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A Clinical Genomics-Guided Prioritizing
Strategy Enables Selecting Proper Cancer
Cell Lines for Biomedical Research

Xin Shao,1,4 Yi Wang,1,4 Xiaoyan Lu,1,4 Yang Hu,1 Jie Liao,1 Junying Li,1 Xuechun Chen,1 Yunru Yu,1 Ni Ai,1

Meidan Ying,2 and Xiaohui Fan1,3,5,*

SUMMARY

Selecting appropriate cell lines to represent a disease is crucial for the success of
biomedical research, because the usage of less relevant cell lines could deliver
misleading results. However, systematic guidance on cell line selection is unavai-
lable. Here we developed a clinical Genomics-guided Prioritizing Strategy for
Cancer Cell Lines (CCL-cGPS) and help to guide this process. Statistical analyses
revealed CCL-cGPS selected cell lines were among the most appropriate models.
Moreover, we observed a linear correlation between the drug response and CCL-
cGPS score of cell lines for breast and thyroid cancers. Using RT4 cells selected by
CCL-GPS, we identified mebendazole and digitoxin as candidate drugs against
bladder cancer and validate their promising anticancer effect through in vitro
and in vivo experiments. Additionally, a web tool was developed. In conclusion,
CCL-cGPS bridges the gap between tumors and cell lines, presenting a helpful
guide to select the most suitable cell line models.

INTRODUCTION

Immortalized cell lines have been widely employed in the field of biomedical research such as drug discov-

ery and development over the past decades due to their advantages of being readily accessible and easily

maintained, compared with primary tissue (Sharma et al., 2010; Yamori, 2003). A wide range of cell lines

have been developed as in vitro models for the research of various diseases (Allen et al., 2005; Glennon

et al., 2019; Li et al., 2019; Qiu et al., 2019). For example, for the study of breast cancer alone, about 50

different cell lines have been reported (Neve et al., 2006), while more than 200 cell lines are available for

lung cancer-related studies (Gazdar et al., 2010). However, varying degrees of genomic differences be-

tween cell lines and patient specimens have been reported, especially in cancer research (Domcke

et al., 2013; Ertel et al., 2006; Gillet et al., 2011; Li et al., 2014; Sandberg and Ernberg, 2005; Sinha et al.,

2017; Stein et al., 2004), emphasizing the great importance in appropriate cell line selection (Holliday

and Speirs, 2011; Horvath et al., 2016; Ross and Perou, 2001; Sun and Liu, 2015). Hence, a fundamental

question arises—how to find a proper cell line with maximal resemblance to its corresponding pathological

specimen, to ensure that the subsequent response evaluation gives meaningful results.

Thanks to the fast development of sequencing techniques, several major datasets of cell line or tumor ge-

nomics have been made publicly available, such as the NCI-60 project (Ross et al., 2000), the Cancer Cell

Line Encyclopedia (CCLE) (Barretina et al., 2012), the COSMIC Cell Lines Project (CCLP) (Garnett et al.,

2012), and the Cancer Genome Atlas (TCGA). Preliminary analysis on these large-scale genomic datasets

showed significant discrepancy in the gene activities between the various subtypes of tumors and the

commonly used cell lines in the literature of drug discovery and mechanistic studies (Figure S1). Therefore,

it is more than necessary to develop a strategy to select cell lines with great biological similarity with tumor

specimens. Here we propose a clinical Genomics-guided Prioritizing Strategy for Cancer Cell Lines (CCL-

cGPS), to address this issue (workflow see Figure 1).

Interestingly, we found that for over 80% of tumor subtypes under investigation, the most widely used cell

lines did not overlap the top selections by CCL-cGPS. We therefore performed statistical assays, including

the confirmation analysis and cluster analysis, to validate the CCL-cGPS outcomes. The results suggested

that those cell lines selected by CCL-cGPS were among the most appropriate in vitro models for most
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tumor subtypes. Moreover, the reliability of CCL-cGPS was confirmed by the high correlation between the

in vitro responses of US Food and Drug Administration (FDA)-approved drugs and the CCL-cGPS ranking

scores of cell lines. Last, we further validated the CCL-cGPS dependability through drug repurposing for

papillary bladder cancer against which there is a lack of effective medication. As a result, we identified me-

bendazole and digitoxin as the candidate drugs by screening the FDA-approved drug library with RT4 cell

line, which was favored by CCL-cGPS. The subsequent data generated from the in vitro cytotoxicity assay

and in vivo xenograft experiments both corroborated the promising inhibitory effects of both drugs against

papillary bladder cancer. Furthermore, a web tool (http://tcm.zju.edu.cn/cgps) was developed to facilitate

the usage of CCL-cGPS in the broader scientific community, allowing users to browse the CCL-cGPS

selected cell lines across 44 tumor subtypes. Our CCL-cGPS serves as a helpful guide for investigators

to determine the most suitable cell line model for in vitro biomedical studies. The results of our findings

may advance the understanding of the relation between cell lines and clinical specimens by bridging

the gap between them, and help increase the success rate in biomedical research.

RESULTS

Similarity Ranking of Cell Lines in CCL-cGPS

In the current study, we analyzed the genomic data of cell lines obtained from multiple resources (Cerami

et al., 2012), including NCI-60, CCLE, and CCLP, and found a significant correlation of these data between

the datasets (Figures S2A and S2B). Tumor samples were classified into histopathological and molecular

subtypes according to their phenotypic and genotypic information, which are closely associated with their

distinct treatment response. As a result, 720 cell lines (Table S1) and 7,101 tumor samples across 44 tumor

subtypes (Table S2) were introduced into CCL-cGPS. Briefly, the transcriptional signature was aligned to

track down the candidate cell lines closely resembling each tumor sample. The best matched cell line

for a specific tumor subtype was then determined after considering the tissue of origin and the normalized

ranking of these candidate cell lines. The CCL-cGPS ranking score is mainly dependent on two parameters,

the number of selected gene signatures and the number of cell lines used for normalization. A systematic

investigation showed that the CCL-cGPS ranking scores exhibited high levels of stability and consistency

(Figure S3A), and particularly so when 100 differentially expressed genes (DEGs) were examined and the

top five best matched cell lines were adopted (Figure S3B).

Figure 1. Workflow of CCL-cGPS

(A) Preparation of cell line genomics data from CCLE and tumor genomics data from TCGA including copy number variation, gene mutation, and expression

profiles. Tumor samples in each cancer type were classified with respect to three subtype categories, which are histological type, pathological type, and

genotype to generate the tumor-subtype matrix.

(B) Clinical Genomics-guided Prioritizing Strategy for Cancer Cell Lines (CCL-cGPS). First, similarity scores were calculated for pairs of patient sample and

cell line based on gene expression data to generate the patient-cell line similarity score matrix. Next, the patient-cell line similarity score matrix and the

tumor-subtype matrix were merged to generate the cell line-subtype matrix containing the top selections of cell line by CCL-cGPS for each tumor subtype.

(C) Verification of CCL-cGPS top selections of cell line by three means including the confirmation analysis, cluster analysis of cell lines together with tumor

patients, and the correlation analysis between the CCL-cGPS scores of cell lines and the drug responses of FDA-approved medications.

