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Simple Summary: Despite their prevalence in research, ML tools that can predict glioma grade from
medical images have yet to be incorporated clinically. The reporting quality of ML glioma grade
prediction studies is below 50% according to TRIPOD—limiting model reproducibility and, thus,
clinical translation—however, current efforts to create ML-specific reporting guidelines and risk of
bias tools may help address this. Several additional deficiencies in the areas of ML model data and
glioma classification hamper widespread clinical use, but promising efforts to overcome current
challenges and encourage implementation are on the horizon.

Abstract: Technological innovation has enabled the development of machine learning (ML) tools
that aim to improve the practice of radiologists. In the last decade, ML applications to neuro-
oncology have expanded significantly, with the pre-operative prediction of glioma grade using
medical imaging as a specific area of interest. We introduce the subject of ML models for glioma
grade prediction by remarking upon the models reported in the literature as well as by describing
their characteristic developmental workflow and widely used classifier algorithms. The challenges
facing these models—including data sources, external validation, and glioma grade classification
methods —are highlighted. We also discuss the quality of how these models are reported, explore
the present and future of reporting guidelines and risk of bias tools, and provide suggestions for the
reporting of prospective works. Finally, this review offers insights into next steps that the field of ML
glioma grade prediction can take to facilitate clinical implementation.

Keywords: artificial intelligence; glioma; machine learning; deep learning; reporting quality

1. Introduction
1.1. Artificial Intelligence, Machine Learning, and Radiomics

Innovations in computation and imaging have rapidly enhanced the potential for
artificial intelligence (AI) to impact diagnostic neuroradiology. Emerging areas of imple-
mentation include AI in stroke (e.g., early diagnosis, detection of large vessel occlusion,
and outcome prediction) [1], AI in spine (fracture detection, and vertebrae segmentation)
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and detection of intracranial aneurysms and hemorrhage [2], among other disciplines.
Machine learning (ML) and its subfield, deep learning (DL), are branches of AI that have
received particular attention. ML algorithms, including DL, decipher patterns in input data
and independently learn to make predictions [3]. The advent of radiomics—which mines
data from images by transforming them into features quantifying tumor phenotypes—has
fueled the application of ML methods to imaging, including radiomics-based ML analysis
of brain tumors [4–6]. Commonly extracted radiomic features include shape and size,
texture, first-order, second-order, higher-order features, etc. (Table 1).

1.2. Machine Learning Applications in Neuro-Oncology

As the most common primary brain tumors, gliomas constitute a major focus of ML
applications to neuro-oncology [7,8]. Prominent domains of glioma ML research include
the image-based classification of tumor grade and prediction of molecular and genetic
characteristics. Genetic information is not only instrumental to tumor diagnosis in the 2021
World Health Organization classification, but also significantly affects survival and under-
pins sensitivity to therapeutic interventions [9,10]. ML-based models for predicting tumor
genotype can therefore guide earlier diagnosis, estimation of prognosis, and treatment-
related decision-making [11,12]. Other significant areas of glioma ML research relevant to
neuroradiologists include automated tumor segmentation on MRI, detection and prediction
of tumor progression, differentiation of pseudo-progression from true progression, glioma
survival prediction and treatment response, distinction of gliomas from other tumors and
non-neoplastic lesions, heterogeneity assessment based on imaging features, and clinical
incorporation of volumetrics [13–15]. Furthermore, ML tools may optimize neuroradiology
workflow by expediting the time to read studies from image review to report genera-
tion [16]. As an image interpretation support tool, ML importantly may improve diagnostic
performance [17,18]. Prior works demonstrate that AI alone can approach the diagnostic
accuracy of neuroradiologists and other sub-specialty radiologists [19–21].

1.3. Image-Based Machine Learning Models for Glioma Grading

This review is concerned with the growing body of studies developing predictive
ML models for image-based glioma grading, a fundamentally heterogeneous area of
literature. While numerous ML models exist to predict high-grade gliomas and low-grade
gliomas, they vary in their definitions of high- and low-grade [22–24]. Other models predict
individual glioma grades (e.g., 2 vs. 3, 3 vs. 4), but few have combined glioma grading with
molecular classification despite the incorporation of both grade and molecular subtype in
2016 World Health Organization central nervous system tumor classification [25,26]. While
studies focus on MRI, they are diverse in the sequences used for prediction, with earlier
publications relying on conventional imaging and increasing incorporation of advanced
MRI sequences throughout the years [27–30]. Finally, studies vary considerably in their
feature extraction and selection methods, datasets, validation techniques, and classification
algorithms [31].

