that EMT activation is a common mechanism
underlying IFN-g-driven metastasis in different cancers.

To further deep into the mechanism mediating IFN-g-
triggered EMT activation, we focused on MDK, which is a
heparin-binding growth factor and an emerging oncoprotein
well implicated in induction of EMT and cancer metastasis (25).
Indeed, we validated that MDK overexpression led to EMT and
metastasis in all five cancer cell lines. MDK has been reported to
promote cancer EMT via TGF-b, WNT and Notch 2 signalings
(25). Additionally, MDK has also been implicated in promoting
cancer proliferation (27), angiogenesis (28), stemness (29), drug
resistance (30), immunosuppression (31), and resistance to
immune checkpoint blockade (31), closely correlated with
advanced cancer progression and poor survival (27, 32, 33).

Our data demonstrated that IFN-g exposure resulted in a
dramatic upregulation of MDK in all examined five cancer cell
lines, suggesting this is a universal regulatory mechanism across
cancers. To our knowledge, this is the first report demonstrating
the common IFN-g-MDK transduction cascade in the cancerous
context. However, MDK was also previously reported to be
elevated in peripheral blood lymphocytes in response to IFN-g
treatment when investigating its anti-HIV function (26),
suggesting that this regulation may also exist in non-
cancerous cells.

MDK is upregulated in the majority of cancers (at least 20
different cancer types), such as breast, lung, ovary, prostate,
colon, gastric and pancreatic cancers, whereas its expression is
generally low or undetectable in normal adult tissues (25, 34).
However, the regulatory mechanismmediating MDK elevation is
still largely obscure. There is evidence indicating that MDK is
Frontiers in Oncology | www.frontiersin.org 10
induced by hypoxia in a HIF-1a dependent manner (35). Here,
we further indicate that MDK is also an IFN-g inducible protein,
which provides more insights into the MDK regulatory network
in cancer.

STAT1 is the major IFN-g-activated transcription factor
responsible for the downstream signaling triggered by IFN-g (2).
The binding of IFN-g to IFNGR1 triggers the formation of the
IFNGR complex consisting of two IFNGR1 and two IFNGR2
subunits. This complex induces JAK1 and JAK2 phosphorylation,
and further recruits and phosphorylates two STAT1 molecules.
Phosphorylated STAT1 homodimerizes and translocates to the
nucleus to initiate transcription of IFN-g induced genes (3, 13).
Our data demonstrated that STAT1 inhibition efficiently
abrogated IFN-g-induced MDK activation in all examined
cancer cell lines, suggesting that the IFN-g-MDK transduction is
dependent on STAT1 in cancer.

To validate the role of MDK in mediating IFN-g-activated
EMT and metastasis, we pharmacologically silenced MDK
expression using a specific inhibitor iMDK. The inhibitor iMDK
is a small low molecular weight compound, demonstrating high
efficiency and specificity in suppressing MDK expression in cancer
cells (36, 37). iMDK decreased cell viability of the MDK-positive
cancer cells in a dose-dependent manner, but less affected the
MDK-negative cancer and non-transformed cells (36). The
inhibitory effect of iMDK on cancer malignant behaviors has
been validated in oral squamous cell carcinoma (37), non-small
cell lung cancer (36, 38), and prostate cancer (39). Importantly,
systemic administration of iMDK in mouse didn’t cause obvious
systemic toxicity (36), highlighting a high safety for potential
clinical use. Our data indicated that iMDK application could
globally eliminate IFN-g-induced MDK, reverse IFN-g-induced
EMT activation, and ultimately abrogate IFN-g-triggered cancer
migration and invasion in all examined cancer cell lines.

Collectively, our data identify a novel IFN-g-STAT1-MDK
signalling axis (Figure 7), which confers the pro-metastatic
adverse effect of IFN-g in immunotherapy, whereas targeting
FIGURE 7 | Schematic diagram showing the IFN-g-STAT1-MDK signalling axis in driving cancer metastasis. The IFN-g-STAT1-MDK signalling axis promotes cancer
metastasis by activating EMT, whereas MDK inhibition by iMDK can abrogate IFN-g-induced EMT and tumor metastasis.
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MDK may efficiently abrogate IFN-g-elicited cancer metastasis.
Attenuation of the pro-metastatic activity of IFN-g may help to
augment its anti-tumor effects during cancer treatment, thus our
data propose a combined use of MDK inhibitors in IFN-g-based
cancer therapies.
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