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ABSTRACT: Here we study the shapes of droplets captured between chemically distinct parallel plates.
This work is a preliminary step toward characterizing the influence of second-phase bridging between
biomolecular surfaces on their solution contacts, i.e., capillary attraction or repulsion. We obtain a
simple, variable-separated quadrature formula for the bridge shape. The technical complication of
double-ended boundary conditions on the shapes of nonsymmetric bridges is addressed by studying
waists in the bridge shape, i.e., points where the bridge silhouette has zero derivative. Waists are
generally expected with symmetric bridges, but waist points can serve to characterize shape segments in
general cases. We study how waist possibilities depend on the physical input to these problems, noting
that these formulas change with the sign of the inside−outside pressure difference of the bridge. These
results permit a variety of different interesting shapes, and the development below is accompanied by
several examples.

■ INTRODUCTION

Here we study the shapes of nonsymmetric capillary bridges
between planar contacts (Figure 1), laying a basis for studying
the forces that result from the bridging.
The recent measurements of Cremaldi et al.,1 provide a

specific motivation for this work. A helpful monograph2

sketches adhesion due to symmetric capillary bridges, albeit
with aspect ratio (width/length ≈103) vastly different than is
considered below. Additionally, that sketch2 does not
specifically consider nonsymmetric cases surveyed by Cremaldi
et al.1 A specific description applicable to nonsymmetric cases
is apparently unavailable3 and, thus, is warranted here.
A background aspect of our curiosity in these problems is

the possibility of evaporative bridging between ideal hydro-
phobic surfaces, influencing the solution contacts between
biomolecules.4−10 Assessment of critical evaporative lengths in
standard aqueous circumstances on the basis of explicit
thermophysical properties8 sets those lengths near 1 μm.
Though we do not specifically discuss that topic further here,
our analytical development does hinge on identification of the
length γ= |Δ |p2 / , with γ the fluid interfacial tension, and Δp
the pressure difference between inside and outside of the
bridge. The experiments that motivate this study considered
spans ≲(6 μL)1/3 ≈ 1.8 mm.1

A full development of the essential basics of this problem
might be dense in statistical-thermodyamics. We strive for
concision in the presentation below but follow2 a Grand
Ensemble formulation of our problem. We then develop the
optimization approach analogous to Hamilton’s Principle of
classical mechanics.2,11 That approach avoids more subtle
issues of differential geometry related to interfacial forces and,

eventually, should clarify the thermodynamic forces for
displacement of the confining plates. Along the way, we
support the theoretical development by displaying typical
solutions of our formulation.

■ STATISTICAL THERMODYNAMIC FORMULATION

Consider two plates, not necessarily the same, oriented
perpendicular to the z-axis and separated by a distance h
(Figure 1). A droplet captured between two parallel plates is
assumed to be cylindrically symmetric about the z-axis. We
want to determine the droplet shape (Figure 2) in advance of
analyses of the forces involved. We study
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a functional of the droplet radius r(z). Here r ̇ = dr(z)/dz and
r± = r(z = ±h/2). γ is the tension between the droplet and the
external solution. Δγ+ is the inside−outside difference of the
surface tensions of the fluids against the plate at z = +h/2 (and
similarly for Δγ− with the fluids against the plate at z = −h/2);
this differencing will be clarified below as we note how this
leads to Young’s Law. Δp is the traditional Laplace inside−
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outside pressure difference of the bridge. The usual Grand
Ensemble potential for a single-phase uniform fluid solution
being −Ω = pV, it is natural that ΔΩ[r] of eq 1 has Ω for the
surrounding fluid solution subtracted away; i.e, the pressure−
volume term of eq 1 evaluates the pressure inside times the
bridge volume, minus the pressure outside times the same
bridge volume. Formally

∑ μ−Ω = − +
α

α αF n
(2)

with F the Helmholtz free energy. Therefore, the surface-area
feature of eq 1 can be viewed as an addition of γA contribution
to F, with A the surface area of contact of the bridge with the
external fluid and γ is the tension of the fluid−fluid interface.
We have not included a line tension associated with the top/
bottom contacts. Nevertheless, since eq 1 is firmly grounded in
the basic physical description of our problem, line tension
issues should be readily accommodated.
An alternative perspective on ΔΩ (eq 1) is that it is a

Lagrangian function for finding a minimum surface area of the
bridge satisfying a given value of the bridge volume. Then Δp/
γ, which has dimensions of an inverse length, serves as a
Lagrange multiplier. We then minimize ΔΩ with respect to
variations of r(z), targeting a specific value of the droplet
volume.
The first-order variation of ΔΩ is then
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The angle that the shape curve r(z) makes with the plane
perpendicular to the z axis (Figure 1) is

θ = ̇
+ ̇
r

r
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1
2

2
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and at the contacting surfaces
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Depicted in Figure 1 is the choice of the bottom sign above,
where 0 < r ̇ < ∞. For θ+ we change the choice so that the

Figure 1. (top) A nonsymmetric capillary bridge studied here and
(bottom) angles associated with a general droplet shape.