It is our belief that the ML models with potential to support one of the most fundamen-
tal tasks of the neuroradiologist—glioma diagnosis—present obstacles and opportunities
relevant to the radiology community, especially as radiologists endeavor to bring ML
models into clinical practice. In this article, we aim to introduce the subject of developing
ML models for glioma grade prediction, highlight challenges facing these models and
their reporting within the literature, and offer insights into next steps the field can take to
facilitate clinical implementation.

2. Workflow for Developing Prediction Models

Despite their heterogeneity, ML glioma grade prediction studies follow similar steps in
developing their models. The development workflow starts with acquisition, registration,
and pre-processing (if necessary) of multi-modal MR images. Common pre-processing tasks
include data cleaning, normalization, transformation, and dealing with incomplete data,
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among other tasks [32]. An in-depth exploration of pre-processing is beyond the scope of
this review and readers should refer to Kotsiantis et al. for further explanation. Next, tumors
undergo segmentation—the delineation of tumor, necrosis, and edema borders—which can
be a manual, semi-automatic, or fully automatic process. Manual segmentations rely on
an expert delineating and annotating Regions of Interest (ROIs) by hand. Semi-automated
segmentations generate automated ROIs that need to be checked and modified by experts.
Fully automatic segmentations, on the other hand, are DL-generated (most frequently by
convolutional neural networks (CNNs)), which automatically delineate ROIs and omit the
need for manual labor [33]. In general, semi-automated segmentations are considered to
be more reliable and transparent than fully automatic segmentations. However, they are
less time-efficient than automatic segmentations and always require manual input from
experts in the field. Whereas manual segmentation is laborious, time-consuming, and
subject to inter-reader variability, fully automatic deep-learning generated segmentations
may potentially overcome these challenges [34].

Feature extraction is then performed to extract qualitative and quantitative information
from imaging. Commonly extracted data include radiomic features (shape, first-order,
second-order, higher-order features, etc.), clinical features (age, sex, etc.), and tumor-
specific Visually AcceSAble Rembrandt Images (VASARI) features. Feature types and their
explanations are presented in Table 1.

Table 1. Overview of commonly extracted feature types in studies developing ML prediction models.

Feature Type Explanation

Clinical Describe patient demographics, e.g., gender and age.

Deep learning extracted Derived from pre-trained deep neural networks.

First-order
Create a three-dimensional (3D) histogram out of tumor volume

characteristics, from which mean, median, range, skewness,
kurtosis, etc., can be calculated [35].

Higher-order Identify repetitiveness in image patterns, suppress noise, or
highlight details [35].

Qualitative
Describe visible tumor characteristics on imaging using

controlled vocabulary, e.g., VASARI features (tumor location,
side of lesion center, enhancement quality, etc.).

Second-order
Classify texture characteristics, e.g., contrast, correlation,
dissimilarity, maximum probability, grey level run length

features, etc. [35]

Shape and size
Describe the statistical inter-relationships between neighboring

voxels, e.g., total volume or surface area, surface-to-volume
ratio, tumor compactness, sphericity, etc. [35]

Open-source packages such as PyRadiomics have been developed as a reference stan-
dard for radiomic feature extraction [36]. Clinical features are known to be important
markers for predicting glioma grades and molecular subtypes [37]. VASARI features,
developed by The Cancer Imaging Archive (TCIA), are frequently found in studies that
qualitatively describe tumor morphology using visual features and controlled vocabu-
lary/standardized semantics [38].

Current technology permits extraction of over 1000 features per image. As a high
number of features may lead to model overfitting, model developers commonly reduce the
number of features used through feature selection. Feature selection methods, including
Filter, Wrapper, and Embedded methods, remove non-informative features that reduce the
model’s overall performance [39].

