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Abstract: During aggressive cancer progression, cancer cells adapt to unique microenvironments by
withstanding various cellular stresses, including endoplasmic reticulum (ER) stress. However, the
mechanism whereby cancer cells overcome the ER stress to survive remains to be elucidated. Herein,
we demonstrated that microtubule acetylation in cancer cells grown on a stiff matrix promotes cancer
progression by preventing excessive ER stress. Downregulation of microtubule acetylation using
shRNA or CRSIPR/Cas9 techniques targeting ATAT1, which encodes α-tubulin N-acetyltransferase
(αTAT1), resulted in the upregulation of ER stress markers, changes in ER morphology, and enhanced
tunicamycin-induced UPR signaling in cancer cells. A set of genes involved in cancer progression,
especially focal adhesion genes, were downregulated in both ATAT1-knockout and tunicamycin-
treated cells, whereas ATAT1 overexpression restored the gene expression inhibited by tunicamycin.
Finally, the expression of ATAT1 and ER stress marker genes were negatively correlated in various
breast cancer types. Taken together, our results suggest that disruption of microtubule acetylation is
a potent therapeutic tool for preventing breast cancer progression through the upregulation of ER
stress. Moreover, ATAT1 and ER stress marker genes may be useful diagnostic markers in various
breast cancer types.

Keywords: breast cancer; microtubule acetylation; extracellular matrix; ER stress; unfolded
protein response

1. Introduction

The tumor microenvironment is composed of cells, including cancer cells, immune
cells, and fibroblasts, and acellular components surrounding the cancer cells, such as the
extracellular matrix (ECM) and factors secreted by the cells such as growth factors, metabo-
lites, etc. This unique microenvironment promotes cancer cell growth and metastasis. The
deposition of ECM molecules in various solid cancers, including breast cancer, causes
biomechanical and biochemical changes in the cancer microenvironment during cancer
progression. Studies have indicated that the tumor mass is up to ten times harder or denser
than normal tissue [1,2]. In general, with the progression of cancers, the stiffness of the
extracellular matrices surrounding cancer cells increases; this causes the cancer cells to
become more aggressive, along with massive cytoskeletal rearrangement and alterations in
oncogenic signals. For example, cancer cells cultured on a stiff matrix showed increased
cytoskeletal tension, resulting in enhanced cell–ECM adhesion, disruption of cell–cell
junctions, and increased cell proliferation, compared to those of cells cultured on a soft
matrix [3]. Enhanced cell–matrix adhesion initiates the recruitment of focal adhesion sig-
naling molecules, such as focal adhesion kinase, proto-oncogene non-receptor tyrosine
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kinase src (Src), and paxillin, leading to integrin clustering and promoting cancer progres-
sion [4,5]. Moreover, an increased collagen matrix density promotes the invasiveness of
breast epithelial cells [6]. These aggressive traits of cancer cells are the result of their suc-
cessful adaptation to various cellular stresses in response to biomechanical and biochemical
changes in the cancer microenvironment.

The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER)
induces ER stress, which triggers the unfolded protein response (UPR) to restore protein
homeostasis [7]. In ER stress conditions, binding immunoglobin protein (BiP/GRP78)
interacts with unfolded proteins, thus activating UPR signaling [8]. In cancer, ER stress
promotes cancer development by triggering the UPR signaling molecules such as protein
kinase RNA-like endoplasmic reticulum kinase (PERK) and activating transcription factor
(ATF) 6 [7,9,10], whereas prolonged and excessive ER stress can induce apoptosis through
the inositol-requiring enzyme-1α (IRE1α)-mediated signaling pathway [11,12]. Thus, a
better understanding of the mechanisms that regulate ER stress in cancer cells will provide
important clues for cancer treatment.

Microtubules are major components of the eukaryotic cytoskeleton and are involved in
various cellular processes, such as cell division, motility, and cellular transport [13,14]. The
cellular functions of microtubules are mostly governed by post-translational modifications.
Especially, acetylation at lysine 40 (K40) of α-tubulin in long-lived or stable microtubules
is critical for cancer progression. In basal-like and metastatic breast cancers, microtubule
acetylation is increased and induces microtentacle formation, cell adhesion, migration, and
invasion during vascular traveling [15]. In addition, increased microtubule acetylation by
α-tubulin N-acetyltransferase 1 (αTAT1) promotes the invasiveness of colon cancer cells via
Wnt/β-catenin signaling [16], and microtubule hyperacetylation through sirtuin 2 (SIRT2)
inhibition promotes the proliferation of cancer cells and the growth of tumors [17]. It has
been recently reported that the microtubule-disrupting agent N-deacetyl-N-(chromone-
2-carbonyl)-thiocolchicine activates several transcription factors, including ATF6, ATF4,
ATF3, and CCAAT-enhancer binding protein homologous protein (CHOP) [18]. This
implies that microtubules are mechanistically linked to apoptotic cell death via the ER
stress pathway. However, the role of αTAT1 in the regulation of ER stress in cancer cells is
presently unknown.

In this study, we investigated the mechanism of breast cancer progression with re-
gard to ECM stiffness by unraveling the relationship between ER stress and microtubule
acetylation. When grown on a stiff matrix, MDA-MB-231 cells were characterized by
increased microtubule acetylation and the downregulation of ER stress markers. Knock-
down of ATAT1 induced ER stress and inhibited breast cancer cell progression, including
migration, invasion, proliferation, and spheroid formation, via downregulation of gene
expression related to cancer-related pathways. In contrast, ATAT1 overexpression rescued
gene expression inhibited by tunicamycin. Finally, public transcriptome data analysis to
validate our findings revealed that ATAT1 and ER stress marker gene expression were
negatively correlated.

2. Results
2.1. Increased ECM Stiffness Inhibits ER Stress

To identify differentially expressed genes (DEGs) according to ECM stiffness, we
performed RNA-sequencing (RNA-seq) analysis of MDA-MB-231 breast cancer cells cul-
tured on a collagen-coated 0.5 kPa polyacrylamide gel (soft matrix) or a collagen-coated
culture dish (stiff matrix). RNA-seq data sets were obtained from independent biological
duplicates. To identify congruency between each biological replicate, principal component
analysis (PCA) of transcripts using DEseq2 was performed, which indicated that the biolog-
ical replicates from each experimental group were clustered to identify high reproducibility
between the replicates (Figure 1A). Pearson’s correlation analysis of RNA-seq data also
showed high correlation with over 99.9% similarity between replicates in the soft and stiff
matrix groups (Figure S1). As shown in Figure 1B, a volcano plot was constructed by
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integrating both the p-value and fold change of each transcript (p-value≤ 0.05 and absolute
log2 (fold change) ≥ 1.5) to indicate the general scattering of the transcripts and to filter the
differentially expressed transcripts for different cellular environments. In total, 985 DEGs
(RNA-seq FPKM values having log2 (fold change) ≥ 1.5, adjusted p-value < 0.05, average
FPKM in each group ≥ 20%) were identified. The results were presented as heatmap
expression based on the unsupervised hierarchical clustering of expression ratios for all
DEGs (Figure 1C).
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Figure 1. Endoplasmic reticulum (ER) stress is differentially regulated by extracellular matrix (ECM)
stiffness. (A) Principal component analysis (PCA) of the RNA-sequencing (RNA-seq) datasets
obtained from MDA-MB-231 cells cultured on soft and stiff matrices. (B) Volcano plot of differentially
expressed genes (DEGs) in MDA-MB-231 cells according to ECM stiffness based on RNA-seq results.
Genes with significantly decreased expression are shown in green; genes with significantly increased
expression are shown in red. (C) Heatmap of all DEGs between cells cultured on soft matrix and stiff
matrix. (D) Gene set enrichment analysis (GSEA) of ECM stiffness-dependent signaling pathways.
(E) Expression of ER stress and Golgi stress markers in MDA-MB-231 cells cultured on 0.5 kPa
polyacrylamide gels (PAGs) or culture dishes was quantified by RT-qPCR. Values represent the
mean ± SD of three independent experiments and were analyzed using Student’s t-test. ** p < 0.01,
N.S. not significant. (F) MDA-MB-231 cells were cultured on 0.5 kPa PAGs or dishes for 48 h. Cell
lysates were used for Western blotting analysis of the ER stress markers Ero1-Lα, Calnexin (CANX),
IRE1α, and BiP. (G) MDA-MB-231 cells were cultured on non-adherent or adherent plates for 48 h.
Cell lysates were used for Western blotting analysis of the ER stress markers Ero1-Lα, Calnexin,
IRE1α, and BiP. GAPDH was analyzed as a loading control in all Western blot assays.
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Gene set enrichment analysis (GSEA) of all DEGs showed that genes involved in
the rRNA metabolic process and the ribosome biogenesis pathway were enriched in cells
grown on a stiff matrix, whereas genes involved in the regulation of protein polymerization
were enriched in cells cultured on a soft matrix (Figure 1D). This finding suggested that
protein synthesis is more robust in cells cultured on a stiff matrix than in cells cultured on
a soft matrix, which is in line with previous findings [19].