Figure 2. Droplet dimensions using lengths scaled by γ= Δp2 / ,
with Δp > 0. That the pressure is higher inside, the blue shaded
region, than outside the droplet is recognized by noting that r ̈ is
negative at the waist. Our separation of variables, eq 18 which is used
here, suggests taking r (the horizontal axis) as the independent
variable. At the bottom contact θ̃ =− −r sin1

2
in eq 15 with θ = 30°.

The waist has radius θ̃ = + ≈−R (1 cos ) 0.931
2

. The alternative

solution of eq 15 is θ− ≈−(1 cos ) 0.0671
2

, smaller than the radius of

the upper contact, ≈0.08. The contact angle θ+ = 60° together with R̃,
eq 15 gives r+̃ ≈ 0.79, confirming the connection between branches
above and below the waist. The dashed curve thus extends the solid
curve. At each height, the red crosses mark the discrepancies of the
Euler−Lagrange eq 9 from zero.
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contact angle at the upper plate is the traditional external angle
of the droplet.
The usual integration-by-parts for eq 3 gives
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With the signs indicated in eq 5
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with the exterior angles contacting the upper and lower plates.
The contact terms in eq 7 vanish if the contact angles obey

the force balance

γ γ θΔ =± ±cos (8)

of the traditional Young’s Law. This reinforces the sign choice
for eq 5. Equation 8 will provide boundary information for
r(z).
From eq 7, we require that the kernel
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vanish identically in z. As with Young’s Law, this balances the
forces for varying the droplet radius. For the example of a
spherical droplet of radius R, this force balance implies the
traditional Laplace pressure formula, Δp = 2γ/R.
The traditional Hamilton’s principle11 analysis of this

formulation then yields the usual energy conservation
theorem2,11

γ

+ ̇
− Δ =r

r
r p D

1
/2

2
2
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with D a constant of integration. D + r2Δp/2 is non-negative
according to eq 10. Recognizing that sign, then

γ θ = + Δr z D r psin ( ) /22
(11)

with 0 ≤ θ(z) ≤ π. The constant D can be eliminated in terms
of boundary information, e.g.,

γ θ − Δ =− − −r r p Dsin /22
(12)

This helpfully correlates r(z) at other places too. For
example, we will consider (Figure 2) intermediate positions
where r(̇z) = 0 and sin θ(z) = 1. We call such a position a
“waist”. A waist is expected for symmetric cases that we build
from here. Denoting the radius of a waist by R, then

γ = + ΔR D R p/22
(13)

from eq 10. This eliminates the integration constant D in favor
of R, which may be more meaningful.

Δ >p 0

Considering Δp > 0 we can make these relations more
transparent by nondimensionalizing them with the length

γ= Δp2 / . Then = ̃r r and = ̃R R , so

θ̃ ̃ − = ̃ ̃ −− − −r r R R( sin ) ( 1) (14)

Though this scaling with the length is algebraically
convenient, Δp can take different signs in different settings;
indeed, calculating from eq 9, at a waist Δp/γ = 1/R − r ̈ in the
present setup, with r ̈ the curvature at that waist. Completing
the square from eq 14 gives
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Equation 15 provides helpful perspective (Figure 3) for
exploring different bridge sizes. Given θ−, this requires that
(R̃ − 1/2)2 ≥ (cos θ−/2)

2, as is evident there.

Interesting further consequences follow from considerations
of the cases that the droplet is nearly tangent to the contact
surfaces: θ± = 0 or π. Consider first θ− → 0. The droplet
approaches detachment from the lower surface. We expect r−
→ 0 then. Figure 3 shows that this can be achieved with R̃ = 0
or 1. The R̃ = 1 case produces a hemispherical lower portion
on the bridge, with the hemisphere just touching the lower

surface and θ̃ ≈− −( )r sin1
2

from eq 15.

When θ+ → π for example, the droplet preferentially wets
the upper surface. We expect r+ to be relatively large then, and
this force contribution describes interplate attraction, though
not necessarily with a waist.

More Generally but Δp ≠ 0. Restoring in eqs 14 and 15
the dependence on γ= Δp2 / for Δp ≠ 0, though possibly
negative, then gives

θ− = −− − −r r R R( sin ) ( ) (16a)
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is a signed length here. With these notations,

Figure 3. For contact angle θ− , eq 15 requires that
θ̃ − ≥ −R( 1/2) cos2 1

4
2 . Thus, the solid black curves cover possible

values of R̃ for this θ−, and displacements upward from the green
horizontal line, i.e., the arrows, show values of (r−̃ − sin θ−/2)

2. The
θ− adopted for this drawing is π/6 as for the bottom branch shown in
Figure 2, and the right-most dot locates the value of the waist radius
there (Figure 2). Thus, the waist in that example is the slimmest waist
in that range. Such considerations apply to both top and bottom
contacts with their distinct contact angles. A contact angle near π/2
will correspond to a lower level for the horizontal line and thus be less
restrictive of the possible values of a common waist radius R̃.
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separates these variables for integration.
We can still follow scaled lengths ̃ = | |r r/ and ̃ = | |R R/ .

