
Over the last decade, considerable advances have been 
made in approaches for inducing regeneration of retinal 
ganglion cell (RGC) axons through the optic nerve [1-5]. 
The regeneration and survival of RGCs are influenced by 
interactions between multiple cellular processes (for a review, 
see [5-7]). The number of genes and molecular pathways that 
modulate the regenerative response in the mammalian optic 
nerve reveals that induced axonal regeneration (or the lack 
of regeneration in the normal adult central nervous system) 
is a complex trait [1,2,8-11]. Complex traits are controlled 
by multiple genomic elements; some are associated with 
specific molecular functions, and others are believed to be 
associated with more generalized cellular functions [12-14]. 
This complexity of axonal regeneration can be predicted 
because we know that successful regeneration involves 
multiple cellular processes. The first process is the survival 
of the injured retinal ganglion cell involving modulating 
apoptosis [15,16], autophagy [1], and response to growth 
factors [11,17-19]. The second process necessary for axonal 
regeneration to occur is the growth of the axon itself down 

the optic nerve. This includes distinct pathways associated 
with the axon growth program [20]. The third series of events 
may be directly related to cellular elements that inhibit axonal 
growth in the adult central nervous system that are glial in 
origin, involving astrocytes [21,22], oligodendrocytes [10], or 
the glial scar [21,22]. One approach in studying regeneration 
is to use inbred mouse strains, identifying strains and genetic 
backgrounds that facilitate axonal regeneration. Omura et 
al. [8] tested nine inbred strains and found that one strain 
(CAST/Ei) was capable of a considerable amount of axon 
regeneration on inhibitory substrates in tissue culture. The 
CAST/Ei strain also demonstrated a relative robust regenera-
tion in vivo compared to the C57BL/6J strain. Our goal in the 
present study is to take a similar systems biology approach to 
the study of optic nerve regeneration.

Our working hypothesis is that current regeneration 
treatments can be influenced by the genetic background and 
within that genetic background are specific genomic elements 
that can be identified. Our group has used a systems biology 
approach working with the BXD recombinant inbred (RI) 
strains of mice to define genomic elements affecting the 
response of the retina to optic nerve damage [23] and to blast 
injury [24]. The power of the BXD strain set derives from 
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Purpose: The present study is designed to identify the influences of genetic background on optic nerve regeneration 
using the two parental strains (C57BL/6J and DBA/2J) and seven BXD recombinant inbred mouse strains.
Methods: To study regeneration in the optic nerve, Pten was knocked down in the retinal ganglion cells using adenoas-
sociated virus (AAV) delivery of shRNA, and a mild inflammatory response was induced with an intravitreal injection of 
zymosan with CPT-cAMP. The axons of the retinal ganglion cells were damaged by optic nerve crush (ONC). Following 
a 12-day survival period, regenerating axons were labeled by cholera toxin B, and 2 days later, the regenerating axons 
within the optic nerve were examined. The number of axons at 0.5 mm and 1 mm from the crush site were counted. In 
addition, we measured the distance that five axons had grown down the nerve and the longest distance a single axon 
reached.
Results: The analysis revealed a considerable amount of differential axonal regeneration across the seven BXD strains 
and the parental strains. There was a statistically significant difference (p=0.014 Mann–Whitney U test) in the regenera-
tive capacity in the number of axons reaching 0.5 mm from a low of 236.1±24.4 axons in the BXD102 mice to a high of 
759.8±79.2 axons in the BXD29 mice. There were also statistically significant differences (p=0.014 Mann–Whitney U 
test) in the distance axons traveled. Looking at a minimum of five axons, the shortest distance was 787.2±46.5 µm in the 
BXD102 mice, and the maximum distance was 2025.5±223.3 µm in the BXD29 mice.
Conclusions: Differences in genetic background can have a profound effect on axonal regeneration causing a threefold 
increase in the number of regenerating axons at 0.5 mm from the crush site and a 2.5-fold increase in the distance traveled 
by at least five axons in the damaged optic nerve.
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the shuffled genomes of the parental strains (C57BL/6J and 
DBA/2J mice). Both parental strains are fully sequenced, 
and there are more than 4.8 million known single nucleotide 
polymorphisms (SNPs), deletions, and insertions between 
the strains. In the first 102 BXD strains, there are more 
than 7,000 breakpoints in the genomes between the parental 
strains. All of the BXD strains are fully mapped. This allows 
rapid mapping of phenotypic data on genomic elements to 
define loci that modulate the phenotype in a quantitative trait 
analysis [25,26]. All of these information and powerful bioin-
formatic tools are available on the GeneNetwork website and 
are used to define the complex genetics underlying induced 
regeneration in the optic nerve.