(D) Validation of CCL-cGPS top selection from drug repurposing level including the in vitro high-throughput screening of 1,068 FDA-approved drugs on

recommended cell line by CCL-cGPS and the in vivo mice xenograft evaluation of the screened candidate drug compared with the first-line drug.
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According to the distribution pattern of cell line ranking scores, all tumor subtypes were divided into three

groups (Figure 2). In two of the three distribution pattern groups, most cell lines exhibited low resemblance

to patient tumor samples (yellow and red ones in Figure 2), including those of bladder, breast, colorectal,

glioma, lung, ovarian, melanoma, stomach, and endometrium cancers, which might be a result of high het-

erogeneity or imperfect establishment of those cell lines.in these cancers. Therefore, one should be partic-

ularly cautious in picking the right cell line for biomedical research of these tumor types. In the third situ-

ation, most cell lines are transcriptionally similar to tumor specimens (green ones in Figure 2), including

those of bile duct, head and neck squamous cell, liver cancer, mesothelioma (MESO), and pancreatic

and prostatic cancers, wherein one of the reasons might be that these cancers are not highly heteroge-

neous compared with the cancers with so much well-appreciated diversity, e.g., breast cancer. To study

tumors in this category, there could be many options of cell lines. Intriguingly, the CCL-cGPS found that

esophagus cancer cell lines are more similar to esophagus adenocarcinoma than to esophagus squamous

cell carcinoma, whereas thyroid cancer cell lines presented high resemblance to classical or tall cell thyroid

carcinoma (THCA). Moreover, a bulk of kidney cancer cell lines showed higher similarity with renal clear cell

carcinoma (KIRC) and papillary renal cell carcinoma (KIRP), than chromophobe renal cell carcinoma (KICH),

which was in accordance with previous copy number variation (CNV)-based data (Sinha et al., 2017).

The goal of CCL-cGPS is to identify the cell lines best representing each tumor subtype. To overcome the

bias introduced by the sample number variation between subtypes, a permutation test was conducted

wherein significantly enriched cell lines possessing top five ranking scores were regarded as the CCL-

cGPS top selections (Table S3). Concordantly, CCL-cGPS selected cell lines contained a high percentage

of DEGs (median, 78.37% across 169 CCL-cGPS top selected cell lines) which were conserved with the cor-

responding tumor patients (Table S4). For example, OVSAHO selected for ovarian cancer includes 1,110

DEGs, 1,026 of which are conserved in patients with ovarian cancer, while the most commonly used PC-

3, also selected by CCL-cGPS, contains 830 out of 913 conserved DEGs (90.81%) for prostatic cancer.

Same concordance is observed in conserved pathways between the highly ranked cell lines and associated

tumor samples, e.g., ER+ breast cancer (23 common pathways, e.g., cell cycle, DNA repair, autophagy, tran-

scriptional regulation by TP53, regulation of cell cycle process).

Next, we compared the CCL-cGPS selected cell lines with themost cited ones in previous literature, as retrieved

from PubMed, for 18 cancers (Tables 1 and S1). Our results indicated that only eight commonly used cell lines,

namely, bladder cancer cell line RT4, breast cancer cell lineMCF7, colorectal cancer cell line RCM-1, esophagus

cancer cell lineOE33, kidney cancer cell line ACHN, pancreatic cancer cell line PANC-1, prostatic cancer cell line

PC-3, and thyroid cancer cell line FTC-133, overlapped the CCL-cGPS selections, pertaining to eight tumor sub-

types, namely, papillary bladder cancer, HER2-positive breast cancer, rectal adenocarcinoma (READ), esoph-

agus adenocarcinoma, KIRP, pancreatic adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD), and follic-

ular THCA. These results highlighted a discordance rate of 81.82% between the widely cited cell lines and those

preferred byCCL-cGPS (Figure 2). Furthermore, among the cell lines with the even distribution of ranking scores

across 17 subtypes, we found only three caseswherein themost commonly used cell line for a tumor subtypewas

within those selected by CCL-cGPS. In comparison, two cases were observed for cell lines with mostly low

ranking scores (Figure 2). Taken together, these results warranted more consideration on cell lines selection

for in vitro studies of these tumor subtypes. For example, MCF7 is the most commonly used cell line for ER+

breast cancer in biological research. However, CCL-cGPS showed a low-ranking score of MCF7 in representing

ER+ breast invasive carcinoma (BRCA), contrary to the popular assumption (Formisano et al., 2019; Hinohara

et al., 2018; Li et al., 2018). The relatively low resemblance of MCF7 to ER+ BRCA could be attributed to the

ongoing genotypic and phenotypic evolution during the continual culture (Holliday and Speirs, 2011; Wang

et al., 2006), which is not uncommon to many cell lines.

Verification of CCL-cGPS Top Selection of Cell Lines

Next, the accuracy of CCL-cGPS selection was verified by the confirmation analysis and the cluster analysis,

followed by the correlation assay performed on the CCL-cGPS ranking scores of the cell lines and their drug

Figure 2. Distribution of CCL-cGPS Ranking Scores for Cell Lines Across 44 Tumor Subtypes.

y Axis: frequency; x axis: CCL-cGPS ranking score. Green: most cell lines with high CCL-cGPS ranking scores are similar to tumors. Yellow: CCL-cGPS ranking

scores for cell lines are distributed evenly. Red: most cell lines with low CCL-cGPS ranking scores are different from tumors. The black or orange border

represents the discordant or concordant cases in which the commonly used cell line falls outside or within the selected cell lines by CCL-cGPS, respectively.

The commonly used cell line was labeled beside the subtype in the concordant cases.
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Tumor Type TCGA

Label

Tumor

Subtype

Commonly Used

Cell Lines

Selected by

CCL-cGPS

Biological

Traits

Hit

Rate

Bladder BLCA P RT4 O – 100%

Bladder BLCA NP T24 – – 60%

Breast BRCA ID MCF7 – 80% Ductal 80%

Breast BRCA IL MDA-MB-134-VI – – 100%

Breast BRCA Mucinous – – – –

Breast BRCA ER+ MCF7 – 60% ER+ 60%

Breast BRCA HER2+ SK-BR-3 O 100% HER2+ 0%

Breast BRCA TN MDA-MB-231 – 60% TN 0%

Bile duct CHOL Intrahepatic HuCCT1 – – –

Colorectal COADREAD COAD HT-29 – 100% AD 80%

Colorectal COADREAD COMAD – – 67% AD 67%

Colorectal COADREAD READ RCM-1 O 100% AD 60%

Colorectal COADREAD KRAS+ HCT116 – 80% KRAS+ –

Esophagus ESCA AD OE33 O 25% AD 50%

Esophagus ESCA SCC TE-1 – 100% SCC 100%

Glioma GBM GBM U-87_MG – – –

Glioma LGG A U-87_MG – 80% A 20%

Glioma LGG OA – – – 40%

Glioma LGG OD Hs_683 – 0% OD 40%

HNSC HNSC HNSC FaDu – 100% SCC –

Kidney KICH KICH – – – 25%

Kidney KIRC KIRC 786-O – 40% KIRC 40%

Kidney KIRP KIRP ACHN O – 20%

Liver LIHC LIHC Hep_G2 – 80% LIHC –

Lung LUAD LUAD A549 – 0% AD 80%

Lung LUAD KRAS+ A549 – 0% KRAS+ 60%

Lung LUAD ALK+ A549 – – –

Lung LUSC LUSC SK-MES-1 – 60% SCC –

Mesothelioma MESO Epithelioid – – – 100%

Biphasic MSTO-211H – – 100%

Ovarian OV OV SK-OV-3 – – –

Pancreas PAAD PAAD PANC-1 O – –

Prostate PRAD PRAD PC-3 O 50% AD –

Melanoma SKCM SKCM A-375 – – –

Table 1. Verification of CCL-cGPS Top Selection of Cell Lines

(Continued on next page)
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responses. Theoretically, the histopathological or molecular traits of CCL-cGPS selected cell lines should

be consistent with those of tumor samples for each tumor subtype. We focused on 22 subtypes with known

histopathological or molecular profiles of both cell lines and tumor samples (Table S4). As a result, for 17 of

these subtypes, each had at least one CCL-cGPS favored cell line exhibiting the same traits as its corre-

sponding tumor (Table 1). For example, for ER+ breast tumor, three out five cell lines selected by CCL-

cGPS (HCC1428, ZR-75-30, and MDA-MB-134-VI) highly expressed estrogen receptor 1 (ESR1) gene. In

the case of HER2+ breast tumor, the CCL-cGPS selected SK-BR-3 and HCC202 cell lines both exhibited up-

regulated expression of erb-b2 receptor tyrosine kinase 2 (ERBB2), whereas the gene expressions of ESR1,

ERBB2, and progesterone receptor (PGR) were uniformly downregulated in 60% of the CCL-cGPS preferred

cell lines (HCC1599, CAL-85-1, and HCC1143) for triple-negative breast tumor. Concordantly, four of five

CCL-cGPS selections for infiltrating ductal breast tumor (namely, HCC2218, HCC2157, HCC1599, and

ZR-75-30) indeed originated from ductal carcinoma.