The final set of features is fed into a glioma grade classification algorithm(s)—for
example, support vector machine (SVM) and CNN—during the training process. The
classifier performance is then measured through performance metrics such as accuracy, area
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under the curve receiver operating characteristic, sensitivity, specificity, positive predictive
value, negative predictive value, and F1 score. The model is validated internally, usually
through hold-out or cross-validation techniques. Ideally, the model is externally validated
as a final step to ensure reproducibility, generalizability, and reliability in a different setting
(Figure 1).
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3. Algorithms for Glioma Grade Classification

The most common high-performing ML classifiers for glioma grading in the literature
are SVM and CNN [13]. SVM is a classical ML algorithm that represents objects as points in
an n-dimensional space, with features serving as coordinates. SVMs use a hyperplane, or an
n-1 dimensional subspace, to divide the space into disconnected areas [40]. These distinct
areas represent the different classes that the model can classify. Unlike CNNs, SVMs require
hand-engineered features, such as from radiomics, to serve as inputs. This requirement
may be advantageous for veteran diagnostic imagers, whose knowledge of brain tumor
appearance may enhance feature design and selection. Hand-engineered features also can
undergo feature reduction to mitigate the risks of overfitting, and prior works demonstrate
better performance for glioma grading models using a smaller number of quantitative
features [41]. However, hand-engineered features are limited since they cannot be adjusted
during model training, and it is uncertain if they are optimal features for classification.
Moreover, hand-engineered features may not generalize well beyond the training set and
should be tested extensively prior to usage [42,43].

CNNs are a form of deep learning based on image convolution. Images are the direct
inputs to the neural network, rather than the manually engineered features of classical
ML. Numerous interconnected layers each compute feature representations and pass them
on to subsequent layers [43,44]. Near the network output, features are flattened into a
vector that performs the classification task. CNNs appeared for glioma grading in 2018 and
have risen quickly in prevalence while exhibiting excellent predictive accuracies [45–48].
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To a greater extent than classical ML, they are suited for working with large amounts of
data, and their architecture can be modified to optimize efficiency and performance [46].
Disadvantages include the opaque “black box” nature of deep learning and associated
difficulty with interpreting model parameters, along with problems that variably apply to
classical ML as well (e.g., high amount of time and data required for training, hardware
costs, and necessary user expertise) [49,50].

In our systematic review of 85 published ML studies developing models for image-
based glioma grading, we found SVM and CNN to have mean accuracies of 90% and 91%,
respectively [51]. Mean accuracies for these algorithms were similar across classification
tasks regardless of whether the classification was binary or multi-class (e.g., 90% for the 24
studies whose best models performed binary classification of grades 1/2 vs. 3/4 compared
to 86% for the 5 studies classifying grade 2 vs. 3 vs. 4). No consensus has been reached
regarding the optimal ML algorithm for image-based glioma classification.

4. Challenges in Image-Based ML Glioma Grading
4.1. Data Sources

Since 2011, a significant number of ML glioma grade prediction studies have used
open-source multi-center datasets to develop their models. BraTS [52] and TCIA [53]
are two prominent public datasets that contain multi-modal MRI images of high- and
low-grade gliomas and patient demographics. BraTS was first made available in 2012,
with the 2021 dataset containing 8000 multi-institutional, multi-parametric MR images of
gliomas [52]. TCIA first went online in 2011 and contains MR images of gliomas collected
across 28 institutions [53]. These datasets were developed with the aim of providing a
unified multi-center resource for glioma research. A variety of predictive models have
been trained and tested on these large datasets since their 2011 release [54]. Despite their
value as public datasets for model development, several limitations should be consid-
ered. Images are collected across multiple institutions with variable protocols and image
quality. Co-registration and imaging pre-processing integrate these images into a single
system. Although these techniques are necessary, they may reduce heterogeneity within the
datasets [52]. Models developed on these datasets may perform well in training and testing.
Nevertheless, the results may not be reproducible in the real-world clinical setting, where
images and tumor presentations are heterogeneous. We strongly support large multi-center
datasets in order to demonstrate model performance across distinct hospital settings. We,
however, recommend such initiatives incorporate images of various diagnostic qualities
into their training datasets, which more closely resemble what is seen in daily practice.