We use the BXD recombinant inbred strains to examine 
the regeneration response 14 days after optic nerve crush in 
mice in which phosphatase and tensin homolog (Pten) was 
knocked down and zymosan and CPT-cAMP were injected 
into the vitreous chamber [1,3]. Regenerative response is 
determined by defining the number of axons regenerating, 
as well as the distance these axons have traveled.

METHODS

Mice: Nine strains, including seven BXD recombinant inbred 
strains and their parental strains, C57BL/6J and DBA/2J, 
were used in this study. All of the mice were 60–70 days of 
age at the time of initial treatment (Appendix 1). The mice 
were housed in a pathogen-free facility at Emory University, 
maintained on a 12 h:12 h light-dark cycle, and provided with 
food and water ad libitum. All procedures involving animals 
were approved by the Animal Care and Use Committee of 
Emory University and were in accordance with the ARVO 
Statement for the Use of Animals in Ophthalmic and Vision 
Research. Controls were run with the C57BL/6J (n=6) and 
DBA/2J (n=6) mice strains. For the regeneration studies, 
we examined axon growth in the parental strains, C57BL/6J 
(n=5) and DBA/2J (n=8), along with seven BXD strains: 
BXD11 (n=5), BXD29-Tlr4lps-2J/J (n=4), BXD31 (n=4), BXD38 
(n=4), BXD40 (n=9), BXD75 (n=5), and BXD102 (n=5).

Surgery: The optic nerve regeneration protocol developed 
by others [1,3,4] was used to induce regeneration after optic 
nerve crush (ONC). The treatment included knocking down 
of Pten using adenoassociated virus-shPTEN-green fluo-
rescent protein (AAV-shPTEN-GFP) and intravitreal injec-
tion of zymosan plus CPT-cAMP. We followed a similar 
protocol with minor modifications. One is that we used 
AAV-shPTEN-GFP (Pten short hairpin RNA-GFP packaged 
into AAV2 backbone constructs, titer = 1.5 × 1012 vg/ml) 
to knock down Pten instead of Cre recombinase–mediated 
knockout in Pten-floxed mice. The shRNA target sequence is 

5′-AGG TGA AGA TAT ATT CCT CCA A-3′ as described by 
Zukor et al. [27]. The immunostaining also proved efficient 
suppression of Pten expression in the retina ganglion cells by 
this Pten shRNA (Appendix 2). Two weeks before ONC, the 
mice were deeply anesthetized with 15 mg/kg of xylazine 
and 100 mg/kg of ketamine and intravitreal injection of 2 µl 
of AAV-shPTEN-GFP. Optic nerve crush was performed as 
described by Templeton and Geisert [28]. Briefly, the mice 
were deeply anesthetized with a mixture of 15 mg/kg of xyla-
zine and 100 mg/kg of ketamine. Under the binocular oper-
ating scope, a small incision was made in the conjunctiva, 
and then the optic nerve was visualized and crushed 1 mm 
behind the eye with Dumont N7 angled crossover tweezers 
for 5 s, avoiding injury to the ophthalmic artery. Immediately 
following ONC, zymosan (Sigma, St. Louis, MO; Z4250, Lot 
# BCBQ8437V) along with the cAMP analog CPT-cAMP 
(Sigma, C3912, Lot # SLBH5204V; total volume 2 µl) were 
injected into the vitreous to induce an inflammatory response 
and augment regeneration. Mice were given buprenorphine 
SQ at 0.5 mg/kg immediately following the optic nerve crush. 
When the mice were fully recovered, they were returned to a 
clean cage and monitored for 3 days post-op. Mice showing 
signs of pain or distress were euthanized via cervical disloca-
tion after being deeply anesthetized with ketamine/xylazine 
at 100 mg/kg and 15 mg/kg, respectively. Twelve days after 
ONC (2 days before euthanasia) the animals were deeply anes-
thetized, and Alexa Fluor® 647-conjugated Cholera Toxin B 
(CTB; ThermoFisher, Waltham, MA; C34778) was injected 
into the vitreous for retrograde labeling of the regenerated 
axons. All the intravitreal injections and optic nerve crushes 
were performed by one well-trained postdoctoral fellow to 
avoid technical variation during the surgical procedure. At 
14 days after ONC, the mice were deeply anesthetized with a 
mixture of 15 mg/kg of xylazine and 100 mg/kg of ketamine 
and perfused through the heart with PBS (Diluted to 1x from 
10x, Corning, Manassas, VA, pH 7.3) followed by 4% para-
formaldehyde in phosphate buffer (pH 7.3).