Adenocarcinoma and squamous cell carcinoma are two common histological tumor subtypes present in esoph-

agus cancer (Du et al., 2019), as well as in colorectal, lung, pancreas, and prostate tumors. Notably, for adeno-

carcinoma, such as colon adenocarcinoma (COAD) and READ, 100% CCL-cGPS selected cell lines originated

from adenocarcinoma. Besides, the top two selected cell lines for PRAD, i.e., VCaP and PC-3, were both derived

from adenocarcinoma. For squamous cell carcinoma such as esophagus squamous cell carcinoma, head and

neck squamous cell carcinoma (HNSC), and lung squamous cell carcinoma (LUSC), 100%, 100%, and 60% of

the CCL-cGPS recommended cell lines stemmed from squamous cell carcinoma, respectively. Meanwhile,

KRAS mutation was observed for 80% of the selected cell lines for KRAS-mutated colorectal tumor. However,

in some tumor subtypes, the CCL-cGPS selected cell lines exhibited entirely different traits compared with

the tumors, including oligodendroglioma of brain lower-grade glioma (LGG), lung adenocarcinoma (LUAD),

KRAS-mutated LUAD, and diffuse and tubular stomach adenocarcinoma (STAD). This observation might not

be surprising, as some cell lines were likely to develop mutated biological traits as previously described. For

instance, the broadly cited kidney cell line ACHN, originated from KIRC, appeared to be a poorly differentiated

carcinoma with a predominantly sarcomatoid pattern, as evidenced by the H&E staining in ACHN xenograft

mice (Sinha et al., 2017), indicating ACHN preferably resembles KIRP rather than KIRC.

Subsequently, the similarity of transcriptional profiles between cell lines and tumor samples was analyzed

by principal-component analysis dimensionality reduction and k-means clustering, two widely used

Tumor Type TCGA

Label

Tumor

Subtype

Commonly Used

Cell Lines

Selected by

CCL-cGPS

Biological

Traits

Hit

Rate

Stomach STAD Diffuse MKN-45 – 0% Diffuse 0%

Stomach STAD Mucinous – – – 100%

Stomach STAD Tubular MKN74 – 0% Tubular 75%

Thyroid THCA Classical – – – 75%

Thyroid THCA Follicular FTC-133 O 33%

Follicular

33%

Thyroid THCA Tall cell – – – 100%

Endometrium UCEC Endometrioid RL95-2 – – 0%

Endometrium UCEC Serous – – – 0%

Endometrium UCEC Mixed – – – 100%

Endometrium UCS UCS ESS-1 – – –

Table 1. Continued

Biological characteristics are the histopathological or molecular traits of selected cell lines by CCL-cGPS for each tumor sub-

type. Hit rate is the percentage of selected cell lines clusteredwith the corresponding tumor patients by integrated analysis of

cell lines and tumor patients for each tumor subtype. - means not available. O means the commonly used cell line is also

selected by CCL-cGPS. P: papillary. NP: non-papillary. TN: triple negative. ID: infiltrating ductal. IL: infiltrating lobular. CO-

MAD: colon mucinous adenocarcinoma. AD: adenocarcinoma. SCC: squamous cell carcinoma. A: astrocytoma. OA: oligoas-

trocytoma. OD: oligodendroglioma.
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approaches to explore the relationship among individuals with high-dimensional data. Through the statis-

tical analysis, we sought to verify the reliability of CCL-cGPS selection. Tumors differentiated into at least

two subtypes were included for cluster analysis except for the mucinous breast cancer, which had no cell

line assigned by CCL-cGPS. Ideally, selected cell lines by CCL-cGPS would be predominantly clustered

with tumor samples of the same subtype. Among the 31 included tumor subtypes (Table S4), at least

one selected cell line in each of the 26 subtypes was hit with the cluster of the corresponding tumor samples

(Table 1 and Figure S4). Concordantly, the hit rate of matched cell lines selected by CCL-cGPS reach 100%

for eight tumor subtypes, including papillary bladder urothelial carcinoma (BLCA), infiltrating lobular

BRCA, esophagus squamous cell carcinoma, epithelioid and biphasic MESO, mucinous STAD, tall cell

THCA, andmixed uterine corpus endometrial carcinoma (UCEC). Nevertheless, there existed some deviant

cases wherein the selected cell lines were hardly clustered with the tumors, such as HER2+ and triple-nega-

tive BRCA, diffuse STAD, and endometrioid and serous UCEC.

Furthermore, we tested the in vitro inhibitory activities of FDA-approved drugs against the cell lines

selected by CCL-cGPS. It is expected that the cell lines with high ranking scores would be more sensitive

to the drugs than those with lower ones. With a focus on cell lines showing certain dissimilarity with tu-

mors, we selected three tumor subtypes, i.e., ER+ BRCA in discordant case, follicular THCA with an even

distribution, and HER2+ BRCA with mostly low ranking scores. The IC50 values of tamoxifen for ER+ BRCA

and lapatinib for HER2+ BRCA in breast cancer cell lines, and those of lenvatinib and sorafenib for differ-

entiated thyroid cancer (DTC) in thyroid cancer cell lines, were retrieved from PubMed, PubChem, and

CCLE. Meanwhile, cell viability assays on breast and thyroid cancer cell lines were conducted to deter-

mine the IC50 values of the drugs (Table S5). As expected, the cell lines with higher CCL-cGPS ranking

scores were associated with lower IC50 values of the drugs (sensitive), and vice versa (resistant). More-

over, a linear correlation was observed between the drug responses and the CCL-cGPS ranking scores

of cell lines (Figure 3). In addition, our experimental data of drug response were in line with those

from previous reports involving cell lines MDA-MB-436, 8305C, 8505C, etc. (Barretina et al., 2012; To-

hyama et al., 2014)

Notably, CCL-cGPS selected cell lines SK-BR-3 and HCC202 for HER2+ BRCA, which were perfectly

concordant HER2+ biological traits, also showed high sensitivity to FDA-approved drug lapatinib against

HER2+ BRCA (Figure 3A). Interestingly, despite being derived from medullary thyroid carcinoma (MTC),

the CCL-cGPS favored cell line TT for follicular THCA was concordantly clustered with follicular thyroid

tumor samples. Moreover, across all thyroid cell lines, only TT was sensitive to lenvatinib and sorafenib,

the approved drugs against DTC (Figure 3B). It is noteworthy that TT also exhibited high sensitivity to

cabozantinib and vandetanib (IC50 = 0.04 and 0.47 mM, respectively, Verbeek et al., 2011; IC50 =

0.048 mM and 0.7 nM, respectively, Mologni et al., 2013), two more anticancer drugs approved for treat-

ing MTC. These results corroborated that the commonly used cell line TT is an appropriate in vitro model

for DTC- or MTC-related study.