4.2. External Validation

Publications have reported predictive models for glioma grading throughout the
last 20 years with the majority relying on internal validation techniques, of which cross-
validation is the most popular. While internal validation is a well-established method for
measuring how well a model will perform on new cases from the initial dataset, additional
evaluation on a separate dataset (i.e., external validation) is critical to demonstrate model
generalizability. External validation mitigates site bias (differences amongst centers in pro-
tocols, techniques, scanner variability, level of experience, etc.) and sampling/selection bias
(performance only applicable to the specific training set population/demographics) [55].
Not controlling for these two major biases undermines model generalizability, yet few
publications externally validate their models [13]. Therefore, normalizing external valida-
tion is a crucial step in developing glioma grade prediction models that are suitable for
clinical implementation.

4.3. Glioma Grade Classification Systems

The classification of glioma subtypes into high- and low-grade gliomas is continuously
evolving. In 2016, an integrated histological–molecular classification replaced the previous
purely histopathological classification [56]. In 2021, the Consortium to Inform Molecular
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and Practical Approaches to CNS Tumor Taxonomy (cIMPACT NOW) once more accen-
tuated the diagnostic value of molecular markers, such as the isocitrate dehydrogenase
mutation, for glioma classification [57]. As a result of the evolving glioma classification
system, definitions for high- and low-grade gliomas vary across ML glioma grade predic-
tion studies and publication years. This reduces the comparability of models themselves
and grade-labeled datasets used for model development. We recommend future glioma
grade prediction studies focus on both glioma grade and molecular subtypes for more
comprehensive and reliable results over time. Neuropathologic diagnostic emphasis has
shifted from purely based on microscopic histology to one that combines morphologic and
molecular genetic features of tumor including gene mutations, chromosomal copy number
alterations, and gene rearrangements to yield integrated diagnosis. Rapid developments
in next generation sequencing techniques, multimodal molecular analysis, large scale ge-
nomic and epigenomic analyses, and DNA methylation methods promise to fundamentally
transform the pathologic CNS tumor diagnostics including glioma diagnosis and grading
to whole another level of precision and complexity.

Current and future ML methods must keep abreast of the rapid progress in tissue
based integrated diagnostics in order to contribute to and make an impact on the clinical
care of glioma patients (Figure 2).
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4.4. Reporting Quality and Risk of Bias
4.4.1. Overview of Current Guidelines and Tools for Assessment

It is critical that studies detailing prediction models, such as those for glioma grading,
exhibit a high caliber of scientific reporting in accordance with consensus standards. Clear
and thorough reporting enables more complete understanding by the reader and unam-
biguous assessment of study generalizability, quality, and reproducibility, encouraging
future researchers to replicate and use models in clinical contexts. Several instruments
have been designed to improve the reporting quality (defined here as the transparency
and thoroughness with which authors share key details of their study to enable proper
interpretation and evaluation) of studies developing models. The Transparent Report-
ing of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD)
Statement was created in 2015 as a set of recommendations for studies developing, val-
idating, or updating diagnostic or prognostic models [58]. The TRIPOD Statement is a
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checklist of 22 items considered essential for transparent reporting of a prediction model
study. In 2017, with a concurrent rise in radiomics-based model studies, the radiomics
quality score (RQS) emerged [59]. RQS is an adaptation of the TRIPOD approach geared
toward a radiomics-specific context. The tool has been used throughout the literature
for evaluating the methodological quality of radiomics studies, including applications to
medical imaging [60]. Radiomics-based approaches for interpreting medical images have
evolved to encompass the AI techniques of classical ML and, most recently, deep learning
models. Most recently, in recognition of the growing need for an evaluation tool specific
to AI applications in medical imaging, the Checklist for AI in Medical Imaging (CLAIM)
was published in 2020 [61]. The 42 elements of CLAIM aim to be a best practice guide for
authors presenting their research on applications of AI in medical imaging, ranging from
classification and image reconstruction to text analysis and workflow optimization. Other
tools—the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool [62] and
Prediction model Risk Of Bias ASsessment Tool (PROBAST) [63]—importantly evaluate the
risk of bias in studies based on what is reported about their models (Table 2). Bias relates
to systematic limitations or flaws in study design, methods, execution, or analysis that
distort estimates of model performance [62]. High risk of bias discourages adaptation of the
reported model outside of its original research context, and, at a systemic level, undermines
model reproducibility and translation into clinical practice.

Table 2. Overview of major reporting guidelines and bias assessment tools for diagnostic and
prognostic studies.