As it has been reported that ER stress triggers homeostatic regulation of protein syn-
thesis in response to extra- and intracellular stress signals [20,21], we next compared ER
stress marker expression in MDA-MB-231 cells according to matrix stiffness. Interestingly,
transcript levels of DDIT3 and XBP1s, but not the Golgi stress marker ATF4, were signifi-
cantly lower in cells grown on a stiff matrix than in cells grown on a soft matrix (Figure 1E).
In addition, protein levels of the ER stress markers Ero1-Lα, calnexin (CANX), PERK,
IRE1α, and BiP were also significantly lower under the stiff environment (Figure 1F and
Figure S2A), indicating that ER stress is substantially lower in the former. MDA-MB-231
cells cultured in non-adherent dishes also showed increased expression of the ER stress
markers (Figure 1G and Figure S2B). These results confirmed that external mechanical
stress applied to cells affects ER stress.

2.2. Microtubule Acetylation Is Required for the Regulation of UPR Signaling

As the spreading of MDA-MB-231 cells was significantly increased on a stiff matrix
compared to a soft matrix as previously published [22] (Figure S3A–C), we examined
whether microtubule acetylation is also required for MDA-MB-231 cell spreading on a
stiff matrix. The level of microtubule acetylation, but not detyrosination, was increased
in cells cultured on a stiff matrix compared with that in cells cultured on a soft matrix
(Figure 2A and Figure S4A). In addition, microtubule acetylation was downregulated in
MDA-MB-231 cells cultured on non-adherent dishes compared to that in cells cultured on
adherent dishes (Figure 2B and Figure S4B). However, cells incubated with Y-27632 and
blebbistatin, a ROCK inhibitor, and myosin II inhibitor to reduce the cellular tension did
not show changes in the levels of microtubule acetylation (Figure S5A,B). Collectively, these
results indicated that microtubule acetylation is likely induced by cell–substrate adhesion
but not by actomyosin contractility during cell spreading.

As cells on stiff and adherent matrices had acetylated microtubules and lower ER
stress marker expression, we hypothesized that microtubule acetylation is involved in the
downregulation of ER stress markers in cells grown on a stiff matrix. To test this hypothesis,
we established ATAT1 knockdown (KD) MDA-MB-231 cells using shRNA, which had a
~90% reduction in microtubule acetylation when grown on a stiff matrix (Figure 2C). The
ER of ATAT1 KD cells had an abnormal structure, including features such as the widening
and disruption of the alignments of the ER cisternae compared to the control cells; these
abnormal structures were similar to those typically observed in tunicamycin-treated cells
showing increased ER stress levels (Figure 2D,E). Treatment with tunicamycin further
increased the degree of structural abnormalities of the ER in ATAT1 KD cells (Figure 2D,E).
UPR signals, including IRE1α phosphorylation, ATF6 cleavage, and the expression of
ER stress markers such as BiP, were also significantly increased in ATAT1 KD cells after
tunicamycin treatment (Figure 2F,G). These results suggested that microtubule acetylation
is involved in the regulation of UPR signaling under ER stress conditions.
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Figure 2. ECM stiffness-dependent microtubule acetylation regulates ER stress response signaling.
(A) Western blot analysis of acetylated and detyrosinated α-tubulin levels in MDA-MB-231 cells
cultured on 0.5 kPa PAGs or culture dishes for 48 h. (B) Western blot analysis of acetylated and
detyrosinated α-tubulin levels in MDA-MB-231 cells cultured on non-adherent or adherent plates
for 48 h. (C) Western blot analysis of ATAT1 KD efficiency in shATAT1 #1- and #2-treated MDA-
MB-231 cells compared to shMock-treated cells. (D) Transmission electron microscopy of shMock-
and shATAT1 #1-treated MDA-MB-231 cells in the presence or absence of 20 ng/mL tunicamycin
(TM) for 24 h. The ER is indicated by arrowheads. Scale bar, 500 nm. (E) Morphometric analysis
of ER width in shMock- and shATAT1 #1-treated MDA-MB-231 cells (n = 10). Statistical analysis
was performed using one-way ANOVA followed by Tukey multiple comparison tests. One-way
ANOVA, F3, 36 = 63.35. ** p < 0.01, *** p < 0.001. (F) Western blot analysis of phospho-IRE1α, IRE1α,
ATF6, phospho-PERK, PERK, BiP, acetylated α-tubulin, and α-tubulin in shMock- and shATAT1
#1-treated MDA-MB-231 cells treated with 20 ng/mL TM for the indicated times. GAPDH was
analyzed as a loading control in all Western blot assays. (G) Quantification of relative expression in
UPR and ER stress marker proteins shown in (F). Band intensities of target proteins were quantified
by densitometry using a Quantity One® system. Relative expression of phospho-IRE1α, ATF6, and
phospho-PERK were normalized by the band intensities of total IRE1a, full ATF6, and total PERK,
respectively. The relative expression of Bip was normalized with GAPDH band intensity. The Western
blot images are representative images of the results of at least three independent biological replicates.
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2.3. Regulation of Cancer Pathway-Related Gene Expression by ER Stress in a Stiff Matrix Is
Dependent on Microtubule Acetylation

To determine alterations in signaling pathways according to ECM stiffness, we
conducted a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of
398 DEGs whose expression levels were increased in cells grown on a stiff matrix when
compared to cells grown on a soft matrix, as shown in Figure 1C. “Pathways in cancer”
was the most enriched pathway, with 17 genes (Figure 3A). We have previously reported
that TGF-β-induced microtubule acetylation in fibroblasts regulates gene expression by
promoting the nuclear translocation of yes-associated protein [23]. Therefore, to ascertain
whether the 17 genes upregulated in cells grown on a stiff matrix were also transcriptionally
regulated by microtubule acetylation, we constructed the ATAT1 knockout (KO) cell line
using the CRISPR/Cas9 technique and performed RNA-seq analysis in WT and ATAT1
KO cells. Interestingly, KEGG pathway analysis of 3145 DEGs whose expression levels
were lower in ATAT1 KO cells than that in WT cells showed that “Pathways in cancer” was
also the most enriched pathway (Figure S6). Moreover, among the 17 genes obtained from
Figure 3A, 10 genes (MYC, MITF, MAPK8, CXCR4, RASSF1, ETS1, BCL2, CXCL8, FGF1, and
BMP2) were downregulated and three genes (E2F2, CCNE1, and LPAR1) were upregulated
in ATAT1 KO cells, while others (CYCS, E2F1, WNT10B, and RAD51) were not significantly
changed in their expression between mock and KO samples (Figure 3B). Among them, 7 of
10 downregulated genes were confirmed to be significantly downregulated by quantitative
reverse transcription (RT-q) PCR analysis (Figure 3C).