Figure 3. Correlation between CCL-cGPS Ranking Score and Drug Response

(A) IC50 of FDA-approved drugs tamoxifen against ER+ BRCA and lapatinib against HER2+ BRCA in breast cancer cell

lines; x axis: CCL-cGPS ranking scores of cell lines for ER+ or HER2+ BRCA.

(B) IC50 of FDA-approved drugs sorafenib and lenvatinib against differentiated thyroid cancer in thyroid cancer cell lines; x

axis: CCL-cGPS ranking scores of cell lines for follicular THCA.
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Validation on CCL-cGPS Top Selection

There is a lack of effective drug for treating bladder and colorectal cancers. To overcome this, we used the

RT4 cell line selected by CCL-cGPS for papillary BLCA, and NCI-H747 cells for COAD and READ, to screen

potential anticancer agents from an in-house drug library consisting of 1,068 FDA-approved drugs. High-

throughput screening was performed with RT4 and NCI-H747 at the concentration of 1 mM. Unsurprisingly,

the majority of non-anticancer drugs showed weak inhibitory effects against RT4 and NCI-H747, whereas

the cell viability was significantly reduced by the popular anticancer drugs, such as bortezomib, vincristine,

and paclitaxel (Figure 4A). From the resultant top 40 inhibitors, we selected the first and the last non-anti-

cancer drugs for further validation, namely, digitoxin commonly used as cardiovascular medication and

mebendazole treating parasitic infestations. As a result, strong inhibitory effects of digitoxin (IC50 =

37 nM) and mebendazole (IC50 = 175 nM) in RT4 cells were unprecedentedly observed (Figure 4B).

To further confirm the in vivo efficacy of digitoxin andmebendazole in treating papillary bladder tumor, RT4

cell-derived xenograft tumors were established in BALB/c nude mice, which were then administered with

vehicle control (0.9% sodium chloride, 0.1 mL/10 g/day, intraperitoneally [i.p.]), cisplatin (2 mg/kg every

three day, i.p.), digitoxin (0.5 mg/kg/day, i.p.), or mebendazole (50 mg/kg every other day, intragastrically

[i.g.]) until the tumor volume reached about 100 mm3 7 days after tumor inoculation. Compared with the

control group, the drug-treated mice achieved a significant reduction of tumor volume (Figure 4C).

Remarkably, on the 38th day of the treatment, both digitoxin and mebendazole exhibited stronger inhib-

itory effects on tumor growth than cisplatin, the first-line drug for bladder cancer. At the same time, the

relative tumor growth rate of mice treated with mebendazole reached 33.7% (Figure 4D), which was signif-

icantly lower than that with cisplatin. In aggregate, these results indicated that mebendazole is a potentially

promising therapeutic medication combating papillary bladder cancer.

Finally, we further examined the regulation of mebendazole and digitoxin on the transcriptional level of

DEGs in RT4 cells. A total of 401 highly expressed and 168 lowly expressed genes were initially observed

in RT4 cells obtained from the CCLE resource. These two numbers were sharply decreased to 0 and 2 upon

the treatment of mebendazole, and to 57 and 14 after the digitoxin administration, respectively (Figure 4E).

Figure 4. Application of CCL-cGPS on Drug Repurposing In Vitro and In Vivo

(A) High-throughput screening of 1,068 FDA-approved drugs in bladder cancer cell line RT4 and colorectal cancer cell line

NCI-H747. Other: non-anticancer agents. NA: not available.

(B) Dose-response curve of digitoxin and mebendazole on RT4. IC50 values were calculated by non-linear simulation (data

represent mean G SEM of three experiments performed in triplicates).

(C) Tumor volume of RT4 xenograft mice treated with saline, cisplatin (2 mg/kg every three day, i.p.), digitoxin (0.5 mg/kg/

day, i.p.), and mebendazole (50 mg/kg every other day, i.g.) for consecutive 38 days.

(D) The relative tumor growth rate of mice treated with cisplatin, digitoxin, and mebendazole.

(E) The number of upregulated and downregulated genes from RT4 after mebendazole and digitoxin. **p < 0.0021; ***p <

0.0002.
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In other words, mebendazole and digitoxin regulated 99.6% and 87.5% of the 569 DEGs in RT4 cells,

respectively. The remarkable perturbation capability of both drugs on the gene expression accorded

with their strong inhibition effects on the growth of RT4 cell line detected both in vitro and in vivo.

Web Tool of CCL-cGPS

To facilitate the application of CCL-cGPS, a user-friendly web tool was developed (http://tcm.zju.edu.cn/

cgps). The website presents the overview of CCL-cGPS in ‘‘Home’’ page for users to browse all kinds of tu-

mors, related TCGA labels, tumor subtypes, and CCL-cGPS top selected cell lines (Figure S6A). Primarily,

the CCL-cGPS website allows users to query the database through two aspects. Users are allowed to

choose the tumor subtype of interest to view the CCL-cGPS selected cell lines for the searched tumor

subtype in ‘‘Tumor to Cell’’ page (Figure S6B). On the other hand, users are able to choose the cell line

of interest by tissue type from the hierarchical tree to retrieve the appropriate tumor subtypes in ‘‘Cell

to Tumor’’ page (Figure S6C), in which the searched cell line is selected by CCL-cGPS.

DISCUSSION

PAM50, known as prediction analysis of microarray 50, was proposed by analyzing the 189 patients with

breast cancer (Parker et al., 2009). However, those signatures are chiefly based on breast cancers rather

than pan cancer. Therefore, we developed CCL-cGPS as a supplementary approach to better help guide

the selection of cell line models that mimic clinical patients. Compared with PAM50, patient-derived

signatures used in CCL-cGPS are from a more comprehensive and high-quality genome atlas of tumor pa-

tients with next-generation sequencing. We not only verified the CCL-cGPS selected cell lines by confirma-

tion analysis, cluster assay, and correlation assessment between the CCL-cGPS scores of cell lines and the

drug responses of FDA-approved medications but also demonstrated the application of CCL-cGPS in at

least one area, drug repurposing. In addition, we provided a web tool to browse the cell lines favored

by CCL-cGPS for each tumor subtype, providing new insights for drug discovery and mechanistic research.

Besides, we performed a systematic investigation on varying the number of patient-derived signatures

(100, 200, and 300) to explore the impact of different number of patient-derived signatures on the selection

of cell lines.

Cell line-based screening is a fundamental step in biomedical research such as drug discovery, and the

right choice of cell line is indispensable for the success of a biological study. However, for many tumor sub-

types, too many options of cell lines exist today, making it unrealistic to use all the cells for disease.

Currently, many researchers simply pick a commonly used cell line or a readily available one to conduct

the experiment with. However, of the 18 primary cancers surveyed, we found only five commonly used

cell lines (namely, esophagus cancer cell line TE-1, kidney cancer cell line ACHN, pancreatic cancer cell

line PANC-1, prostatic cancer cell line PC-3, and thyroid cancer cell line TT) resembling the corresponding

tumors, pertaining to merely 15.9% of the 44 tumor subtypes. The bulk of commonly used cell lines for each

tumor subtype hardly mimic the pathological specimens, which indicates that in most cases the frequently

used cell lines may not be the best choice.