Preparation of the optic nerve: Optic nerves along with the 
optic chiasm and brains were dissected and post-fixed in 
4% paraformaldehyde in phosphate buffer overnight. The 
optic nerve was cleared with FocusClear™ (CelExplorer, 
Hsinchu, Taiwan) for up to 4 h until totally transparent. A 
small chamber was built on the slide to provide enough space 
for the whole nerve thickness and to keep the nerve from 
being damaged from flattening. The optic nerve was then 
mounted in the chamber using MountClear™ (CelExplorer), 
and the slides were coverslipped. FocusClear has been used 
to clear brain tissue for whole brain imaging [29], as well as 
clearing of the optic nerve of transgenic zebrafish to observe 
axon regeneration [30]. FocusClear allows us to scan the 
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whole thickness of the optic nerve for better understanding 
of the status of axon regeneration. It provided clear imaging 
of regenerated axons from the optical slices scanned by 
confocal microscope for counting (Appendix 3). FocusClear 
also allowed us to determine the longest five axons or single 
axon growth along the nerve from the z-stack of the whole 
nerve (Figure 1).

Quantitation of axon regeneration: Cleared optic nerves were 
examined with a confocal microscope by scanning through 
individual optical slices. Pseudocolor green was used for the 
CTB-labeled axons in all the optic nerve images of this study 
for clear visual observation. Stacked images were taken at 10 
µm increments, a total of 20–50 optical slices for each optic 
nerve.

The number of CTB-labeled axons at 0.5 mm from the 
crush site were counted in at least six sections per case and 
calculated with the equation

 
ad average axons/mm]/t=∑ π r 2

[
 

as described by Leon et al. in 2000 [31]. In this formula, 
the cross-sectional width of the nerve was measured at the 
point at which the counts were taken and was used to calcu-
late the number of axons per millimeter of nerve width. The 
total number of axons extending distance d in a nerve having 
a radius of r (half of the biggest width of all optic sections) 
was estimated by summing all sections. The virtual thickness 
of an optical slice observed with the confocal microscope was 
calculated using the formula
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We determined that the thickness of the optical section 
was 6 µm where the refractive index (n) was 1.517, the numer-
ical aperture (Na) was 0.45, and the excitation wavelength 
was 637 nm. As the optical section was 6 µm and the spacing 
between the optical sections was 10 µm, single axons were 

not counted multiple times. For quantifying the number of 
axons at 1 mm from the crush site, as there are very few axons 
observed in some strains, we used direct counts of axons as 
the measure of regeneration. We also measured the distance 
that five axons had grown down the nerve and the longest 
distance a single axon reached for each nerve from the z-stack 
image of the whole nerve.

Transfection efficiency of AAV-shPTEN-GFP: BXD102 mice 
(n=4) and BXD29 mice (n=4) were deeply anesthetized with 
a mixture of 15 mg/kg of xylazine and 100 mg/kg of ketamine 
and injected with 2 µl of AAV-shPTEN-GFP into the left eye. 
Two weeks later, they were deeply anesthetized as described 
above and perfused through the heart with saline followed 
by 4% paraformaldehyde in phosphate buffer (pH 7.3). For 
the retinal flat mounts, the retinas were removed from the 
globe and rinsed in PBS with 1% Triton X-100, blocked in 
5% bovine serum albumin (BSA) for 1 h at room tempera-
ture, and placed in primary antibodies RBPMS (Millipore, 
Burlington, MA; Cat. # ABN1376) at 1:1000 and GFP (Novus 
Biologicals, Littleton, CO; Cat. # NB100–1770) at 1:1,000 at 
4 °C overnight. The retinas were rinsed with PBS and placed 
in secondary antibodies (Anti-Goat Immunoglobulin G [IgG] 
(H+L) CFTM 488A, Sigma, Cat. # SAB4600032 and Alexa-
Fluor 594 AffiniPure Donkey Anti-Guinea (Jackson Immu-
noresearch, West Grove, PA, Cat. #706–585–148) at 1:1,000 
for 1 h at room temperature. After three washes for 15 min 
each, the retinas were flat mounted and coverslipped using 
Fluoromount-G (Southern Biotech, Birmingham, AL; Cat. 
# 0100–01) as the mounting medium. Four confocal images 
were taken in each quadrant at 2 mm from the optic nerve of 
each retina. Four retinas from four mice of each strain were 
included. Cell numbers were determined manually by using 
the cell counter in ImageJ. RBPMS was used as a marker 
to label the total number of RGCs [32,33]. Transfection 
efficiency are calculated as the number of AAV-transfected 
RGCs (GFP-positive RBPMS-positive cells) divided by total 
number of RGCs (RBPMS-positive cells).