As we found that microtubule acetylation is involved in the modulation of ER stress
intensity, we investigated whether the expression of the seven cancer-related genes regu-
lated by microtubule acetylation was also affected by ER stress. Five out of seven genes
were also downregulated upon tunicamycin treatment (Figure 3D). Interestingly, their
expression was restored upon overexpression of ATAT1 (Figure 3E).

To confirm whether the above results were due to reduced ER stress, we analyzed ER
stress marker expression and cell invasion of ATAT1-overexpressing cells after tunicamycin
treatment. In ATAT1-overexpressing cells, tunicamycin-induced ER stress marker expres-
sion was decreased when compared to that in control cells, and cell invasion was increased
(Figure 3F,G). These results suggested that microtubule acetylation modulates ER stress in
cells grown on a stiff matrix, thereby increasing the expression of genes involved in cancer
signaling pathways, promoting breast cancer progression, including invasiveness.

2.4. Microtubule Acetylation and ER Stress Regulate Focal Adhesion Formation

As microtubule acetylation restored tunicamycin-inhibited MDA-MB-231 cell invasion
(Figure 3G), we next evaluated the expression of genes associated with cell migration by
Gene Ontology (GO)-term analysis using RNA-seq data from control and ATAT1 KO cells.
Figure 4A shows that genes related to focal adhesion and cell adhesion were significantly
downregulated in ATAT1 KO cells (Figure 4A). Especially, the expression of VCL, PTK2,
PXN, and TLN1, which encode components of focal adhesions, was decreased in ATAT1
KO cells (Figure 4B). ATAT1 KD cells also showed reduced expression levels of focal
adhesion proteins, as observed in shMock cells treated with tunicamycin (Figure 4C). In
accordance herewith, immunocytochemistry results showed that the number and size
of focal adhesions at the pericellular region were reduced in both tunicamycin-treated
and ATAT1 KD cells (Figure 4D). Real-time microscopy revealed that the newly formed
focal adhesions in response to the FBS stimulation were less dynamic in ATAT1 KD and
tunicamycin-treated cells (Figure 4E,F and Figure S7, and Video S1). Taken together, these
results indicated that microtubule acetylation controls the expression of focal adhesion
proteins and the dynamics of newly formed focal adhesions through the modulation of ER
stress, thereby affecting cell migration and invasion.
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Figure 3. Microtubule acetylation induces cancer-related gene expression through the alleviation of
ER stress in breast cancer cells. (A) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis of DEGs upregulated in cells grown on a stiff matrix. The x-axis indicates the
gene ratio, i.e., the ratio of DEGs in the given gene ontology (GO) term. The y-axis indicates KEGG
pathways. Dot size represents the number of genes in each KEGG pathway. (B) Heatmap of 17 genes
related to “Pathways in cancer” obtained through KEGG pathway analysis in mock and ATAT1 KO
MDA-MB-231 cells. Genes with reduced expression in ATAT1 KO compared to mock-treated cells
are indicated by blue letters. (C) mRNA levels of “Pathways in cancer” genes were decreased in
ATAT1 KO MDA-MB-231 cells treated with 20 ng/mL tunicamycin for 24 h as indicated by RT-qPCR.
Values represent the mean ± SD of three independent experiments. ** p < 0.01, *** p < 0.001, N.S.
not significant (Student’s t-test). (D) mRNA levels of seven genes that were downregulated upon
tunicamycin treatment shown in (C) in ATAT1 KD compared to shMock-treated MDA-MB-231 cells
as determined by RT-qPCR. Values represent the mean ± SD of three independent experiments.
** p < 0.01, *** p < 0.001, N.S. not significant (Student’s t-test). (E) mRNA levels of “Pathway in
cancer” genes in control and ATAT1 overexpression lines after tunicamycin treatment as assessed by
RT-qPCR. Values represent the mean ± SD of three independent experiments. Statistical significance
of the differences in gene expression according to tunicamycin treatment in each of the cell lines
transfected with empty vectors (EV) and ATAT1 overexpression (OE) vectors was analyzed by one-
way ANOVA followed by Tukey multiple comparison tests (# p < 0.05, ### p < 0.001). One-way
ANOVA, F2, 6 = 46.21 (RASSF1), F2, 6 = 12.70 (MAPK8), F2, 6 = 38.36 (BCL2), F2, 6 = 9.008 (CXCL8), and
F2, 6 = 10.71 (FGF1). Statistical significance of the differences between EV controls and ATAT1 OE cells
was also analyzed using Student’s t-test (* p < 0.05, ** p < 0.01, *** p < 0.001). (F) Western blot analysis
of calnexin (CANX), BiP, and acetylated α-tubulin in EV controls or ATAT1 OE cells after treatment
with 20 ng/mL tunicamycin for 24 h. GAPDH was used as loading control. (G) Comparison of the
number of invading cells via a Transwell invasion assay in cells cultured under the same conditions
as in (F). Values represent the mean ± SD of three independent experiments. One-way ANOVA,
F2, 6 = 158.4. *** p < 0.001.



Int. J. Mol. Sci. 2021, 22, 6018 8 of 17

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 8 of 17 
 

 

cells. Figure 4A shows that genes related to focal adhesion and cell adhesion were signif-

icantly downregulated in ATAT1 KO cells (Figure 4A). Especially, the expression of VCL, 

PTK2, PXN, and TLN1, which encode components of focal adhesions, was decreased in 

ATAT1 KO cells (Figure 4B). ATAT1 KD cells also showed reduced expression levels of 

focal adhesion proteins, as observed in shMock cells treated with tunicamycin (Figure 4C). 

In accordance herewith, immunocytochemistry results showed that the number and size 

of focal adhesions at the pericellular region were reduced in both tunicamycin-treated and 

ATAT1 KD cells (Figure 4D). Real-time microscopy revealed that the newly formed focal 

adhesions in response to the FBS stimulation were less dynamic in ATAT1 KD and tuni-

camycin-treated cells (Figures 4E,F and S7, and Video S1). Taken together, these results 

indicated that microtubule acetylation controls the expression of focal adhesion proteins 

and the dynamics of newly formed focal adhesions through the modulation of ER stress, 

thereby affecting cell migration and invasion. 