Guideline/Tool Full Name Year Published Articles Targeted Purpose Specific to ML?

QUADAS-2 4

Quality
Assessment of

Diagnostic
Accuracy Studies

2011 (original
QUADAS 4: 2003)

Diagnostic
accuracy studies

Evaluates study
risk of bias and

applicability

No; QUADAS-AI 4

is in development

TRIPOD 6

Transparent
Reporting of a
multivariable

prediction model
for Individual
Prognosis Or

Diagnosis

2015

Studies
developing,

validating, or
updating a

diagnostic or
prognostic

prediction model

Provides a set of
recommendations
for study reporting

No; TRIPOD-AI 6

is in development

RQS 5 Radiomics quality
score 2017 Radiomic studies

Assesses study
quality (emulating

TRIPOD 6)
No

PROBAST 3
Prediction model

Risk Of Bias
ASsessment Tool

2019

Studies
developing,

validating, or
updating a

diagnostic or
prognostic

prediction model

Evaluates study
risk of bias and

applicability

No; PROBAST-AI 3

is in development

CLAIM 2
Checklist for AI 1

in Medical
Imaging

2020 AI 1 studies in
medical imaging

Guides authors in
presenting (and

aids reviewers in
evaluating) their

research

Yes

1 AI = artificial intelligence, 2 CLAIM = Checklist for AI in Medical Imaging, 3 PROBAST = Prediction model Risk
Of Bias ASsessment Tool, 4 QUADAS-2 = Quality Assessment of Diagnostic Accuracy Studies, 5 RQS = radiomics
quality score, and 6 TRIPOD = Transparent Reporting of a multivariable prediction model for Individual Prognosis
or Diagnosis.
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4.4.2. Reporting Quality and Risk of Bias in Image-Based Glioma Grade Prediction

Assessments of ML-based prediction model studies have demonstrated that risk of
bias is high and reporting quality is inadequate. In their systematic review of prediction
models developed using supervised ML techniques, Navarro et al. found that the high
risk of study bias, as assessed using PROBAST, stems from small study size, poor handling
of missing data, and failure to deal with model overfitting [64]. Similar findings have
been reported for glioma grade prediction literature. In our prior study conducting a
TRIPOD analysis of more than 80 such model development studies, we report a mean
adherence rate to TRIPOD of 44%, indicating poor quality of reporting [51]. Areas for
improvement included reporting of titles and abstracts, justification of sample size, full
model specification and performance, and participant demographics, and missing data.
Sohn et al.’s meta-analysis of radiomics studies differentiating high- and low-grade gliomas
estimated a high risk of bias according to QUADAS-2, attributing this to the fact that all
their analyzed studies were retrospective (and have the potential for bias because patient
outcomes are already known), the lack of control over acquisition factors in the studies
using public imaging data, and unclear study flow and timing due to poor reporting [41].
Readers should refer directly to Navarro et al., Bahar et al. and Sohn et al. for more detailed
discussion of shortcomings in study reporting and risk of bias.

4.4.3. Future of Reporting Guidelines and Risk of Bias Tools for ML Studies

Efforts by authors to refine how they report their studies depend upon existing report-
ing guidelines. In their systematic review, Yao et al. identified substantial limitations to
neuroradiology deep learning reporting standardization and reproducibility [65]. They
recommended that future researchers propose a reporting framework specific to deep learn-
ing studies. This call for an AI-targeted framework parallels contemporary movements to
produce AI extensions of established reporting guidelines. TRIPOD creators have discussed
the challenges with ML not captured in the TRIPOD Statement [66]. The introduction of
more relevant terminology and movement away from regression-based model approaches
will be a part of the forthcoming extension of TRIPOD for studies reporting ML-based
diagnostic or prognostic models (TRIPOD-AI) [66,67]. QUADAS-2 creators also announced
a plan for an AI-extension (QUADAS-AI), noting that their tool similarly does not accom-
modate AI-specific terminology and further documenting sources of AI study bias that are
not signaled by the tool [68]. PROBAST-AI is in development too [66].