Figure 1. The regenerating axons in the optic nerve 14 days after optic nerve crush. We indicated the regions of the nerve where axons were 
counted, as well as the distance that five axons or one axon regenerated down the nerve. Scale bar = 100 µm.
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Bioinformatic analysis of known regeneration genes in the 
BXD strain set: By searching the literature, we generated a 
list of genes that are known to have effects on optic nerve 
regeneration either directly or indirectly (Table 1). All of 
the genes were examined for high likelihood ratio statistic 
(LRS) scores and cis-quantitative trait loci (cis-QTLs) using 
the GeneNetwork database. The genes were then put into the 
Single Nucleotide Polymorphism browser of GeneNetwork, 
as well as the UCSC Genome Browser (Mouse, GRCm38/
mm10) to identify nonsynonymous SNPs between C57BL/6J 
and DBA/2J. All the identified rsIDs of nonsynonymous 
SNPs were then put into Ensembl for Sorting Intolerant From 
Tolerant (SIFT) analysis [34] to predict whether the SNP 
affects protein function.

Statistical analysis: Data are presented as mean ± standard 
error of the mean (SEM). Differences in axon counts, regen-
eration distance, and transfection efficiency were analyzed 
with the Mann–Whitney U test using SPSS Statistics package 
24.0 (SPSS, IBM, Chicago, IL). A p value of less than 0.05 
was considered statistically significant.

RESULTS

Genetic background modulates axon regeneration in RGCs: 
In the present study, we examined the effects of genetic 
background on the regenerative response of retinal ganglion 
cells. The BXD recombinant inbred strains were chosen as 
the genetic reference panel due to distinct advantages these 
strains have to offer. The first advantage is that more than 
80 well-characterized strains of mice are available through 
Jackson Laboratories. The BXD RI strain set is consider-
ably larger than any mouse RI strain set, allowing for sub-
megabase mapping resolution. The second benefit of the BXD 
strains is the large microarray data sets specifically for the 
eye (HEIMED database [14], HEI Retina Database [35], Optic 
Nerve Crush Database [23], and the Department of Defense 
(DoD) Normal Retina Database [36]), as well as the numerous 
ocular phenotypes RGC numbers, intraocular pressure (IOP), 
eye size, retinal area, etc. [24]. GeneNetwork also offers an 

array of highly interactive series of bioinformatic tools that 
aid in the analysis of data generated with the BXD strains.

Regeneration of axons in the optic nerve was examined in 
nine strains of mice: the two parental strains (C57BL/6J and 
DBA/2J) and seven BXD strains (BXD11, BXD29, BXD31, 
BXD38, BXD40, BXD75, and BXD102; Figure 2). As an 
internal control, we examined the ability of untreated retinas 
to regenerate following optic nerve crush in the C57BL/6J 
mice and the DBA/2J mice (Figure 2). For all mice, axonal 
regeneration was evaluated 14 days following optic nerve 
injury. In the two strains of the control group (C57BL/6J 
and DBA/2J), there was no detectable axonal regeneration; 
while in all of the strains receiving the regeneration treatment 
there was a statistically significant regenerative response in 
the number of axons counted at 0.5 mm and 1 mm (Figure 3), 
as well in the distance the axons traveled (Figure 4). In the 
parental strains, the differences between the treatment group 
and the control group are statistically significant (p<0.01 for 
the C57BL/6J and DBA/2J mice). These data demonstrate 
that the regeneration treatment, knocking down Pten and 
inducing mild inflammation by injecting zymosan and CPT-
cAMP, produces considerably more regenerating axons than 
observed in the control animals that did not receive treatment.