 

Figure 4. Focal adhesion assembly is regulated by microtubule acetylation and ER stress. (A) Func-

tional annotation of 389 DEGs in ATAT1 KO MDA-MB-231 cells using PANTHER gene ontology 

(GO). (B) Heatmap showing genes related to focal adhesion assembly based on RNA-seq data from 

ATAT1 KO cells. (C) Validation of gene expression using Western blotting. shMock-treated cells 

treated or not with tunicamycin, and shATAT1-treated cells were cultured for 24 h. Cell lysates were 

used for Western blot analysis of vinculin, FAK, talin, and acetylated α-tubulin, using GAPDH as a 

loading control. (D) Immunocytochemistry analysis of focal adhesions using antibodies against vin-

culin and F-actin in shMock-treated and ATAT1 KO cells cultured in the presence of 20 ng/mL tuni-

camycin for 24 h. Scale bar, 30 μm. (E) Paxillin-GFP-expressing shMock- and shATAT1 #1-treated 

MDA-MB-231 cells were starved for 16 h in serum-free RPMI1640 medium and then stimulated with 

10% FBS with or without 20 ng/mL tunicamycin. Merged paxillin–GFP images in shMock- and 

Figure 4. Focal adhesion assembly is regulated by microtubule acetylation and ER stress. (A) Func-
tional annotation of 389 DEGs in ATAT1 KO MDA-MB-231 cells using PANTHER gene ontology (GO).
(B) Heatmap showing genes related to focal adhesion assembly based on RNA-seq data from ATAT1
KO cells. (C) Validation of gene expression using Western blotting. shMock-treated cells treated or
not with tunicamycin, and shATAT1-treated cells were cultured for 24 h. Cell lysates were used for
Western blot analysis of vinculin, FAK, talin, and acetylated α-tubulin, using GAPDH as a loading
control. (D) Immunocytochemistry analysis of focal adhesions using antibodies against vinculin and
F-actin in shMock-treated and ATAT1 KO cells cultured in the presence of 20 ng/mL tunicamycin for
24 h. Scale bar, 30 µm. (E) Paxillin-GFP-expressing shMock- and shATAT1 #1-treated MDA-MB-231
cells were starved for 16 h in serum-free RPMI1640 medium and then stimulated with 10% FBS with
or without 20 ng/mL tunicamycin. Merged paxillin–GFP images in shMock- and shATAT1 #1-treated
cells at 0 and 30 min. Red represents retracting focal adhesions and green represents newly forming
focal adhesions. Scale bar, 10 µm. (F) Ratios of gain and loss of focal adhesions to total focal adhesion
area. Values represent the mean± SD of two independent experiments. Statistical significances were
analyzed using one-way ANOVA followed by Tukey multiple comparison tests. One-way ANOVA
(Loss; F2, 3 = 15.98. * p < 0.05, Gain; F2, 3 = 174.1, ** p < 0.01).



Int. J. Mol. Sci. 2021, 22, 6018 9 of 17

2.5. Expression of ATAT1 and ER Stress Markers Is Negatively Correlated in Breast Cancer Patients

To investigate the correlation between breast cancer progression and microtubule
acetylation, we analyzed the level of microtubule acetylation in cancer and normal tissues
by performing immunohistochemistry using a commercially available human breast carci-
noma tissue microarray. Assuming that a sample with a staining intensity score of 2 or 3
has high amounts of acetylated microtubules, 23/40 (57%) of breast carcinoma specimens
were scored as 2 and 3, while 2/10 (20%) had scores of 2 and 3 in the normal and cancer
adjacent normal tissues. Consequently, the median of acetylated microtubule intensity
was three-fold higher in cancer than in normal tissues (Figure 5A). We next analyzed
the level of ATAT1 transcripts in various breast cancer tissues using the Oncomine v4.5
database (https://www.oncomine.org). The ATAT1 transcript was increased in most cancer
tissues when compared to the levels in normal tissues (Figure 5B). To further investigate
the relationship between ATAT1 transcript levels and ER stress markers in breast cancer,
we analyzed the correlation between ATAT1 and ER stress marker gene expression levels
using the bc-GenExMiner v4.6 database (http://bcgenex.ico.unicancer.fr). Pearson’s corre-
lation analysis showed that although the correlation coefficient between ATAT1 and ER
stress marker genes (except for HSPA5) was low, they tended to have a negative correla-
tion, whereas those of ER stress marker genes were positively correlated (Figure 5C and
Figures S8 and S9A,B).

To evaluate the prognostic value of ATAT1 and ER stress marker gene expression
in breast cancer patient survival, we utilized the SurvExpress database v2.0 (http://
bioinformatica.mty.itesm.mx:8080/Biomatec/SurvivaX.jsp). In high-risk groups, ATAT1
mRNA expression was elevated, whereas the expression of ER stress marker genes such
as ERO1A, CANX, and HSPA5, was lower (Figure 5D). In addition, breast cancer patients
with high expression of ATAT1 and MAPK8, RASSF1, BCL2, CXCL8, and FGF1, had a
poor prognosis (Figure 5E). These results indicated that combinatorial analysis of ER stress
marker and ATAT1 transcripts may be useful for the diagnosis of breast cancer progression.

https://www.oncomine.org
http://bcgenex.ico.unicancer.fr
http://bioinformatica.mty.itesm.mx:8080/Biomatec/SurvivaX.jsp
http://bioinformatica.mty.itesm.mx:8080/Biomatec/SurvivaX.jsp
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Figure 5. Expression levels of ATAT1 and ER stress marker genes are negatively correlated in breast
cancer patients. (A) Representative images of immunohistochemistry of acetylated α-tubulin in
normal, cancer-adjacent normal, and invasive carcinoma breast tissues. Scale bar, 200 µm. Lower
panels, sample distribution by acetylated α-tubulin staining intensity. Staining intensity was marked
(0 = absence, 1 = weak, 2 = moderate, 3 = strong). Values represent the mean ± SD of three
independent experiments. Statistical significance was analyzed using one-way ANOVA followed by
Tukey’s multiple comparison tests (* p < 0.05, ** p < 0.01). One-way ANOVA (F2, 47 = 8.552, p < 0.001).
(B) Analysis of ATAT1 expression levels in normal breast, ductal breast carcinoma in situ, invasive
ductal breast carcinoma, invasive lobular breast carcinoma, and invasive mixed breast carcinoma
tissues using the Oncomine database. N, normal breast; DCIS, Ductal breast carcinoma in situ; IDBC,
invasive ductal breast carcinoma; ILBC, invasive lobular breast carcinoma; IMBC, invasive mixed
breast carcinoma. (C) Pearson’s correlations between mRNA levels of ATAT1 and ER stress marker
genes in breast cancer patients based on the bc-GenExMiner RNA-seq dataset (n = 4712). Number in
the box indicates correlation coefficient value. (D) Expression levels of ATAT1 and ER stress marker
genes in low-, medium-, and high-risk groups in 962 breast cancer patients from a TCGA dataset.
(E) Kaplan–Meier plots of breast cancer patients based on the expression of ATAT1 and MAPK8,
RASSF1, BCL2, CXCL8, and FGF1 in SurvExpress data (n = 295). HR, hazard ratio.
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3. Discussion

The development of solid cancers is accompanied by ECM stiffening, which confers
cells with aggressive features [24]. ECM stiffness is due to the accumulation of ECM
proteins, such as collagen, fibronectin, and laminin, and the activity of cross-linking
enzymes, such as lysyl oxidase [25]. In particular, increased synthesis and deposition
of ECM proteins from cancer-associated fibroblasts in the tumor microenvironment has
been correlated with ER stress [26]. However, our results demonstrated that ER stress
marker expression was upregulated in cells cultured on a soft matrix, compared to the
case for cells grown on a stiff matrix (Figure 1E,F), which contradicts the findings from a
previous study, which reported that a stiff ECM contributes to increased ER stress [27]. It
should be considered that these results were obtained by short-term culturing cells that
had been adapted while being cultured on a stiff matrix (e.g., plastic culture dishes) by
transferring them to a soft matrix. From this point of view, these results clearly indicate
that a physical change in the ECM status, regardless of a soft or a stiff substrate, generates
a signal that induces ER stress in cancer cells.