Then the analogue of eq 15 is
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when Δp < 0; see Figure 4. The analogue of eq 18 with this
length scaling for Δp < 0 is
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To achieve Δp/γ = 1/R − r ̈ < 0 for a bridge with wiast
radius R, clearly the curvature r ̈ at that waist should be
substantially positive to ensure that the negative second
contribution dominates. In addition, the radius at the waist
should be fairly large, thereby reducing the contribution of the
positive first term. These points combined suggest that to
achieve adhesion the contact areas should be larger than the
waist area, which itself should be substantial.
Waist R. Reaffirming the identification of R as the radius of

a waist and specifically recalling that is a signed length:
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Factoring out the cot2 θ(r2̃ = R̃2) = 0 feature gives

θ = − − −
[ − − ]

=z
R r r R

r R R
r
z

cot ( )
( )( ( ) )

( )
d
d

2
2 2 2 2

2 2

2i
k
jjj

y
{
zzz

(22)

eq 22 also shows that cot2 θ(z) = 0 at the point = −r R( )2 2.
Equation 22 then achieves the separation of variables
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for integration in this case.

■ EXAMPLES
In the example Figure 2 (Δp > 0), R̃ ≈ 0.933 and (R̃ − 1)2 ≈
0.0672, smaller than the radius of the upper cross-section,
0.082, in that extended example. The slimmer second waist is
not realized.
Figure 5 shows a bridge shape for the slender waist identified

for the contact angles specified in Figure 6 for Δp > 0.

In the example Figure 7, Δp < 0 and < 0. Thus,

− = | | ̃ +R R( ) ( 1), and the (−) of eq 23 is required to

achieve a positive slope at the bottom plate. The aspect ratio of

the bridge is vastly changed, as was true also in the discussion

of capillary adhesion of ref 2; capillary adhesion would be

expected for this shape.

Figure 4. Analogue of Figure 3 but for the case Δp < 0. See eq 19.

Figure 5. Capillary bridge shape for the biggest slim-waisted
possibility of Figure 6. Here the pressure inside is greater than the
pressure outside, so eq 18 is used. The open circle marks the waist.
Δp/γ = 1/R − r ̈ at a waist of radius R, so achieving Δp > 0 with
positive curvature r,̈ as above, limits the waist radius R. This solution
exhibits the upper contact angle twice.

Figure 6. Considerations for choice of waist radii R̃ for the slim-
waisted bridge of Figure 5.
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■ DISCUSSION
In view of the variety of interesting shape possibilities, we
reserve explicit study of the consequent interplate forces, and
of the stability/metastability of these bridges, for a specific
experimental context. Nevertheless, we outline here how such a
practical study might be implemented.
The setup above permits straightforward calculation of the

thermodynamic potential Ω and

Ω = = −
h

U
h

F
d
d

d
d h (24)

U being the internal energy, positive values of Fh indicate that
U decreases with increasing h, the temperature being constant
in these considerations. Thus, positive values of Fh indicate
repulsion, and negative values describe attraction.
Our motivating example is Cremaldi et al.;1 in those cases a

waist with radius R̃ is clear, and we anticipate that Δp > 0. To
connect to specific experimental cases, we note that a priori
experimental data are γ, the contact angles θ− and θ+, the
experimental volume of the captured droplet v, and interplate
separation h. Equation 15 and Figure 3 show permitted ranges
for R̃. With these parameters set, integration (eq 23)
determines Δz ̃ = z+̃ − z−̃. Then

= | |Δ ̃h z (25)

so that

γ| |
=

|Δ |
= Δ ̃p z

h
1

2 (26)

matching the experimental h. [What is more, the sign of Δp is
known through the calculational procedure.] We then further
evaluate the volume of droplet
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v R r z z( ) d
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z
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as it depends on R̃, and seek a match with the experimental
droplet volume v. If R̃ were provided a priori, eqs 26 and 27
would overdetermine . But R̃ is not provided a priori, so those
two equations determine the two remaining parameters and
R̃. Since the dependence on | | is clear, we can proceed further
to

∫π[ ̃] =
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leaving finally

∫π ̃ ̃ ̃ Δ ̃ =
̃

̃

−

+
r z z z

v
h

( ) d /
z

z
2 3 0

3 (29)

to be solved for R̃.

■ CONCLUSIONS
We provide general, simple, variable-separated quadrature
formulas (eq 23) for the shapes of capillary bridges, not
necessarily symmetric. The technical complications of double-
ended boundary conditions on the shapes of nonsymmetric
bridges are addressed by studying waists in the bridge shapes,
noting that these relations change distinctively with the
change-of-sign of the inside−outside pressure difference of
the bridge (eq 16b). These results permit a variety of different
interesting cases, and we discuss how these analyses should be
implemented to study forces resulting from capillary bridging
between neighboring surfaces in solutions.
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