The number of axons at 0.5 mm and 1 mm distal to the 
crush site is an estimate of the influence of genetic back-
ground on the total regenerative effect of the treatment. As 
can be seen in Figure 2 and Figure 3, there is a considerable 
difference between the strains in the total number of axons 
reaching 0.5 mm and 1.0 mm. The strain with the least number 
of axons in both cases was BXD102. At both distances from 
the crush site, the strain with the greatest number of axons 
was BXD29. The difference was statistically significant 
(p=0.014, Mann–Whitney U test) in the number of regen-
erated axons reaching 0.5 mm (from a low of 236.1±24.40 
axons in the BXD102 mice to a high of 759.8±79.20 axons in 
the BXD29 mice, a 3.2-fold difference) from the crush site. 
There was also a statistically significant difference (p=0.007, 
Mann–Whitney U test, a 12.6-fold difference) in the number 

Table 1. GeneTic characTerisTics of Genes ThaT are known To affecT opTic 
nerve reGeneraTion beTween c57bl/6J and dba/2J mice.

Gene with cis-QTL Fgf2 [41]
Genes with 
Non-synonymous SNPs Mapk10 [42], Rtn4 [43,44], Ctgf [11], Tlr2 [45], Rock1 [46], Rock2 [46,47], Clec7a [45], Csf2 [48]

Other invest igated genes 
(Genes that are found to have 
neither cis-QTL nor Non-synon-
ymous SNPs)

Braf [49,50], Bcl2 [9], Myc [51], Cntf [52], Dpysl2 [53], Ecel1 [54], Map3k12 [55], Egfr [17], Gsk3b 
[56,57], Hhex [58], Hnrnpk [59], Spp1 [60], Stat3 [2,61,62], Klf4 [2,62,63], Klf6 [2,63,64], Klf7 
[2,63,64], Klf9 [2,63], Lif [52,65], Rtn4r [10,66,67], Ntn1 [68,69], Pten [1], Ptprs [70], Rhoa [71-73], 
Cxcl12 [74], Set [75], Socs3 [37,76], Sox11 [5,77], Tet1 [78], Tet3 [78], Wnt10b [79], Slc30a3 [80], 
Bag1 [81] Inhba [8]
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of axons at 1 mm, from a low of 1.00±0.00 axons in the 
BXD102 mice to a high of 12.6±0.60 axons in the BXD29 
mice. The two strains that displayed the least and most robust 
(BXD102 and BXD29) regenerative response are illustrated 
in Figure 5.

The total length of a regenerating axon was also 
measured. This measure may provide an estimate of the rate 
at which the axon can grow down the injured optic nerve. 
When we examined axon length, there was also a clear 
difference in growth across the BXD strains (Figure 2 and 

Figure 2. Genetic background affects regenerating axons in the optic nerve following optic nerve crush. The figure is a series of photomicro-
graphs from 11 optic nerves selected from nine strains of mice. The first two images on the far left are from control mice that did not receive 
the regeneration treatment before optic nerve crush (Control C57BL/6J and Control DBA/2J). All of the remaining nerves were from animals 
in which Pten was knocked down and a mild inflammatory response was induced. The strain with the least regeneration was BXD102, and 
the strain with the greatest regeneration was BXD29. Red asterisks represent the crush site. Scale bar = 200 µm.

Figure 3. The differences in the number of regenerating axons in BXD strains. The number of axons at 0.5 mm (A) and 1 mm (B) from the 
crush site in two control strains (DBA/2J and C57BL/6J untreated mice) and in nine strains treated with the regeneration protocol. Boxplots 
show median, 25th and 75th percentile, maximum, and minimum values for each BXD recombinant inbredstrain. Black dots: outliers. *: 
p<0.05 when compared with BXD102. **: p<0.01 when compared with BXD102.
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Figure 4). In the control animals, virtually no regenerating 
axons were observed. When we examined the distance a 
minimum of five axons traveled, a statistically significant 
difference was observed across the BXD strains. The strain 
with the shortest regenerating five axons was BXD102 with 

a mean distance of 787.2±46.50 µm, and the strain with the 
longest group of five axons was BXD29 with a mean distance 
of 2025.5±223.30 µm (p=0.014, Mann–Whitney U test, a 
2.5-fold difference). A similar result was observed when the 
distance of the longest single axon traveled in the nerve was 