It has been reported that actomyosin signaling is enhanced through integrin-mediated
focal adhesion signaling in cells grown on a stiff matrix [28]. Our results showed that
microtubule acetylation was upregulated in MDA-MB-231 cells grown on a stiff matrix.
This upregulation was not inhibited upon reducing the actomyosin contractility by treat-
ment with blebbistatin or Y-27632 but was decreased when the cells were cultured in
non-adherent dishes (Figure S5). Thus, it is likely that microtubule acetylation in MDA-
MB-231 cells is governed by focal adhesion signaling through integrin but is not influenced
by actomyosin-induced cellular contractility. As microtubule acetylation is known to occur
in long-lived and stable microtubules, signaling molecules involved in microtubule sta-
bility and nucleation through integrin-mediated MEK/ERT and Rho-mDia signaling are
plausible candidates, inducing microtubule acetylation in the stiff matrix [29,30]. Another
possibility is the regulation of signaling involved in the activity of enzymes that induce
microtubule acetylation in cells grown on a stiff matrix. It has been reported that TGF-β-
activated kinases 1 regulates the activity of αTAT1 by inducing phosphorylation at the S237
residue in its C-terminus [31]. HDAC6 and SIRT2 activities are regulated through phospho-
rylation of AurA and GSK3β, respectively [32,33]. However, the regulatory mechanism
of the activity of these enzymes according to matrix stiffness is not known and requires
further studies.

Accumulating evidence demonstrates that the regulation of UPR signaling in response
to ER stress is critical for cell fate. That is, the initial UPR signal restores ER homeostasis by
correcting misfolded protein levels to preserve cellular functions, but when ER homeostasis
is not properly regulated, the UPR signal induces cell death [34–36]. Our results showed
that ATAT1 KD cells had an abnormal ER shape, with misaligned and short cisternae,
similar to that seen in tunicamycin-treated control cells. Moreover, the ER in ATAT1 KD
cells treated with tunicamycin was more expanded than that in normal cells treated with
tunicamycin. This expansion of ER is generally observed under ER stress conditions [37].
Concomitant with this result, UPR signals, such as phospho-IRE1α, were more pronounced
in ATAT1 KD cells than in control cells after tunicamycin treatment. Thus, acetylated
microtubules seem to be involved in the stabilization of the ER structure under ER stress,
allowing cells to control UPR signaling in response to excessive ER stress. How microtubule
acetylation is molecularly involved in ER stabilization under stress conditions and regulates
UPR signaling remains to be elucidated.

We analyzed the role of microtubule acetylation on ER stress-dependent gene expres-
sion in cells grown on a stiff matrix by using RNA-seq results of ATAT1 KO cells and
several bioinformatics tools. Among 17 genes involved in cancer pathways, five genes, i.e.,
BCL2, CXCL8, FGF1, MAPK8, and RASSF1A, whose expression was significantly reduced in
ATAT1 KO cells, were simultaneously downregulated by ER stress with tunicamycin treat-
ment, and the expression of all of these genes was recovered upon ATAT1 overexpression.
Moreover, tunicamycin-induced ER stress marker expression was reduced upon ATAT1
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overexpression. The roles of the above five genes in cancer progression are diverse. BCL2,
CXCL8, and FGF1 promote cancer cell metastasis and invasion through EMT regulation in
various cancers [38–42]. The role of MAPK8 is rather controversial and seems to depend on
the type of cancer [43]. RASSF1A is a well-known tumor-suppressor gene and is frequently
inactivated in various human cancers [44]. The fives genes are known to be primarily
involved in pro-inflammatory signals and cancer cell growth and metastasis [45–49]. Thus,
it is reasonable to assume that gene expression induced by microtubule acetylation under
ER stress leads to cancer development in an inflammatory microenvironment.

Finally, we demonstrated that the overall survival rate was severely reduced in breast
cancer patients in whom the expression levels of ATAT1 and the five aforementioned genes
were negatively correlated. Therefore, analysis of the expression levels of these genes
will be useful for the diagnosis of triple-negative malignant breast tumors in future, and
inhibition of microtubule acetylation might be a useful strategy for triple-negative breast
cancer treatment [50].

4. Materials and Methods
4.1. Cell Culture

MDA-MB-231 cells were cultured in RPMI1640 medium (Invitrogen, Carlsbad, CA,
USA, #23400-021) supplemented with 10% fetal bovine serum (FBS, A-Frontier, Seoul,
Korea, #US-FBS-500), 100 units/mL penicillin, and 100 µg/mL streptomycin (Welgene,
Daegu, Korea, #LS202-02). BT549 cells were maintained in Dulbecco’s modified Eagle’s
medium (Invitrogen, #1210046) supplemented with 10% FBS, 100 units/mL penicillin, and
100 µg/mL streptomycin. All cells were maintained in a humidified incubator at 37 ◦C,
with 5% CO2. For cell culture under the non-adherent condition, the cells were seeded in
6-well ultralow attachment plates (SPL 3DTM Cell Floater, SPL Life Sciences, Gyeonggi-do,
Korea, #39706).

4.2. Preparation of PAGs

Acrylamide and bis-acrylamide were mixed to obtain 0.5 kPa PAG, and a thin layer
was poured onto 12- or 25-mm coverslips treated with 2% 3-aminopropyltriethoxy-silane
(Sigma, St. Louis, MO, USA, #440140). PAGs were treated with 0.5 mg/mL sulfo-
sulfosuccinimidyl-6-[4′-azido-2′-nitrophenylamino] hexanoate (Sigma, #803332) and ac-
tivated with 365-nm ultraviolet (UV) light twice for 14 min each. Activated PAGs were
coated with 50 µg/mL type I collagen (BD Bioscience, Bedford, MA, USA, #354249) at 4 ◦C
for 12–16 h. PAGs were washed with PBS and exposed to UV light for 15 min.

4.3. Antibodies and Reagents

We used antibodies against acetylated α-tubulin (Cell Signaling Technology, Danver,
MA, USA, #5335), detyrosinated α-tubulin (Sigma, MAB5566), Ero1-Lα (Cell Signaling
Technology, #3264), calnexin (Cell Signaling Technology, #2679), BiP (Cell Signaling Tech-
nology, #3177), IRE1α (Cell Signaling Technology, #3294), phospho-IRE1α (Cell Signaling
Technology, #3398), PERK (Cell Signaling Technology, #5683), phospho-PERK (Abcam,
Cambridge, MA, USA, #ab192591), ATF6 (Abcam, #ab227830), and GAPDH (Santa Cruz
Biotech, TX, USA, #sc32233). Tunicamycin (Sigma, T7765) and Y-27632 (Sigma, Y0503)
were purchased from Sigma-Aldrich. Blebbistatin was purchased from Toronto Research
Chemicals Inc. (North York, ON, Canada).

4.4. Western Blotting

Cells were homogenized with lysis buffer (50 mM Tri-Cl (pH 6.8), 10% glycerol, 2%
sodium dodecyl sulfate, 1 mM sodium orthovanadate (Na3VO4), 1 mM phenylmethylsul-
fonyl fluoride, 50 mM sodium fluoride, 1 mM 1,4-dithiothreitol). The cell lysates were
subjected to sodium dodecyl sulfate–polyacrylamide gel electrophoresis and then trans-
ferred to a polyvinylidene difluoride membrane (Millipore, MA, USA, #IPVH00010). The
membranes were blocked with 5% skim milk solution and incubated with primary antibod-
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ies at 4 ◦C for 12–16 h, then with horseradish peroxidase-conjugated secondary antibodies
(Jackson ImmunoResearch Laboratories, West Grove, PA, USA) at room temperature for 2 h.
Protein signals were developed with enhanced chemiluminescence (Bio-Rad Laboratories,
Hercules, CA, USA, #1705061b) according to the manufacturer’s instructions, and images
were observed using a Fusion Solo S system (Vilber Lourmat, Collégien, France).

4.5. RT-qPCR

Total RNA was extracted using RNAiso Plus reagent (TaKaRa, Tokyo, Japan, #9108)
according to the manufacturer’s instructions. RNA concentrations were measured using an
Epoch microplate spectrophotometer (BioTek, Winooski, VT, USA). The total RNA (1 µg)
was reverse transcribed using PrimeScript reverse transcriptase (TaKaRa, #2680). qPCRs
were run using SYBR Premix Ex-Taq II (TaKaRa, #RR820) in a Quantstudio3 instrument
(Applied Biosystems, Foster City, CA, USA). Target gene expression levels were calculated
by the 2–∆∆CT method and normalized to the Ct value for GAPDH. The primers used for
qPCR are listed in Table S1.