Surprisingly, the odds seem better to randomly select an available cell line than choosing the commonly

used one, because, for 27.27% of the tumor subtypes, most cell lines exhibit low similarity with the tumors,

including CHOL, HNSC, liver hepatocellular carcinoma (LIHC), MESO, PAAD, and PRAD. Nevertheless, in

the rest 72.73% of the tumor subtypes, most cell lines do not show good resemblance to the tumors; hence

in the majority of cases, random selection may lead to a wrong cell line usage. Other than three tumor sub-

types for which the commonly used cell lines overlap the CCL-cGPS selections and another 12 subtypes

having concordant cell lines, 65.9% of tumor subtypes have mostly dissimilar cell lines, namely, BLCA,

BRCA, COADREAD, GBM, LGG, LUAD, LUSC, OV, skin cutaneous melanoma (SKCM), STAD, UCS, and

UCEC. For these subtypes, researchers must be extremely careful about choosing the right cell line.

Drug response varies among cell lines because of cell heterogeneity. Increasing evidence indicated the ex-

istence of genomic differences between cell line and tumor, although immortalized cell lines are originally

sourced from a tumor. As expected, we found that genomic variation events in tumors are not well pre-

served across the cell lines originated from the same primary site (Figure S2C). Only a few cell lines tran-

scriptionally correlated with the tumors across 22 cancers, such as BRCA, LUAD, and STAD. These findings

may not be surprising given that cancer cell lines hardly expressed any tissue- or tumor-specific genes at

transcriptional level upon group-wise comparison (Sandberg and Ernberg, 2005). Therefore, we explored
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the relationship between cell line and tumor bymolecular profile comparisons, and proposed CCL-cGPS to

ensure the selected cell lines truthfully reflects the tumor activities at molecular level.

Although significantly high similarities of the genomic data, including CNV, gene expression, and muta-

tion, were observed among the cell lines shared by NCI-60, CCLE, and CCLP, it is noteworthy that gene

expression profiles exhibited substantially higher correlation than CNV and mutation between CCLE

and NCI-60, with the Pearson’s correlation coefficients of matched cell lines all well within the 5% quantile

(Figure S2A). Meanwhile, the DEGs’ association with common cell lines between CCLE and CCLP sur-

passed those of copy number variant genes ormutated genes (Figure S2B), indicating that gene expression

profiles possessedmore concordant characteristics of cell lines. Besides, high concordance between DEGs

and CNVs has been extensively documented across cancer cell lines and patients with tumor (Shao et al.,

2019). Moreover, it is messenger RNA, rather than upstream genetic CNV or DNA mutation, that acts as a

vital mediator affecting the phenotype and drug response (Lee et al., 2018). Hence, gene expression, but

not CNV or mutation, was introduced into CCL-cGPS to explore the potential relationship between cell

lines and tumors at the molecular level.

Interestingly, no proper cell line currently exists for the study of mucinous BRCA. Similarly, we observed a

huge genomic discrepancy between cell lines and liquid cancers, including acute myeloid leukemia (LAML)

and diffuse large B-cell lymphoma (DLBC) (Figure S5), and therefore excluded them from CCL-cGPS. How-

ever, cell lines derived from solid tumors were distributed indistinguishably as corresponding tumor

samples, indirectly corroborating that solid cancer could be mimicked by cell lines. Our CCL-cGPS helps

identify the proper cell line best resembling the tumors. To date, a total of 44 tumor subtypes of solid can-

cers (Table S2) involving 7,101 tumor samples and a collection of 720 related cell lines have been intro-

duced into CCL-cGPS.

This work is the first systematic pan-cancer study on how to select the right cell lines to best represent tu-

mors for biomedical research to date. Selected cell lines by CCL-cGPS showed high sensitivity to FDA-

approved drugs, which will remarkably increase, at the early stage, the success rate for drug discovery

and development. Despite some discrepancy in biological traits between cell lines and tumors, most of

the selected cell lines by CCL-cGPS retained consistent histopathological or molecular profiles of the cor-

responding tumors, which could be utilized for the mechanistic study. In addition, we demonstrated the

application of top selected cell lines by CCL-cGPS in drug repurposing with in vitro and in vivo experiments

and identified potential agents for treating papillary bladder cancer. Fundamentally, CCL-cGPS is a gene

expression-prioritized strategy of cell lines selection for biomedical research, which could therefore be uti-

lized to study a wide scope of diseases, such as cardiovascular, liver, and brain dysfunctions, upon the

expansion of genomic data of cell lines and pathological specimens.

Limitations of the Study

As revealed in our study, CCL-cGPS can significantly reduce the gap between tumors and cancer cell lines

by selecting a proper cell line based on similarity of transcriptomic profiling. However, varying degrees of

genomic differences between cell lines and patient specimens have been reported. From a personalized

medicine point of view, efforts still need to be made to effectively bridge the gap between patients and

cell lines from other aspects.

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Xiaohui Fan (fanxh@zju.edu.cn).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

The CNV, mRNA expression, and mutation profiles from CCLE, NCI-60 and TCGA were collected from the

cBioportal for Cancer Genomics (https://www.cbioportal.org/). Genomic data of CCLP was retrieved from

COSMIC Cell Lines Project (v81, https://cancer.sanger.ac.uk/cell_lines). The web of CCL-cGPS is available
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at http://tcm.zju.edu.cn/cgps and RNA-seq data of RT4 and source codes of data processing with R are

available at github (https://github.com/ZJUFanLab/CCL-cGPS).

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101748.
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Supplementary Figures 

 

Figure S1. The distribution of similarity score of commonly used cell lines with the 

corresponding tumor samples, Related to Figure 2. Similarity scores were calculated based 

on Kolmogorov-Smirnov statistic described as Supplementary method. The commonly used 

cell line in each tumor was labelled. BRCA: breast invasive carcinoma; LUAD: lung 

adenocarcinoma; LUSC: lung squamous cell carcinoma; LIHC: liver hepatocellular carcinoma; 

PRAD: prostate adenocarcinoma; SKCM: skin cutaneous melanoma. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S2. Comparison of genomics data of cell lines among NCI-60, CCLE and CCLP and 

between cell lines and tumors, Related to Figure 1. Red, blue and yellow represent the 

comparison of CNV, gene expression and mutation, respectively. A. Genomic data correlation 

comparison (Pearson or Jaccard coefficient) of cell lines shared by NCI-60 and CCLE. # means 

the coefficient is in top 5% within the matrix. ‘Matched’ and ‘Different’ represent on-diagonal 

and off-diagonal coefficients, respectively. P values were obtained from Welch’s t-test. B. 

Genomic data correlation comparison (Jaccard coefficient) of cell lines shared by CCLP and 

CCLE. C. Genomics data correlation comparison (Pearson coefficient) between group-wise cell 

lines from CCLE and tumors from TCGA. 

 

 

 



 

Figure S3. Impact of different parameters on the ranking score from CCL-cGPS, Related to 

Figure 2. A. Pearson coefficients of 2,341-dimensional vector containing CCL-cGPS scores of 

the corresponding cell lines across 44 tumor subtypes among nine ranking results with distinct 

parameters. For blue heatmap, 1# (n = 100, top 1); 2# (n = 100, top 3); 3# (n = 100, top 5); 4# 

(n = 200, top 1); 5# (n = 200, top 3); 6# (n = 200, top 5); 7# (n = 300, top 1); 8# (n = 300, top 

3); 9# (n = 300, top 5). For yellow heatmap, 1# (n = 100, bottom 1); 2# (n = 100, bottom 3); 3# 

(n = 100, bottom 5); 4# (n = 200, bottom 1); 5# (n = 200, bottom 3); 6# (n = 200, bottom 5); 7# 

(n = 300, bottom 1); 8# (n = 300, bottom 3); 9# (n = 300, bottom 5). n means the number of 

signature (DEGs). B. Distribution of RSD of the cell lines’ ranking scores. Average ranking score 

being more than 0.5 under each condition for each cell line was selected. X axis: RSD. Y axis: 

density. The variant signature number conditions (n = 100/200/300) represent RSD of the 

ranking scores on each cell line across the different number of matched top/bottom candidate 

cell lines, while the variant matched candidate cell line number conditions (top/bottom 1/3/5) 

mean RSD of the ranking scores on each cell line across the different number of signature 

numbers. 