Figure 4. The differential growth of regenerating axons within BXD strains. The longest distance that five axons regenerated (A) and the 
longest regeneration for a single axon (B) are shown for the two control strains (DBA/2J and C57BL/6J untreated mice) and in nine strains 
treated with the regeneration protocol. Boxplots show median, 25th and 75th percentile, maximum, and minimum values for each BXD 
recombinant inbred strain. Black dots: outliers. *: p<0.05 when compared with BXD102. **: p<0.01 when compared with BXD102.

Figure 5. Comparison of regenerated axons in strains with the least regeneration (BXD102) and the greatest regeneration (BXD29). Higher 
magnification of axons at 1 mm (the boxed region) from the crush site are shown. Scale bar = 100 µm.
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examined, with BXD102 having the shortest average distance 
(1,107±40.60 µm) and BXD29 the longest (2,386.8±162.60 
µm, p=0.014, Mann–Whitney U test, a 2.2-fold differ-
ence). Thus, the axonal regeneration ability (the number of 
regenerating axons and the distance traveled) is affected by 
the genetic backgrounds in the BXD strains with BXD102 
having the least regenerative and BXD29 having the most 
robust regenerative response. These data revealed that genetic 
background can have a striking effect on the regenerative 
capacity of axons within the optic nerve.

Transfection efficiency of AAV-shPTEN-GFP: One possible 
explanation for the difference in axonal regeneration is differ-
ential transfection of the retinas from strain to strain by the 
AAV-shPTEN-GFP vector. To control for this possibility, we 
examined the transfection efficiency and the level of Pten 
knockdown in the strain with the most robust axon regenera-
tion (BXD29) and the strain with the least axon regeneration 
(BXD102). There was no statistically significant difference 
between the two strains. For the BXD29 strain (n=4), the 
mean transfection rate was 51.6%±1.30%, and for the BXD102 
strain (n=4), the mean transfection rate was 50.8%±1.40% 
(Figure 6), indicating that the difference in the regeneration 
response is not due to different transfection efficiency.

Potential contribution of known genes affecting axon regen-
eration in BXD strains: Previous studies have identified 
several genes that affect the ability of axons to regenerate 
in the injured optic nerve (Table 1). Using the bioinformatic 
tools on GeneNetwork, it is possible to define any of the 
regeneration-associated genes that are either differentially 
expressed forming a cis-QTL in the BXD strains or have 
nonsynonymous SNPs between C57BL/6J and DBA/2J mice.

The cis-QTL is a QTL that maps to the location of the 
gene that produces the mRNA or protein. The LRS score is 
used to represent the association or linkage between differ-
ences in traits and differences in particular genotype markers 
or specific genes. Although a statistically significant cutoff 
can be determined only through permutation tests, LRS 
scores of greater than 17 usually approximate the statistical 
significance threshold of a p value of less than 0.05 and are 
worthy of attention [14]. If a cis-QTL has a high LRS score, 
it is considered that this genetic locus is strongly linked to a 
certain phenotype and is able to influence the phenotype by 
regulating this locus. In other words, change in the expres-
sion level of this gene will have a higher chance to alter the 
phenotype, which, in the present case, is the axonal regenera-
tion. In this process, two regeneration-associated genes were 
identified with cis-QTLs, Fgf2 and Klf9 (Table 1). Only one 
of these cis-QTLs, Fgf2, is valid. The other, Klf9, contained 
a difference in the genetic sequences between C57BL/6J and 

DBA/2J mice at the exact site where the microarray probe 
binds. This difference in sequence will lead to differential 
binding of the probe and a false positive LRS score. Thus, 
there was one cis-QTL (Fgf2) present in the BXD strains that 
could potentially affect the regenerative response.