4.6. RNA-seq and Data Analysis

Total RNA was extracted, and RNA quality and quantity were measured using an
Agilent 2100 Bioanalyzer (Agilent Technologies, Amstelveen, The Netherlands) and Nan-
odrop ND-2000 (Thermo Scientific, Waltham, MA, USA), respectively. For control and test
RNA, the construction of a library was performed using Quant-seq 3′ mRNA-Seq Library
Prep Kit (Lexogen, Vienna, Austria), according to the manufacturer’s instructions. First,
500 ng of total RNA of each sample was prepared; then, an oligo-dT primer containing
an Illumina-compatible sequence at its 5′ end was hybridized to the RNA, and reverse
transcription was conducted. After the degradation of the RNA template, second-strand
synthesis was initiated using a random primer containing an Illumina-compatible linker
sequence at its 5′ end. The double-stranded library was purified using magnetic beads to
remove all the reaction components. The library was amplified to add the complete adapter
sequences required for cluster generation. The finished library was purified from the PCR
components. High-throughput sequencing was performed as single-end 75 sequencing
using NextSeq 500 (Illumina, San Diego, CA, USA) at Ebiogen Inc. (Seoul, Korea).

4.7. Single-Cell Tracking

Cells (1 × 105) were seeded on 0.5 kPa PAGs or dishes in RPMI1640 medium sup-
plemented with 10% FBS and incubated for 10 h. The cells were equilibrated in a cage
incubator H301-K-frame (Okolab, Pozzuoli, Italy) for 1 h. Cells were imaged using an
Eclipse Ti2 (Nikon, Tokyo, Japan) with DS-Qi2 (Nikon) monochrome camera. Images were
captured every 15 min for 12 h using a Plan Fluor 10×/0.30 objective lens (Nikon). Cell
movement was measured using the NIS-Elements AR 5.20.00 software.

4.8. Invasion Assay

Cell invasion was measured using Transwell inserts with an 8 µm pore size (SPLInsert,
SPL Life Sciences, Pocheon, Korea, #36224) in the presence of 10 µg rat tail type I collagen
at room temperature for 4 h. Cells were seeded in the upper wells at 2 × 105 cells/well in
RPMI1640 medium. The lower wells were filled with RPMI1640 supplemented with 10%
FBS. Cells were incubated in a 5% CO2 chamber for 24 h. The samples were fixed with
100% methanol for 5 min and stained with 0.1% crystal violet. Non-invading cells were
removed, and invading cells were counted in random fields by light microscopy.

4.9. Immunocytochemistry

MDA-MB-231 cells were plated on 50 µg/mL rat tail type I collagen-coated PAGs or
12 mm coverslips. The cells were fixed with 3.7% paraformaldehyde (Sigma-Aldrich) for
15 min and permeabilized with 0.5% Triton X-100 in PBS for 10 min. To block background
signals, the samples were incubated with 2% bovine serum albumin (BSA) in 0.1% Triton
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X-100 in PBS for 1 h. The cells were incubated with primary antibodies for 1 h and then
with fluorescein-conjugated secondary antibodies for 1 h. The samples were mounted on
glass slides with Fluoromount-G (SouthernBiotech, Birmingham, AL, USA, #0100-01) and
observed under an Eclipse 80i fluorescence microscope (Nikon) equipped with a DS-Qi2
digital camera (Nikon). Captured images were processed using the NIS-Elements image
analysis software (Nikon).

4.10. Plasmid Construction

The coding sequence (CDS) of ATAT1 was amplified by PCR from a human ATAT1
construct (pEF5B-FRT-GFP-αTAT1; Addgene, Cambridge, MA, USA, #27099). The ampli-
fied ATAT1 cDNA was cloned into a pcDNA6/myc His A expression vector (Invitrogen)
using the BamHI and XbaI restriction sites. To generate a lentiviral expression vector,
myc-tagged ATAT1 cDNA amplified by PCR from pcDNA6 myc/His A-ATAT1 construct
was used as a template. Myc-tagged ATAT1 cDNA was cloned into a pLenti-blasticidin
expression vector using the BamHI and EcoRI restriction sites. The following lentiviral
shRNA oligos targeting the CDS of ATAT1 were used: human ATAT1 shRNA #1 (5′-
ACCGCACCAACTGGCAATTGA-3′) and shRNA #2 (5′-AACCGCCATGTTGTTTATATT-
3′). shRNA oligos were cloned into pLKO.1-blast (Addgene, #26655) using the AgeI and
EcoRI restriction enzyme sites. All constructs were verified by DNA sequencing.

4.11. Generation of ATAT1-Knockout Cell Lines Using the CRISPR/Cas9 System

Complementary oligos containing the guide RNA (gRNA) sequence (5′-CATGAGTCTG
TGCAACGCCA-3′) targeting the genomic DNA of ATAT1 and BsmBI-digested Lenti-
CRISPR v2 (Addgene, #52961) vector were ligated. To validate the gRNA, a T7 endonucle-
ase 1 assay was performed. Lentivirus particles were harvested and then used to infect
MDA-MB-231 cells in the presence of 8 µg/mL polybrene for 72 h. Then, the lentivirus-
infected cells were subjected to a selection pressure of 1 µg/mL puromycin for 10 days;
single cells were then re-seeded onto 96 well plates. The transformant colonies were
verified by Western blotting and gDNA sequencing.

4.12. Establishment of ATAT1 Knockdown and Overexpression Cell Lines

A lentiviral system was used for establishing stable cell lines. Lentiviral particles were
obtained after shRNA- or CDS-cloned constructs were co-transfected with pMD2.G (Addgene,
#12259) and psPAX2 (Addgene, #12260) into HEK-293T cells using polyethylenimine. MDA-
MB-231 cells were cultured with harvested lentiviral particles and 8 µg/mL polybrene for
72 h. Lentivirus-infected cells were selected with 10 µg/mL blasticidin for 10 days.

4.13. Transmission Electron Microscopy

Cells were washed with PBS and fixed with 2% glutaraldehyde (Sigma, #G6257) and
2% paraformaldehyde (Sigma, #G6148) in 0.05 M sodium cacodylate (Sigma, #C0250) buffer
at room temperature for 2 h. Fixed cells were harvested by scraping and incubated in
a fixative at 4 ◦C for 16 h. The samples were washed three times with 0.05 M sodium
cacodylate buffer for 5 min and then post-fixed with 1% osmium tetroxide diluted in 0.1 M
sodium cacodylate buffer at 4 ◦C for 1 h. Then, the cells were washed three times with
distilled water for 5 min, stained with 0.5% uranyl acetate at 4 ◦C for 16 h, and washed
three times with distilled water for 5 min again. The cells were dehydrated with 30%,
50%, 70%, 80%, 90%, and 100% ethanol for 10 min each, and then two times with 100%
ethanol. The cells were embedded in Spurr’s resin. Sections were cut at a thickness of
80 nm using an ultramicrotome. The samples were stained with uranyl acetate, and images
were acquired using a JEM-F200 transmission electron microscope (JEOL, Tokyo, Japan).