4.4.4. Recommendations

Systematic reviews and meta-analyses in the field [41,51,64] reveal various aspects of
reporting and bias risk that need to be addressed in order to promote complete understand-
ing, rigorous assessment, and reproducibility of image-based ML glioma grading studies.
Based on the problems identified in this literature (discussed in 4.4.2), we encourage future
works to closely adhere to the reporting and risk of bias tools and guidelines most relevant
to them, with particular attention to:

• Clearly signifying the development of a prediction model in their titles;
• Increasing the number of participants included in training/testing/validation sets;
• Justifying their choice of sample/sample size (whether that be on practical or logistical

grounds) and approach to handling missing data (e.g., imputation);
• Specifying all components of model development (including data pre-processing and

model calibration) and a full slate of performance metrics (accuracy, area under the
receiver operating characteristic curve (AUC), sensitivity, specificity, positive predic-
tive value, negative predictive value, and F1 score as well as associated confidence
intervals) for training/testing/validation. While accuracy is the most comprehensive
measure of model performance, AUC is more sensitive to performance differences
between classes (e.g., within imbalanced datasets) and should always be reported [69];

• Providing open access to the source code of their algorithms.
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For prediction model studies that involve applications of AI to medical imaging,
CLAIM is the only framework that is specific to AI and able to capture the nuances of their
model reporting—including data preprocessing steps, model layers/connections, software
libraries and packages, initialization of model parameters, performance metrics of models
on all data partitions, and public access to full study protocols. We, therefore, recommend
future studies developing ML models for the prediction of glioma grade from imaging
use CLAIM to guide how they present their work. The authors should remain vigilant
regarding the release of other AI-specific frameworks that may best suit their studies and
seek out AI-specific risk of bias tools to supplement CLAIM once available.

5. Future Directions

ML models present an attractive solution towards overcoming current barriers and
accelerating the transition to patient-tailored treatments and precision medicine. Novel
algorithms combine information derived from multimodal imaging to molecular markers
and clinical information, with the aim of bringing personalized predictions on a patient
level into routine clinical care. Relatedly, multi-omic approaches that integrate a variety of
advanced techniques such as proteomics, transcriptomics, epigenomics, etc., are increas-
ingly gaining importance in understanding cancer biology and will play a key role in the
facilitation of precision medicine [70,71]. The growing presence of ML models in research
settings is indisputable, yet several strategies should be considered to facilitate clinical
implementation: PACS-based image annotation tools, data-sharing and federated learning,
ML fairness, ML transparency, and FDA clearance and real-world use (Figure 3).
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5.1. PACS-Based Image Annotation Tools

Large, annotated datasets that are tailored to the patient populations of individual
hospitals and practices are key to training clinically applicable prediction algorithms. An
end-to-end solution for generation of these datasets, in which all steps of the ML workflow
are performed automatically in clinical picture archiving and communication system (PACS)
as the neuroradiologist reads a study, is considered the “holy grail” of AI workflow in
radiology [72]. A mechanism for achieving this is through automated/semi-automated
segmentation, feature extraction, and prediction algorithms embedded into clinical PACS
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that provide reports in real-time. The accumulation of saved segmentations through
this workflow could accelerate the generation of large, annotated datasets, in addition
to providing a decision-support tool for neuroradiologists in daily practice. Under these
circumstances, establishing strong academic-industry partnerships for the development of
clinically useful image annotation tools is fundamental.

5.2. Data-Sharing and Federated Learning

Multi-institutional academic partnerships are also critical for maximizing clinical
applications of ML. Data-sharing efforts are under way in order to accelerate the pace of
research [73]. Cross-institutional collaborations not only enrich the quality of the input
that goes into training the model, but also provide datasets for externally validating other
institutions’ models. However, data-sharing across institutions is often hindered by tech-
nical, regulatory, and privacy concerns [74]. A promising solution for this is federated
learning, an up-and-coming collaborative algorithm training effort that does not require
cross-institutional data-sharing. In federated learning, models are trained locally inside
an institution’s firewalls and learned weights or gradients are transferred from partici-
pating institutions for aggregation into a more robust model [75]. This overcomes the
barriers of data-sharing and has been shown to be superior to algorithms trained on single-
center datasets [76]. Federated learning is not without drawbacks, however; it depends
on existing standards for data quality, protocols, and heterogeneity of data distribution.
Researchers do not have access to model training data and may face difficulty interpreting
unexpected results.