 

Figure S4. Verification of CCL-cGPS top selection of cell lines by cluster analysis, Related to 

Table 1. Cell lines and tumor samples were integrated and performed with PCA dimensionality 

reduction followed by k-means clustering. The cluster information was labelled. CLs: cell lines. 

NA: not available. P: papillary. NP: Non-papillary. TN: triple negative. ID: Infiltrating ductal. IL: 

Infiltrating lobular. MU: mucinous for breast and stomach cancer, mixed for endometrium 

cancer. COAD: colon adenocarcinoma. COMAD: colon mucinous adenocarcinoma. READ: 

rectal adenocarcinoma. AD: adenocarcinoma. SCC: squamous cell carcinoma. A: astrocytoma. 

OA: oligoastrocytoma. OD: oligodendroglioma. B: biphasic. E: epithelioid for mesothelioma 



and endometrioid for endometrium cancer. D: diffuse. T: tubular for stomach cancer and tall 

cell for thyroid cancer. C: classical. F: follicular. S: serous. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S5. Integrated analysis of cell lines and tumor samples, Related to Table 1. Cell lines 

and tumor samples were integrated and performed with t-SNE dimensionality reduction. The 

information of cell lines and tumor samples was labelled. Liquid cancers, including LAML and 

DLBC, were therefore exclude from CCL-cGPS because of the huge genomic discrepancy 

between cell lines and cancer samples. CLs: cell lines. DLBC: diffuse large b-cell lymphoma. 

HNSC: head and neck squamous cell carcinoma. LAML: acute myeloid leukemia.  

 

  



 

 

Figure S6. Web tool of CCL-cGPS, Related to Figure 1. A. Overview of CCL-cGPS includes 18 

tumors, 23 related TCGA labels, 44 tumor subtypes and 168 CCL-cGPS selected cell lines. B. 

Website shows the results of CCL-cGPS selected cell lines when choosing HER2+ breast tumor 



subtype in “Tumor to Cell line” page. C. Website shows the results of appropriate tumor 

subtype when choosing bladder cancer cell line ScaBER in “Cell line to Tumor” page. 

  



Transparent Methods 

Genomics data resources 

The CNV, mRNA expression and mutation profiles from CCLE, NCI-60 and TCGA were collected 

from the cBioportal for Cancer Genomics (https://www.cbioportal.org/). Genomic data of 

CCLP was retrieved from COSMIC Cell Lines Project (v81, 

https://cancer.sanger.ac.uk/cell_lines).  

Identification of gene expression variants and CNV 

In terms of segmented data obtained from Affymetrix SNP6.0 array, GISTIC 2.0 was applied to 

determine the putative copy number calls for CCLE, NCI-60 and TCGA datasets (Values: -2 = 

homozygous deletion; -1 = hemizygous deletion; 0 = neutral / no change; 1 = gain; 2 = high 

level amplification), wherein gene-wise homozygous deletion or high level amplification were 

regarded as copy number amplified or deleted gene. However, in CCLP, copy number was 

acquired by PICNIC in which copy number amplification was obtained by the following criteria: 

(the average genome ploidy < =2.7 AND total DNA segment copy number > =5) OR (average 

genome ploidy >2.7 AND total DNA segment copy number > =9). While the criteria for copy 

number deletion was: (the average genome ploidy < =2.7 AND total DNA segment copy 

number =0) OR (average genome ploidy >2.7 AND total DNA segment copy number < (average 

genome ploidy – 2.7)). 

Gene expression levels were quantified by RSEM from RNA-seq data and mRNA Z scores were 

computed using the tumors samples that are diploid for the corresponding gene. Differentially 

expressed genes (DEGs) were further filtered out as Z scores more than 2 (highly expressed or 

upregulated genes) or less than -2 (lowly expressed or downregulated genes). 

Similarity analysis of cancer cell lines from different resources 

Pearson’s correlation coefficient based on copy number and mRNA Z scores of shared genes 

was performed to explore the similarity of cell lines for the common ones between CCLE and 

NCI-60, while Jaccard index was applied to mutated genes to quantify the similarity coefficient 



since mutation data was nonnumeric. Regarding the relevance between CCLE and CCLP, 

Jaccard index based on CNVs including copy number amplified and deleted genes, DEGs or 

mutated genes was calculated respectively to detect their concordance on genomic data. 

Comparison of cancer cell lines to primary tumors 

By comparing the primary site or histology of cancers in which tumor samples and cell lines 

both involved, a panel of 779 relevant cancer cell lines (Supplementary Table S1) and a total 

of 25 tumor types (Supplementary Table S2) were selected for analysis of cell line versus tumor 

comparisons. For tumors/cell lines integrated analysis, frequency profiles PD(C) comparisons 

were applied in which D represents one of the three type of data-omics, C means tumor type 

or cell lines group, containing n entries: one for genomic variation event from CNV (copy 

number amplified or deleted genes), gene expression (highly or lowly expressed genes) and 

mutated genes. The value of the i-th entry of the profile correspond to the percentage of total 

samples of this tumor type or cell lines group in which the i-th genomic variation event was 

present. Thus, a total of 25 profiles for tumors and 20 for cell lines were assembled for further 

computing Pearson’s correlation coefficient on shared genes between each pair of 25 tumor 

types and 20 cell lines groups. All these coefficients were then arranged into pairwise 

comparison matrices MD containing 25 rows (cancer type; CNV and gene expression; 24 rows 

for mutation matrix) and 20 columns (cell lines groups) yielding results showed in the 

heatmaps of Supplementary Figure S1C. 

Subtype classification of tumor samples.  

For each cancer in TCGA, tumor samples without other malignancy history were selected for 

subtype classification (at least ten samples). It has been widely revealed that substantial 

tumor heterogeneity consists of various subtypes from histological, pathological and 

increasing gene-expression based molecular aspects. Among 11 cancer types in TCGA, namely 

BLCA, BRCA, CHOL, COADREAD, ESCA, LGG, LUAD, MESO, STAD, THCA and UCEC, we further 

divided them into 32 subtypes (Supplementary Table S2) according to the specific histological 

or diagnosis information for the histopathological subtype or the status of specific molecular 



markers for the genotype. As the HNSC is related to several primary sites rather than 

histopathology, HNSC tumor samples were regarded as one subtype. GBM, HNSC, KICH, KIRC, 

KIRP, LIHC, LUSC, OV, PAAD, PRAD, SKCM and UCS were treated as single subtype for the lack 

of available histopathological or molecular subtypes. Oestrogen receptor (ER), progesterone 

receptor (PR) and human epidermal growth factor receptor 2 (HER2) status (positive or 

negative) by immunohistochemistry were used to determine the genotype of breast invasive 

carcinoma (BRCA). Besides, KRAS mutation and ALK translocation were applied as two 

additional molecular characteristics to classify colon and rectum adenocarcinoma 

(COADREAD), lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). 

Similarity ranking of cancer cell lines 

Gene expression profiles of each cell line and tumor sample were reordered in descending 

order (G) according to the Z scores. For tumor samples, the top and bottom genes 

(50/100/150) were filtered out as the signature (n = 100/200/300) including the upregulated 

genes (UG) and downregulated genes (DG), respectively. Cell lines were scored and ranked 

with respect to one sample based on Kolmogorov-Smirnov statistic as follows. For each cell 

line i, two enrichment score for UG and DG were respectively computed, namely Si
UG and Si

down. 