4.14. Immunohistochemistry

Immunohistochemistry analysis was performed according to the manufacturer’s
instructions. A paraffin-embedded human breast carcinoma tissue microarray slide was
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purchased from US Biomax (Rockville, MD, USA, #BR1009). The slide was deparaffinized,
rehydrated, subjected to antigen retrieval, blocked, and then incubated with an antibody
against acetylated α-tubulin. Next, the slide was incubated with biotinylated goat anti-
rabbit IgG secondary antibody (Vectastain Laboratory, Burlingame, CA, USA) and avidin-
biotin complex (Vectastain Laboratory) and then reacted with peroxidase substrate with
3,3′-diaminobenzidine (DAB) (SK-4100; Vector Laboratories, Burlingame, CA, USA). Eosin
was used for counterstaining. The slide was dehydrated with ethanol and a cover slide
was mounted with ImmunoHistoMount (Sigma-Aldrich). Images were captured using
a light microscope. To analyze the immunohistochemistry results, we adopted the brief
scoring system [51]. We interpreted cytoplasmic staining only, and each sample was
graded according to the staining intensity of overall cells as follows: no staining = 0,
weak staining = 1, moderate staining = 2, strong staining = 3. The data were confirmed in
independent duplicate analysis.

4.15. Focal Adhesion Assembly

For analysis of focal adhesion dynamics, 7 × 104 cells were seeded on collagen-coated
glass-bottom plates 48 h post transfection of a paxillin-GFP construct. Transfected cells
were incubated in serum-free RPMI1640 medium for 16 h and stimulated with 10% FBS.
Cells were imaged using an Eclipse Ti2 microscope (Nikon) equipped with a DS-Qi2
monochrome camera (Nikon). Images were captured every minute for 1 h using a Plan
Fluor 10×/0.30 objective lens (Nikon). Focal adhesion assembly was measured using
NIS-Elements AR 5.20.00 software.

4.16. Statistical Analysis

Statistical analysis was performed using GraphPad Prism8 (GraphPad software, San
Diego, CA, USA). Data are reported as the mean ± standard deviation (SD). Means of two
groups were compared using Student’s t-test; means of multiple groups were compared
using one-way analysis of variance (ANOVA) followed by Tukey multiple comparison
tests. One-way ANOVA F values are represented in each figure legend as F(DFn, Dfd): DFn
is the df numerator, and Dfd is the df denominator. p-values below 0.05 were considered
statistically significant. * p < 0.05, ** p < 0.01, *** p < 0.001. Data are described as means.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/ijms22116018/s1.

Author Contributions: Conceptualization, P.K., J.-H.C. and S.R.; methodology, P.K., S.S., S.K. and
J.W.K.; formal analysis, P.K. and J.-H.C.; data curation, J.W.K., S.K., J.J. and Y.E.H.; writing—original
draft preparation, P.K.; writing—review and editing, J.-H.C. and S.R.; project administration, J.-
H.C. and S.R.; supervision, S.R. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by grants from the National Research Foundation of Korea
(NRF) (NRF-2020R1A2C2007389 and Basic Research Laboratory: NRF-2019R1A4A2001609) funded
by the Korean government (MSIT).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Acknowledgments: This research was supported by the Chung-Ang University Graduate Research
Scholarship in 2020. We thank the lab members for critical review of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

https://www.mdpi.com/article/10.3390/ijms22116018/s1
https://www.mdpi.com/article/10.3390/ijms22116018/s1


Int. J. Mol. Sci. 2021, 22, 6018 16 of 17

References
1. Butcher, D.T.; Alliston, T.; Weaver, V.M. A tense situation: Forcing tumour progression. Nat. Rev. Cancer 2009, 9, 108–122.

[CrossRef]
2. Levental, K.R.; Yu, H.; Kass, L.; Lakins, J.N.; Egeblad, M.; Erler, J.T.; Fong, S.F.; Csiszar, K.; Giaccia, A.; Weninger, W.; et al. Matrix

crosslinking forces tumor progression by enhancing integrin signaling. Cell 2009, 139, 891–906. [CrossRef] [PubMed]
3. Paszek, M.J.; Zahir, N.; Johnson, K.R.; Lakins, J.N.; Rozenberg, G.I.; Gefen, A.; Reinhart-King, C.A.; Margulies, S.S.; Dembo, M.;

Boettiger, D.; et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 2005, 8, 241–254. [CrossRef] [PubMed]
4. Shi, Q.; Boettiger, D. A novel mode for integrin-mediated signaling: Tethering is required for phosphorylation of FAK Y397. Mol.

Biol. Cell 2003, 14, 4306–4315. [CrossRef]
5. Lawson, C.D.; Burridge, K. The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration. Small

GTPases 2014, 5, e27958. [CrossRef] [PubMed]
6. Provenzano, P.P.; Inman, D.R.; Eliceiri, K.W.; Keely, P.J. Matrix density-induced mechanoregulation of breast cell phenotype,

signaling and gene expression through a FAK-ERK linkage. Oncogene 2009, 28, 4326–4343. [CrossRef]
7. Urra, H.; Dufey, E.; Avril, T.; Chevet, E.; Hetz, C. Endoplasmic reticulum stress and the hallmarks of cancer. Trends Cancer 2016,

2, 252–262. [CrossRef] [PubMed]
8. Pobre, K.F.R.; Poet, G.J.; Hendershot, L.M. The endoplasmic reticulum (ER) chaperone BiP is a master regulator of ER functions:

Getting by with a little help from ERdj friends. J. Biol. Chem. 2019, 294, 2098–2108. [CrossRef]
9. Yadav, R.K.; Chae, S.W.; Kim, H.R.; Chae, H.J. Endoplasmic reticulum stress and cancer. J. Cancer Prev. 2014, 19, 75–88. [CrossRef]
10. Chevet, E.; Hetz, C.; Samali, A. Endoplasmic reticulum stress-activated cell reprogramming in oncogenesis. Cancer Discov. 2015,

5, 586–597. [CrossRef]
11. Nishitoh, H.; Matsuzawa, A.; Tobiume, K.; Saegusa, K.; Takeda, K.; Inoue, K.; Hori, S.; Kakizuka, A.; Ichijo, H. ASK1 is essential

for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 2002,
16, 1345–1355. [CrossRef]

12. Yang, W.; Tiffany-Castiglioni, E.; Koh, H.C.; Son, I.H. Paraquat activates the IRE1/ASK1/JNK cascade associated with apoptosis
in human neuroblastoma SH-SY5Y cells. Toxicol. Lett. 2009, 191, 203–210. [CrossRef]

13. Gadde, S.; Heald, R. Mechanisms and molecules of the mitotic spindle. Curr. Biol. 2004, 14, R797–R805. [CrossRef]
14. Rogers, S.L.; Gelfand, V.I. Membrane trafficking, organelle transport, and the cytoskeleton. Curr. Opin. Cell Biol. 2000, 12, 57–62.