5.3. ML Fairness

A common misconception about AI algorithms is that they are not vulnerable to biases
during decision-making. In reality, algorithm unfairness—defined as prejudice or discrimi-
nation that skews decisions toward individuals or groups based on their characteristics—
has been extensively documented across AI applications. A well-known example is the
Correctional Offender Management Profiling for Alternative Sanctions score, which was a
tool that assisted judges with their decision to release an offender or keep them in prison.
The software was found to be biased towards African Americans, judging them to be at
higher risk for recommitting crimes compared to Caucasian individuals [77]. Additional ex-
amples of bias have been demonstrated across widely deployed biobanks [78], clinical trial
accrual populations [79] and ICU mortality and 30-day psychiatric readmission prediction
algorithms [80] among other medical domains. Publicly available tools, including Fairlearn
and AI Fairness 360, assess and correct for algorithm unfairness ranging from allocation
harms and quality of service harms to feature and racial bias [81,82]. These tools have yet
to be applied widely in medical contexts despite their promising utility. Future works on
AI in neuro-oncology should consider implementing evidence-based bias detection and
mitigation tools tailored to their algorithm development setting and target population prior
to clinical integration.

5.4. ML Transparency

The opaqueness of ML models—DL in particular—poses a barrier to their acceptance
and usage. In addition, traditional measures such as software validation are insufficient
for fulfilling legal, compliance, and/or other requirements for ML tool clarification [83,84].
Explainable artificial intelligence (xAI) approaches may address these concerns by explain-
ing particular prediction outputs and overall model behavior in human-understandable
terms [85]. A recent study demonstrates the successful use of state-of-the-art xAI libraries
incorporating visual analytics for glioma classification [83]. Other approaches such as
Grad-CAM generate visual explanations of DL model decisions and, therefore, enhance
algorithm transparency [86]. These tools can support the interpretability of ML model
outputs for future research as well as prime ML for dissemination and acceptance in clinical
neuroradiology. Guidelines for authors, along with reporting quality assessment and risk
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of bias tools, should consider encouraging such approaches to further the transparency of
literature in the field.

Of relevance to ML model transparency are the concepts of usability and causability.
Usability can be defined as the ease of use of a computer system for users, or in other
words, the extent to which a user and a system may communicate through an interface
without misunderstanding [87,88]. Highly usable tools are associated with positive user
satisfaction and performance in the field of human–computer interaction [89]. Causability
is a parallel concept to usability and foundational for human–AI interaction. Causability
reflects the understandability of an AI model (e.g., CNN) to a human as communicated
by an explanation interface [89]. Causability, furthermore, determines relative importance
and justifies what should be explained and how [90]. Embracing causability in the develop-
ment of human–AI interfaces will help people understand the decision-making process
of ML algorithms and improve trust. We believe this will lower the threshold for clinical
ML utilization.

5.5. FDA Clearance and Real-World Use

Thousands of studies pertaining to applications of AI and ML in medical imaging
have been published [15,82]. Yet, few imaging AI/ML algorithms have been cleared by
the FDA as medical products [91], perhaps due in part to the lack of standardization
and transparency in the FDA clearance process [92]. Bridging the gap between AI/ML
research and FDA clearance—as well as FDA clearance and real-world algorithm use—will
streamline the adoption of ML models for glioma grading into clinical settings. To this end,
Lin presents several suggestions [93]. Partnering of the FDA with professional societies
could facilitate the standardization of algorithm development and evaluation. A key focus
would be resolving the split between how results are communicated in the literature (e.g.,
performance metrics) and what is relevant for AI product assessment (e.g., return on
investment, integration and flexibility with PACS, ease of use, etc.). Moreover, reporting of
post-marketing surveillance could help real-world use and algorithm performance drift.

6. Conclusions

ML glioma grade prediction tools are increasingly prevalent in research but have yet
to be incorporated clinically. The reporting quality of ML glioma grade prediction studies
is low, limiting model reproducibility and thus preventing reliable clinical translation.
However, current efforts to create ML-specific reporting guidelines and risk of bias tools
may help address these issues. Future directions for supporting clinical implementation
of ML prediction models include data-sharing, federated learning, and development of
PACS-based image annotation tools for the generation of large image databases, among
other opportunities.
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