Let N be the total number of unique genes in cell line expression profile. Construct a position 

set V of each gene in G and sort these elements in ascending order (V {1, 2, …, N}) such that 

V(j) is the position of gene j, where j = 1, 2, …, n from UG or DG. Compute the following two 

values: 

𝑎 =

𝑛
MAX
𝑗 = 1

{
𝑗

𝑛
−
𝑉(𝑗)

𝑁
} 

𝑏 =

𝑛
𝑀𝐴𝑋
𝑗 = 1

{
𝑉(𝑗)

𝑛
−
𝑗 − 1

𝑁
} 

 

For both Si
UG and Si

down, set Si = a if a > b or Si = -b if b > a. Set si = Si
UG - Si

down, p = max (si) and 

q = min (si) across all the cell lines. The similarity score SSi is defined as si / p where si >= 0, or 

– (si / q) where si < 0. Let vector SS be the final score of all cell lines in descending order, in 



which high or low SSi was regarded as positive or negative similarity between the cell line and 

the tumor sample for yielding the histogram plot in Supplementary Figure S1. 

Let k be the number of unique cell line among the candidate set C from tumor samples of one 

cancer subtype. For each cell line i, the frequency mi was counted based on C. Construct a 

vector M [m1, m2, …, mk] in descending order. Set x = max (M). The final CCL-cGPS ranking 

score (RS) is defined as M / x. In terms of the two types of candidate set Ct and Cb generated 

from the top and bottom cell lines, RSt and RSb were computed respectively, in which top cell 

lines in RSt or RSb resemble positively or negatively the specific tumor subtype. 

In this study, top 1/3/5 cell lines were selected as the matched candidate cell lines for each 

tumor sample. For a panel of tumor samples, matched candidate cell lines were pooled 

together followed by counting and normalization. On the basis of assigned frequency, 

candidate cell line for each subtype was prioritized in descending order by ranking score. 

The distribution pattern of ranking scores 

For each cancer subtype, the distribution pattern of ranking scores of cell lines was 

determined by the ratio of the number of cell lines with ranking scores being more than 0.5 

to that with ranking scores of less than 0.5. The subtypes with ratio values of more than 2 

were regarded as having most cell lines similar with the tumor, while those with values of less 

than 0.5 were having most cell lines dissimilar with the tumor. The rests represented the 

tumor subtypes with evenly distributed cell line ranking scores. 

Significantly similar cell lines identification 

The permutation test was performed to construct the background model. For each tumor 

subtype, simulated candidate cell lines (1/3/5) with the same tissue origin were randomly 

sampled and counted. Repeat this step 10,000 times to obtain a distribution for each 

simulated candidate cell line. The frequency of the candidate cell line in CCL-cGPS was then 

compared with this background. The null hypothesis was rejected when the frequency of the 

candidate cell line was equal to or less than 5% of the random distribution. 



Impact of different parameters on CCL-cGPS scores 

By varying the number of selected gene signatures (100, 200 and 300) and cell lines (top 1, 3 

and 5), we obtained nine combinations. Under each combination, we obtained a 2,341-

dimensional vector containing CCL-cGPS scores of the corresponding cell lines towards the 

corresponding tumor subtypes and transformed CCL-cGPS scores into CCL-cGPS ranks for the 

corresponding cell lines towards the corresponding tumor subtypes. Then, the Pearson 

coefficients of CCL-cGPS scores’ ranks were calculated between paired combinations, which 

generates the heatmap in Figure S3A. 

Commonly used cell line retrieval in tumor subtypes 

Total number of cited articles up to July, 2020 for each cell line was acquired from PubMed 

with the key words (Detailed in Supplementary Table S1). For each cancer subtype and each 

associated cell line, the PubMed search term was constructed by using the corresponding 

Mesh term and the name of the cell line to retrieve the related articles. Taking ER+ breast 

cancer subtype and MCF-7 as an example, the search term is ("Breast Neoplasms"[Mesh]) 

AND (("Receptors, Estrogen"[Mesh]) OR ER OR ESR OR luminal) AND (MCF-7 OR MCF7) to 

retrieve related studies on ER+ breast cancer with MCF7. Then, we carefully read full texts, 

especially the Methods section, to verify whether MCF7 is regarded as an ER+ breast cancer 

cell line model by researchers in their studies. Concordant studies were collected and the sum 

of concordant studies were counted for each cell line for each cancer subtype. Last, cell lines 

with the same origin were ranked in descending order by the number of concordant studies. 

The cell line with the most citation was regarded as the commonly used one for the associated 

cancer subtype. 

Verification from confirmation analysis and cluster analysis 

Histopathological or molecular information of selected cell lines by CCL-cGPS were collected 

from CCLE. The gene expressions of ESR1, ERBB2, and PGR were used to classify breast cancer 

cell lines into molecular subtypes, known as ER+, HER2+, and triple-negative. The mutation 

profile of KRAS was used to determine the molecular subtype, namely KRAS mutated, for 



colorectal and lung cancer cell lines. For each cancer, overlapped subtypes between cell lines 

and tumor samples were retained. Then for each cancer subtype, the percentage of matched 

selected cell lines with the same histopathological or molecular profiles was calculated to 

evaluate the biological traits of the selected cell lines by CCL-cGPS. 

For each tumor type, the gene expression data (Z score of each gene) of related cell lines and 

tumor samples were integrated for performing dimensionality reduction using principal 

components analysis (PCA) with default parameters. Resulted two-dimensioning data was 

clustered by k-means, in which the cluster number was mainly the number of 

histopathological or molecular subtypes. For each subtype, the cluster with the most tumor 

samples was regarded as the matched cluster. The hit rate for each tumor subtype was 

calculated by the number of CCL-cGPS selected cell lines falling within this matched cluster 

divided by the total number of CCL-cGPS selected cell lines. 

IC50 values of FDA-approved drugs 

FDA-approved drugs for ER+, HER2+ breast and differentiated thyroid cancer were curated 

from FDA (https://www.fda.gov/). The specific molecular targeted drugs were searched in 

PubMed, PubChem and CCLE and checked manually to obtain the reported IC50 values on 

breast and thyroid cancer cell lines. The widely used antitumor drugs for preferred 

medications functioning as cytotoxicity (such as cisplatin, fluorouracil, paclitaxel, and their 

analog, etc.) were excluded, resulting in molecular targeted drugs including tamoxifen for ER+ 

breast cancer, lapatinib for HER2+ breast cancer, lenvatinib and sorafenib for follicular thyroid 

cancer (one type of differentiated thyroid cancer). IC50 values of tamoxifen, lapatinib, 

lenvatinib and sorafenib on breast or thyroid cancer cell lines were obtained from PubChem 

and CCLE project (Fit type with Sigmoid and average activity SD less than 10 was selected), 

while IC50 related research articles were retrieved from PubMed by using the keyword “drug 

name (e.g. tamoxifen) AND IC50 AND cancer type (e.g. breast cancer)” or “drug name (e.g. 

tamoxifen) AND IC50 AND representative cell line name (e.g. MCF7)”in order to obtain the 

IC50 values. With respect to the multiple IC50 values of a certain drug towards the same cell 

line, the median IC50 were used for yielding the point plot in Figure 3. 



Conserved DEGs and pathways between CCL-cGPS selected cell lines and tumor patients 

For each cell line, highly expressed (Z > 2) and lowly expressed (Z < -2) genes were treated as 

DEGs. For each tumor subtype, highly expressed and lowly expressed genes for each patient 

were combined and compared with highly expressed and lowly expressed genes of the 

corresponding CCL-cGPS selected cell line, respectively. Genes that were both highly 

expressed or both lowly expressed in the cell line and the tumor patients were regarded as 

the conserved DEGs. To compare the conserved pathways between highly ranked cell lines 

and associated tumor samples, e.g., ER+ breast cancer, DEGs of a tumor subtype were ordered 

with frequency across tumor patients and the same number of DEGs as the one in the CCL-

cGPS selected cell line were selected for enriching pathways by using Metascape 

(http://metascape.org/). 