We also examined the BXD strains to define genes with 
nonsynonymous SNPs. A nonsynonymous SNP between the 
parent strains (C57BL/6J and DBA/2J) is potentially able to 
alter the protein structure and function, ultimately leading 
to the different phenotype. The BXD strains that inherited 
different alleles may also have different phenotypes. There 
were eight genes (Mapk10, Rtn4, Ctgf, Tlr2, Rock1, Rock2, 
Clec7a, and Csf2) with nonsynonymous SNPs between 
C57BL/6J and DBA/2J. The SIFT analysis [34] revealed 
that only two of the eight genes, Mapk10 (JNK3) and Rtn4 
(NOGO), had SNPs that were predicted to likely affect 
protein structure/function (rs36844177 in Mapk10, SIFT=0.01 
and rs29465940 in Rtn4, SIFT=0.03). Thus, in the BXD strain 
set, only three genes known to be associated with axonal 
regeneration, Fgf2, Mapk10 (JNK3), and Rtn4 (NOGO), 
are actively different between C57BL/6J and DBA/2J mice 
and potentially contribute to the different response of axonal 
regeneration across the BXD strains.

DISCUSSION

Over the past several years, advances in optic nerve axon 
regeneration have taken what was once thought of as an 
unachievable goal to the point where axonal regrowth after 
injury is a reality. Several different protocols are being used 
to promote axonal regeneration [2,5,37]. In the present study, 
we chose a popular protocol developed by others [3,4] that 
involves knocking down Pten and causing a mild inflam-
matory response. The BXD recombinant strains are ideal for 
testing the effects of genetic background with the protocol of 
knocking down Pten, for there are no statistically significant 
differences in Pten between the C57BL/6J strain and the 
DBA/2J strain. There are no nonsynonymous SNPs found 
in the Pten gene between C57BL/6J and DBA/2J mice. 
Furthermore, there is a similar level of expression of Pten 
mRNA across all of the BXD strains in the DoD normal 
retina data sets housed on GeneNetwork. The injection of 
zymosan is believed to involve the activation of an inflam-
matory response and activation of macrophages [38], stimu-
lating the release of oncomodulin [39]. When we examined 
the BXD RI strains, there was no statistically significant 
difference in the levels of oncomodulin message, and there 
were no nonsynonymous SNPs within the gene. That being 
said, we do know that there is a considerable immune network 
in the retina of the BXD RI strains and that this network is 
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activated by optic nerve crush [23] and blast injury [24]. We 
also examined transfection efficiency in two strains (BXD29 
and BXD102) that respond differently to the regeneration 
treatment. There was no difference in transfection efficiency 
between these two strains. Thus, the difference in the axon 
regeneration we observed between the different BXD strains 
cannot be explained by the expression levels of Pten in the 
strains or a differential level of transfection by the AAV2 
vector. This leaves only the possibility that the difference in 
axonal regeneration we observed is due to the specific segre-
gation of genomic elements across the BXD strains.

Using the BXD strains, we were able to demonstrate the 
effect of genetic background on the regenerative capacity of 
axons in the optic nerve. In all strains tested, the amount 
of regeneration was considerably greater than that observed 
in mice that did not receive the Pten/zymosan/cAMP treat-
ment. The regeneration responses of C57BL/6J mice we 
observed were not as strong as described in other studies. 
A possible reason could be that we used AAV-shPTEN-GFP 
to knock down Pten instead of Cre recombinase–mediated 
Pten knockout. The other factor to be noticed is that the mice 
we used were older than 60 days at the time of the initial 

Figure 6. Transfection efficiency of AAV-shPTEN-GFP. A: Adenoassociated virus (AAV) –transfected cells are labeled with green fluores-
cent protein (GFP) in green. B: The total number of retinal ganglion cells (RGCs) are labeled by RBPMS in red. C: Merged channel is shown. 
D: No statistically significant difference in transfection efficiency was found between BXD102 mice and BXD29 mice. Scale bar = 10 μm.
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treatment, much older than reported in other studies [3,4]. 
This also provides strong evidence that the regeneration 
response can happen not only in young adult mice but also 
in older mice. Among the strains treated to promote regen-
eration, some strains, such as BXD102, showed a modest 
regenerative response; while other strains, such as BXD29, 
consistently demonstrated a high number of regenerating 
axons and axons that traveled longer distances down the 
injured optic nerve. When the response of the parental strains 
C57BL/6J and DBA/2J was compared to that of the BXD 
strains with extreme regenerative responses, there was a clear 
indication of genetic transgression. If we look at the number 
of axons at 0.5 mm and 1 mm from the crush site (Figure 3), 
some BXD strains have fewer axons and some BXD strains 
have more axons than the parental strains. This difference 
in regeneration is indicative of genetic transgression. These 
data reveal that it is not a single genomic locus causing the 
variability in the regenerative response; for if that were the 
case, the extremes would be similar to those of the parental 
strains. This is a clear indication that multiple genomic loci 
segregate across the BXD strains to affect the regenerative 
response of the optic nerve axons. Thus, axon regeneration 
is a complex trait with multiple modulating genomic loci in 
the BXD strains.