[CrossRef]
15. Boggs, A.E.; Vitolo, M.I.; Whipple, R.A.; Charpentier, M.S.; Goloubeva, O.G.; Ioffe, O.B.; Tuttle, K.C.; Slovic, J.; Lu, Y.; Mills,

G.B.; et al. alpha-Tubulin acetylation elevated in metastatic and basal-like breast cancer cells promotes microtentacle formation,
adhesion, and invasive migration. Cancer Res. 2015, 75, 203–215. [CrossRef] [PubMed]

16. Oh, S.; You, E.; Ko, P.; Jeong, J.; Keum, S.; Rhee, S. Genetic disruption of tubulin acetyltransferase, alphaTAT1, inhibits proliferation
and invasion of colon cancer cells through decreases in Wnt1/beta-catenin signaling. Biochem. Biophys. Res. Commun. 2017,
482, 8–14. [CrossRef] [PubMed]

17. Lee, J.K.; Lee, J.; Go, H.; Lee, C.G.; Kim, S.; Kim, H.S.; Cho, H.; Choi, K.S.; Ha, G.H.; Lee, C.W. Oncogenic microtubule
hyperacetylation through BEX4-mediated sirtuin 2 inhibition. Cell Death Dis. 2016, 7, e2336. [CrossRef] [PubMed]

18. Ho, C.T.; Chang, Y.J.; Yang, L.X.; Wei, P.L.; Liu, T.Z.; Liu, J.J. A novel microtubule-disrupting agent induces endoplasmic reticular
stress-mediated cell death in human hepatocellular carcinoma cells. PLoS ONE 2015, 10, e0136340. [CrossRef]

19. Tilghman, R.W.; Blais, E.M.; Cowan, C.R.; Sherman, N.E.; Grigera, P.R.; Jeffery, E.D.; Fox, J.W.; Blackman, B.R.; Tschumperlin, D.J.;
Papin, J.A.; et al. Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis. PLoS
ONE 2012, 7, e37231. [CrossRef]

20. Lebeaupin, C.; Vallee, D.; Hazari, Y.; Hetz, C.; Chevet, E.; Bailly-Maitre, B. Endoplasmic reticulum stress signalling and the
pathogenesis of non-alcoholic fatty liver disease. J. Hepatol. 2018, 69, 927–947. [CrossRef]

21. Gerakis, Y.; Hetz, C. Emerging roles of ER stress in the etiology and pathogenesis of Alzheimer’s disease. FEBS J. 2018,
285, 995–1011. [CrossRef] [PubMed]

22. Ko, P.; Kim, D.; You, E.; Jung, J.; Oh, S.; Kim, J.; Lee, K.H.; Rhee, S. Extracellular matrix rigidity-dependent sphingosine-1-
phosphate secretion regulates metastatic cancer cell invasion and adhesion. Sci. Rep. 2016, 6, 21564. [CrossRef] [PubMed]

23. You, E.; Ko, P.; Jeong, J.; Keum, S.; Kim, J.-W.; Seo, Y.-J.; Song, W.K.; Rhee, S. Dynein-mediated nuclear translocation of
yes-associated protein through microtubule acetylation controls fibroblast activation. Cell. Mol. Life Sci. 2020, 77, 4143–4161.
[CrossRef] [PubMed]

24. Lu, P.; Weaver, V.M.; Werb, Z. The extracellular matrix: A dynamic niche in cancer progression. J. Cell Biol. 2012, 196, 395–406.
[CrossRef] [PubMed]

25. Emon, B.; Bauer, J.; Jain, Y.; Jung, B.; Saif, T. Biophysics of tumor microenvironment and cancer metastasis—A mini review.
Comput. Struct. Biotechnol. J. 2018, 16, 279–287. [CrossRef] [PubMed]

26. Kasetti, R.B.; Maddineni, P.; Millar, J.C.; Clark, A.F.; Zode, G.S. Increased synthesis and deposition of extracellular matrix proteins
leads to endoplasmic reticulum stress in the trabecular meshwork. Sci. Rep. 2017, 7, 14951. [CrossRef] [PubMed]

27. Wang, B.; Ke, W.; Wang, K.; Li, G.; Ma, L.; Lu, S.; Xiang, Q.; Liao, Z.; Luo, R.; Song, Y.; et al. Mechanosensitive ion channel
Piezo1 activated by matrix stiffness regulates oxidative stress-induced senescence and apoptosis in human intervertebral disc
degeneration. Oxid. Med. Cell. Longev. 2021, 2021, 8884922.

http://doi.org/10.1038/nrc2544
http://doi.org/10.1016/j.cell.2009.10.027
http://www.ncbi.nlm.nih.gov/pubmed/19931152
http://doi.org/10.1016/j.ccr.2005.08.010
http://www.ncbi.nlm.nih.gov/pubmed/16169468
http://doi.org/10.1091/mbc.e03-01-0046
http://doi.org/10.4161/sgtp.27958
http://www.ncbi.nlm.nih.gov/pubmed/24607953
http://doi.org/10.1038/onc.2009.299
http://doi.org/10.1016/j.trecan.2016.03.007
http://www.ncbi.nlm.nih.gov/pubmed/28741511
http://doi.org/10.1074/jbc.REV118.002804
http://doi.org/10.15430/JCP.2014.19.2.75
http://doi.org/10.1158/2159-8290.CD-14-1490
http://doi.org/10.1101/gad.992302
http://doi.org/10.1016/j.toxlet.2009.08.024
http://doi.org/10.1016/j.cub.2004.09.021
http://doi.org/10.1016/S0955-0674(99)00057-5
http://doi.org/10.1158/0008-5472.CAN-13-3563
http://www.ncbi.nlm.nih.gov/pubmed/25503560
http://doi.org/10.1016/j.bbrc.2016.11.039
http://www.ncbi.nlm.nih.gov/pubmed/27836544
http://doi.org/10.1038/cddis.2016.240
http://www.ncbi.nlm.nih.gov/pubmed/27512957
http://doi.org/10.1371/journal.pone.0136340
http://doi.org/10.1371/journal.pone.0037231
http://doi.org/10.1016/j.jhep.2018.06.008
http://doi.org/10.1111/febs.14332
http://www.ncbi.nlm.nih.gov/pubmed/29148236
http://doi.org/10.1038/srep21564
http://www.ncbi.nlm.nih.gov/pubmed/26877098
http://doi.org/10.1007/s00018-019-03412-x
http://www.ncbi.nlm.nih.gov/pubmed/31912196
http://doi.org/10.1083/jcb.201102147
http://www.ncbi.nlm.nih.gov/pubmed/22351925
http://doi.org/10.1016/j.csbj.2018.07.003
http://www.ncbi.nlm.nih.gov/pubmed/30128085
http://doi.org/10.1038/s41598-017-14938-0
http://www.ncbi.nlm.nih.gov/pubmed/29097767


Int. J. Mol. Sci. 2021, 22, 6018 17 of 17

28. Zhou, D.W.; Lee, T.T.; Weng, S.; Fu, J.; García, A.J. Effects of substrate stiffness and actomyosin contractility on coupling between
force transmission and vinculin–paxillin recruitment at single focal adhesions. Mol. Biol. Cell 2017, 28, 1901–1911. [CrossRef]

29. Palazzo, A.F.; Eng, C.H.; Schlaepfer, D.D.; Marcantonio, E.E.; Gundersen, G.G. Localized stabilization of microtubules by integrin-
and FAK-facilitated Rho signaling. Science 2004, 303, 836–839. [CrossRef]

30. Colello, D.; Mathew, S.; Ward, R.; Pumiglia, K.; LaFlamme, S.E. Integrins regulate microtubule nucleating activity of centrosome
through mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase
(MEK/ERK) signaling. J. Biol. Chem. 2012, 287, 2520–2530. [CrossRef]

31. Shah, N.; Kumar, S.; Zaman, N.; Pan, C.C.; Bloodworth, J.C.; Lei, W.; Streicher, J.M.; Hempel, N.; Mythreye, K.; Lee, N.Y. TAK1
activation of alpha-TAT1 and microtubule hyperacetylation control AKT signaling and cell growth. Nat. Commun. 2018, 9, 1696.
[CrossRef]

32. Pugacheva, E.N.; Jablonski, S.A.; Hartman, T.R.; Henske, E.P.; Golemis, E.A. HEF1-dependent Aurora A activation induces
disassembly of the primary cilium. Cell 2007, 129, 1351–1363. [CrossRef]

33. Liu, S.; Zhou, Z.; Zhang, L.; Meng, S.; Li, S.; Wang, X. Inhibition of SIRT2 by targeting GSK3beta-mediated phosphorylation
alleviates SIRT2 toxicity in SH-SY5Y cells. Front. Cell. Neurosci. 2019, 13, 148. [CrossRef] [PubMed]
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