Reagents and cell lines 

Tamoxifen, lapatinib, cisplatin and digitoxin were purchased from Sigma-Aldrich Co. (St Louis, 

MO). Lenvatinib and sorafenib were obtained from Selleckchem (USA). Mebendazole was 

provided by Aladdin Co. (Shanghai, China). FDA-approved drug library was obtained from 

Target Molecule Co. (TargetMol). Breast cancer cell lines HCC202, MDA-MB-436, HCC1187, BT-

549, thyroid cancer cell line CAL-62, colorectal cancer cell line NCI-H747, and bladder cancer 

cell line RT4 were purchased from Shanghai Xinyu Biological Technology Co., Ltd (Shanghai, 

China). Breast cancer cell line MCF7 was a gift from Prof. Wang’s lab (Hangzhou, China). 

Thyroid cancer cell lines 8305C and 8505C were provided by Zhejiang Cancer Hospital 

(Hangzhou, China). The HCC202, MDA-MB-436, BT-549, NCI-H747, 8305C, and 8505C cell lines 

were maintained in RPMI 1640 (HyClone, USA) with L-glutamine supplemented with 10% fetal 

bovine serum (FBS, Gibco, USA) and 1% penicillin-streptomycin mixture (PSM, Gibco, USA). 

The MCF7, HCC1187, and CAL-62 cells were cultured in DMEM/HIGH GLUCOSE (HyClone, USA) 

supplemented with 10% FBS and 1%PSM. The RT4 was cultured in McCoy's 5A (Modified) 

Medium (BI, Israel) supplemented with 10% FBS and 1% PSM. All the cell lines were kept in a 

humidified incubator (Thermo Fisher, USA) at 37 °C with 5% carbon dioxide. 



High throughput screening 

RT4 and NCI-H747 were automatically seeded into 96-well flat bottom plates at a density of 7 

× 103 cells per well with 100 μL appropriate growth medium by using Multidrop Combi 

(Thermo, USA). After 24-hour incubation, the medium was removed and replaced by 90 μL 

fresh culture, and then each drug from FDA-approved drug library (a total of 1068 drugs were 

tested in this study) was automatically added to one well with 10 μL culture medium using a 

Liquid Handler (Tecan Fluent 780, Switzerland). The concentration of all the drugs was set at 

10 μM. After 48 hours, the culture medium was discarded and cells were treated with 100 μL 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) of 0.5 mg/mL (Sigma, 

USA) at 37°C for 4 hours, followed with 100 μL DMSO. The optical density of each well was 

measured at 580 nm using a microplate reader (Infinite M1000 Pro, TECAN, Germany). The 

cell viability of drug-treated groups was quantified as a percentage compared to the vehicle 

control.  

Half maximal inhibitory concentration detection 

Cell lines were seeded into 96-well flat bottom plates containing 100 μL appropriate growth 

medium per well at an appropriate density (HCC202, HCC1187, 104 cells/well; MDA-MB-436, 

BT-549, RT4, NCI-H747, 7x103 cells/well; MCF7, 8505C, 2x103 cells/well; 8305C, 1x103 

cells/well) and the medium was replaced after 24 hours with the corresponding culture 

medium without FBS and PSM and then treated with the corresponding drugs (tamoxifen and 

lapatinib for HCC202, MCF7, BT-549, HCC1187 and MDA-MB-436; lenvatinib and sorafenib for 

8505C, 8305C, CAL-62; digitoxin and mebendazole for RT4; digoxin and adapalene for NCI-

H747). After 48 hours, the culture medium was discarded and cells were replenished with 100 

μL MTT solution at 37°C for 4 hours followed with 100 μL DMSO. The cell viability was 

examined as previously described. The IC50 values were calculated by GraphPad Prism 8.0. 

RNA-seq experiment 

RT4 cells were seeded into cell culture dish (60 mm, Corning, USA) and the medium was 

replaced after 24 hours with the McCoy's 5A culture medium without FBS and PSM. The cells 



were then treated with or without digitoxin at 0.01 μM or mebendazole at 0.1 μM to generate 

control, digitoxin- or mebendazole-treated groups (n = 3). After 24 hours, the culture medium 

was discarded and total RNA was extracted using the mirVana miRNA Isolation Kit (Ambion) 

following the manufacturer’s protocol. RNA integrity was evaluated using the Agilent 2100 

Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). The samples with RNA Integrity 

Number (RIN) ≥ 7 were subjected to the subsequent analysis. The libraries were constructed 

using TruSeq Stranded mRNA LT Sample Prep Kit (Illumina, San Diego, CA, USA) according to 

the manufacturer’ s instructions. Then these libraries were sequenced on the Illumina 

sequencing platform (Illumina HiSeq X Ten) and 150 bp paired-end reads were generated. 

RNA-seq data analysis 

The transcriptome sequencing and analysis were conducted by OE biotech Co., Ltd. (Shanghai, 

China). Raw data (raw reads) were processed using Trimmomatic. The reads containing poly-

N and the low-quality reads were removed to obtain the clean reads. Then the clean reads 

were mapped to reference genome using hisat2. The read counts of each gene were obtained 

by htseq-count and were normalized with median 1000 and log2. Upregulated genes were 

identified as those with fold change of more than 2 by comparing the mebendazole- or 

digitoxin-treated group to the control, while downregulated genes were identified as having 

fold change being less than -2. 

Animal experiments 

Male BALB/c nude mice (4-6 week, Silaike Co. Shanghai, China) were housed under specific 

pathogen-free conditions with a 12 h light/dark cycle. All the cages, food, and water were 

sterilized. The mice were injected subcutaneously in the right flank with 0.1mL of cell 

suspension containing 1 × 107 RT4 cells or 3.5 × 106 NCI-H747 cells. Tumors were allowed to 

grow for approximately 7 days to a volume of 100 mm3 measured using a caliper before 

treatment. Tumor-bearing mice (RT4) were randomly allocated into 4 groups (n = 7): cisplatin 

group (2 mg/kg every three day, i.p.), digitoxin group (0.5 mg/kg/day, i.p.), mebendazole 

group (50 mg/kg every other day, i.g.), and the vehicle control group (0.9% sodium chloride, 



0.1 mL /10 g/day, i.p.). Tumor-bearing mice (NCI-H747) were randomly allocated into 4 groups 

(n = 4): capecitabine group (150 mg/kg every three day, i.g.), digoxin group (1.2 mg/kg/day, 

i.p.), adapalene group (50 mg/kg every other day, i.g.), and the vehicle control group (0.9% 

sodium chloride, 0.1 mL /10 g/day, i.p.). The tumor size was measured twice a week using a 

caliper. After five-week treatment for RT4 and four-week treatment for NCI-H747, mice were 

sacrificed and the tumors were immediately harvested and weighed. All the animal 

experimental protocols were approved by the Animal Care and Use Committee of the Zhejiang 

University School of Medicine. 

Statistics 

R (version 3.6.1) and GraphPad Prism 8.0 were used for the statistical analysis. R packages of 

FactoMineR and ggplot2 was used for PCA analysis and data visualization, respectively. IC50 

values were estimated from the nonlinear regression of dose-response inhibition. Differences 

between two groups were determined using the Welch’s t-test (significant with P < 0.05). 

Differences of tumor size among four groups were assessed by using one-way ANOVA 

(significant with P < 0.032). 
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