Other studies have looked at multiple inbred strains of 
mice, identifying an increased regenerative capacity in the 
neurons of the CAST/Ei strain [8]. In this study, the authors 
identified Inhba as the genetic element contributing to the 
increased regenerative capacity. Interestingly, neurons from 
the BXD parental strains (C57BL/6 and DBA/2J mice) were 
also tested in this tissue culture system, and neurons from 
these two strains did not grow well on inhibitory substrates. 
These data indicate that the genomic elements facilitating 
regeneration in the CAST/Ei strain are not present in the BXD 
strain set. When we examined Inhba in the DoD Normal 
Retinal database on GeneNetwork, this gene did not vary 
statistically significantly across the strains, and it did not 
display a statistically significant QTL. Furthermore, there are 
no nonsynonymous SNPs in Inhba between the C57BL/6J 
and DBA/2J strains. These data suggest that novel elements 
segregate across the BXD strain modulating regenerative 
capacity.

A complex trait could be driven by a handful of protein 
coding genes, as well as noncoding variants that presumably 
affect gene regulation [40]. In recent years, multiple genes 
have been identified to have an impact on axon regeneration 
(Table 1). It is possible that some or all of these pathways 
vary in the BXD strains and influence the outcome of the 
induced regeneration observed in the present study. With 

the DoD normal retina data sets [36] and the bioinformatic 
tools hosted on GeneNetwork, we examined all of the known 
regeneration-related genes to determine whether they were 
able to modulate the regenerative response across the strains 
by having either cis-QTLs (differentially expressed genes) 
or nonsynonymous SNPs that would affect protein function. 
Of all of the genes known to alter the regenerative response 
of optic nerve axons, only two were potential candidates 
for modulating regeneration in the BXD strains. The only 
cis-QTL in the list of genes was Fgf2 (LRS=67.8). SNP 
analysis identified eight genes with nonsynonymous SNPs in 
the list of regeneration genes (Table 1). All of the nonsynony-
mous SNPs were examined using a SIFT analysis, and only 
two SNPs (rs36844177 in Mapk10(JNK3) and rs29465940 in 
Rtn4(NOGO)) were predicted to alter protein function. There-
fore, three possible genomic elements that could affect regen-
eration in the BXD strains are Fgf2 (Chr3, 37.3 Mb), Mapk10 
(Chr5, 102.9 Mb), and Rtn4 (Chr11, 29.7 Mb). Beyond these 
genomic elements, we believe that there are still unknown 
genomic elements that modulate the regenerative response 
of the axons.

In conclusion, the ability of optic nerve regeneration to 
respond to injury differs across BXD mouse strains given 
different genetic backgrounds. Quantitative trait analysis may 
provide new insights into axon regeneration, and perhaps new 
loci of novel genes or noncoding elements that are involved 
in axon regeneration. Ongoing experiments are increasing 
the number of strains in the experimental data set to define 
genomic loci that modulate optic nerve regeneration.

APPENDIX 1. SUMMARY OF OPTIC NERVE 
REGENERATION IN THE BXD STRAINS

To access the data, click or select the words “Appendix 1”

APPENDIX 2.

To determine if Pten was knocked down by our AAV treat-
ment, we stained the retina for Pten (Red) in retinas injected 
with the AAV-GFP vector (control) or AAV-shPTEN-GFP to 
knock down Pten. In the control retina, all of the GFP posi-
tive cells were also well labeled for Pten. In the retinas that 
received the AAV-shPTEN-GFP, the transfected cells (GFP 
positive) had low levels of Pten staining indicating that the 
vector had in fact decreased the expression of Pten. To access 
the data, click or select the words “Appendix 2”

APPENDIX 3. SUPPLEMENTAL MOVIE 1.

To access the data, click or select the words “Appendix 3”
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